blob: 843c2dd110649b811c5d3547c500ca370fc8bdf0 [file] [log] [blame]
Chia-chi Yeh4736a382010-12-10 18:11:00 +08001/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * This is a fast-and-accurate implementation of inverse Discrete Cosine
19 * Transform (IDCT) for ARMv6+. It also performs dequantization of the input
20 * coefficients just like other methods.
21 *
22 * This implementation is based on the scaled 1-D DCT algorithm proposed by
23 * Arai, Agui, and Nakajima. The following code is based on the figure 4-8
24 * on page 52 of the JPEG textbook by Pennebaker and Mitchell. Coefficients
25 * are (almost) directly mapped into registers.
26 *
27 * The accuracy is achieved by using SMULWy and SMLAWy instructions. Both
28 * multiply 32 bits by 16 bits and store the top 32 bits of the result. It
29 * makes 32-bit fixed-point arithmetic possible without overflow. That is
30 * why jpeg_idct_ifast(), which is written in C, cannot be improved.
31 *
32 * More tricks are used to gain more speed. First of all, we use as many
33 * registers as possible. ARM processor has 16 registers including sp (r13)
34 * and pc (r15), so only 14 registers can be used without limitations. In
35 * general, we let r0 to r7 hold the coefficients; r10 and r11 hold four
36 * 16-bit constants; r12 and r14 hold two of the four arguments; and r8 hold
37 * intermediate value. In the second pass, r9 is the loop counter. In the
38 * first pass, r8 to r11 are used to hold quantization values, so the loop
39 * counter is held by sp. Yes, the stack pointer. Since it must be aligned
40 * to 4-byte boundary all the time, we align it to 32-byte boundary and use
41 * bit 3 to bit 5. As the result, we actually use 14.1 registers. :-)
42 *
43 * Second, we rearrange quantization values to access them sequentially. The
44 * table is first transposed, and the new columns are placed in the order of
45 * 7, 5, 1, 3, 0, 2, 4, 6. Thus we can use LDMDB to load four values at a
46 * time. Rearranging coefficients also helps, but that requires to change a
47 * dozen of files, which seems not worth it. In addition, we choose to scale
48 * up quantization values by 13 bits, so the coefficients are scaled up by
49 * 16 bits after both passes. Then we can pack and saturate them two at a
50 * time using PKHTB and USAT16 instructions.
51 *
52 * Third, we reorder the instructions to avoid bubbles in the pipeline. This
53 * is done by hand accroding to the cycle timings and the interlock behavior
54 * described in the technical reference manual of ARM1136JF-S. We also take
55 * advantage of dual issue processors by interleaving instructions with
56 * dependencies. It has been benchmarked on four devices and all the results
57 * showed distinguishable improvements. Note that PLD instructions actually
58 * slow things down, so they are removed at the last minute. In the future,
59 * this might be futher improved using a system profiler.
60 */
61
Chia-chi Yeh4736a382010-12-10 18:11:00 +080062// void armv6_idct(short *coefs, int *quans, unsigned char *rows, int col)
63 .arm
64 .text
65 .align
66 .global armv6_idct
67 .func armv6_idct
68
69armv6_idct:
70 // Push everything except sp (r13) and pc (r15).
71 stmdb sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, r14}
72
73 // r12 = quans, r14 = coefs.
74 sub r4, sp, #236
75 bic sp, r4, #31
76 add r5, sp, #224
77 add r12, r1, #256
78 stm r5, {r2, r3, r4}
79 add r14, r0, #16
80
81pass1_head:
82 // Load quantization values. (q[0, 2, 4, 6])
83 ldmdb r12!, {r8, r9, r10, r11}
84
85 // Load coefficients. (c[4, 1, 2, 3, 0, 5, 6, 7])
86 ldrsh r4, [r14, #-2] !
87 ldrsh r1, [r14, #16]
88 ldrsh r2, [r14, #32]
89 ldrsh r3, [r14, #48]
90 ldrsh r0, [r14, #64]
91 ldrsh r5, [r14, #80]
92 ldrsh r6, [r14, #96]
93 ldrsh r7, [r14, #112]
94
95 // r4 = q[0] * c[0];
96 mul r4, r8, r4
97
98 // Check if ACs are all zero.
99 cmp r0, #0
100 orreqs r8, r1, r2
101 orreqs r8, r3, r5
102 orreqs r8, r6, r7
103 beq pass1_zero
104
105 // Step 1: Dequantizations.
106
107 // r2 = q[2] * c[2];
108 // r0 = q[4] * c[4] + r4;
109 // r6 = q[6] * c[6] + r2;
110 mul r2, r9, r2
111 mla r0, r10, r0, r4
112 mla r6, r11, r6, r2
113
114 // Load quantization values. (q[7, 5, 1, 3])
115 ldmdb r12!, {r8, r9, r10, r11}
116
117 // r4 = r4 * 2 - r0 = -(r0 - r4 * 2);
118 // r2 = r2 * 2 - r6 = -(r6 - r2 * 2);
119 rsb r4, r0, r4, lsl #1
120 rsb r2, r6, r2, lsl #1
121
122 // r7 = q[7] * c[7];
123 // r5 = q[5] * c[5];
124 // r1 = q[1] * c[1] + r7;
125 // r3 = q[3] * c[3] + r5;
126 mul r7, r8, r7
127 mul r5, r9, r5
128 mla r1, r10, r1, r7
129 mla r3, r11, r3, r5
130
131 // Load constants.
132 ldrd r10, constants
133
134 // Step 2: Rotations and Butterflies.
135
136 // r7 = r1 - r7 * 2;
137 // r1 = r1 - r3;
138 // r5 = r5 * 2 - r3 = -(r3 - r5 * 2);
139 // r3 = r1 + r3 * 2;
140 // r8 = r5 + r7;
141 sub r7, r1, r7, lsl #1
142 sub r1, r1, r3
143 rsb r5, r3, r5, lsl #1
144 add r3, r1, r3, lsl #1
145 add r8, r5, r7
146
147 // r2 = r2 * 1.41421 = r2 * 27146 / 65536 + r2;
148 // r8 = r8 * 1.84776 / 8 = r8 * 15137 / 65536;
149 // r1 = r1 * 1.41421 = r1 * 27146 / 65536 + r1;
150 smlawt r2, r2, r10, r2
151 smulwb r8, r8, r10
152 smlawt r1, r1, r10, r1
153
154 // r0 = r0 + r6;
155 // r2 = r2 - r6;
156 // r6 = r0 - r6 * 2;
157 add r0, r0, r6
158 sub r2, r2, r6
159 sub r6, r0, r6, lsl #1
160
161 // r5 = r5 * -2.61313 / 8 + r8 = r5 * -21407 / 65536 + r8;
162 // r8 = r7 * -1.08239 / 8 + r8 = r7 * -8867 / 65536 + r8;
163 smlawt r5, r5, r11, r8
164 smlawb r8, r7, r11, r8
165
166 // r4 = r4 + r2;
167 // r0 = r0 + r3;
168 // r2 = r4 - r2 * 2;
169 add r4, r4, r2
170 add r0, r0, r3
171 sub r2, r4, r2, lsl #1
172
173 // r7 = r5 * 8 - r3 = -(r3 - r5 * 8);
174 // r3 = r0 - r3 * 2;
175 // r1 = r1 - r7;
176 // r4 = r4 + r7;
177 // r5 = r8 * 8 - r1 = -(r1 - r8 * 8);
178 // r7 = r4 - r7 * 2;
179 rsb r7, r3, r5, lsl #3
180 sub r3, r0, r3, lsl #1
181 sub r1, r1, r7
182 add r4, r4, r7
183 rsb r5, r1, r8, lsl #3
184 sub r7, r4, r7, lsl #1
185
186 // r2 = r2 + r1;
187 // r6 = r6 + r5;
188 // r1 = r2 - r1 * 2;
189 // r5 = r6 - r5 * 2;
190 add r2, r2, r1
191 add r6, r6, r5
192 sub r1, r2, r1, lsl #1
193 sub r5, r6, r5, lsl #1
194
195 // Step 3: Reorder and Save.
196
197 str r0, [sp, #-4] !
198 str r4, [sp, #32]
199 str r2, [sp, #64]
200 str r6, [sp, #96]
201 str r5, [sp, #128]
202 str r1, [sp, #160]
203 str r7, [sp, #192]
204 str r3, [sp, #224]
205 b pass1_tail
206
207 // Precomputed 16-bit constants: 27146, 15137, -21407, -8867.
208 // Put them in the middle since LDRD only accepts offsets from -255 to 255.
209 .align 3
210constants:
211 .word 0x6a0a3b21
212 .word 0xac61dd5d
213
214pass1_zero:
215 str r4, [sp, #-4] !
216 str r4, [sp, #32]
217 str r4, [sp, #64]
218 str r4, [sp, #96]
219 str r4, [sp, #128]
220 str r4, [sp, #160]
221 str r4, [sp, #192]
222 str r4, [sp, #224]
223 sub r12, r12, #16
224
225pass1_tail:
226 ands r9, sp, #31
227 bne pass1_head
228
229 // r12 = rows, r14 = col.
230 ldr r12, [sp, #256]
231 ldr r14, [sp, #260]
232
233 // Load constants.
234 ldrd r10, constants
235
236pass2_head:
237 // Load coefficients. (c[0, 1, 2, 3, 4, 5, 6, 7])
238 ldmia sp!, {r0, r1, r2, r3, r4, r5, r6, r7}
239
240 // r0 = r0 + 0x00808000;
241 add r0, r0, #0x00800000
242 add r0, r0, #0x00008000
243
244 // Step 1: Analog to the first pass.
245
246 // r0 = r0 + r4;
247 // r6 = r6 + r2;
248 add r0, r0, r4
249 add r6, r6, r2
250
251 // r4 = r0 - r4 * 2;
252 // r2 = r2 * 2 - r6 = -(r6 - r2 * 2);
253 sub r4, r0, r4, lsl #1
254 rsb r2, r6, r2, lsl #1
255
256 // r1 = r1 + r7;
257 // r3 = r3 + r5;
258 add r1, r1, r7
259 add r3, r3, r5
260
261 // Step 2: Rotations and Butterflies.
262
263 // r7 = r1 - r7 * 2;
264 // r1 = r1 - r3;
265 // r5 = r5 * 2 - r3 = -(r3 - r5 * 2);
266 // r3 = r1 + r3 * 2;
267 // r8 = r5 + r7;
268 sub r7, r1, r7, lsl #1
269 sub r1, r1, r3
270 rsb r5, r3, r5, lsl #1
271 add r3, r1, r3, lsl #1
272 add r8, r5, r7
273
274 // r2 = r2 * 1.41421 = r2 * 27146 / 65536 + r2;
275 // r8 = r8 * 1.84776 / 8 = r8 * 15137 / 65536;
276 // r1 = r1 * 1.41421 = r1 * 27146 / 65536 + r1;
277 smlawt r2, r2, r10, r2
278 smulwb r8, r8, r10
279 smlawt r1, r1, r10, r1
280
281 // r0 = r0 + r6;
282 // r2 = r2 - r6;
283 // r6 = r0 - r6 * 2;
284 add r0, r0, r6
285 sub r2, r2, r6
286 sub r6, r0, r6, lsl #1
287
288 // r5 = r5 * -2.61313 / 8 + r8 = r5 * -21407 / 65536 + r8;
289 // r8 = r7 * -1.08239 / 8 + r8 = r7 * -8867 / 65536 + r8;
290 smlawt r5, r5, r11, r8
291 smlawb r8, r7, r11, r8
292
293 // r4 = r4 + r2;
294 // r0 = r0 + r3;
295 // r2 = r4 - r2 * 2;
296 add r4, r4, r2
297 add r0, r0, r3
298 sub r2, r4, r2, lsl #1
299
300 // r7 = r5 * 8 - r3 = -(r3 - r5 * 8);
301 // r3 = r0 - r3 * 2;
302 // r1 = r1 - r7;
303 // r4 = r4 + r7;
304 // r5 = r8 * 8 - r1 = -(r1 - r8 * 8);
305 // r7 = r4 - r7 * 2;
306 rsb r7, r3, r5, lsl #3
307 sub r3, r0, r3, lsl #1
308 sub r1, r1, r7
309 add r4, r4, r7
310 rsb r5, r1, r8, lsl #3
311 sub r7, r4, r7, lsl #1
312
313 // r2 = r2 + r1;
314 // r6 = r6 + r5;
315 // r1 = r2 - r1 * 2;
316 // r5 = r6 - r5 * 2;
317 add r2, r2, r1
318 add r6, r6, r5
319 sub r1, r2, r1, lsl #1
320 sub r5, r6, r5, lsl #1
321
322 // Step 3: Reorder and Save.
323
324 // Load output pointer.
325 ldr r8, [r12], #4
326
327 // For little endian: r6, r2, r4, r0, r3, r7, r1, r5.
328 pkhtb r6, r6, r4, asr #16
329 pkhtb r2, r2, r0, asr #16
330 pkhtb r3, r3, r1, asr #16
331 pkhtb r7, r7, r5, asr #16
332 usat16 r6, #8, r6
333 usat16 r2, #8, r2
334 usat16 r3, #8, r3
335 usat16 r7, #8, r7
336 orr r0, r2, r6, lsl #8
337 orr r1, r7, r3, lsl #8
338
339#ifdef __ARMEB__
340 // Reverse bytes for big endian.
341 rev r0, r0
342 rev r1, r1
343#endif
344
345 // Use STR instead of STRD to support unaligned access.
346 str r0, [r8, r14] !
347 str r1, [r8, #4]
348
349pass2_tail:
350 adds r9, r9, #0x10000000
351 bpl pass2_head
352
353 ldr sp, [sp, #8]
354 add sp, sp, #236
355
356 ldmia sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, r14}
357 bx lr
358 .endfunc