blob: 02462457ca18d64010fee502df9561d6cebabcaf [file] [log] [blame]
Sean Callanan47dc4572011-09-15 02:13:07 +00001//===-- IRInterpreter.cpp ---------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "lldb/Core/DataEncoder.h"
11#include "lldb/Core/Log.h"
12#include "lldb/Core/ValueObjectConstResult.h"
13#include "lldb/Expression/ClangExpressionDeclMap.h"
14#include "lldb/Expression/IRForTarget.h"
15#include "lldb/Expression/IRInterpreter.h"
16
17#include "llvm/Constants.h"
18#include "llvm/Function.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/Support/raw_ostream.h"
22#include "llvm/Target/TargetData.h"
23
24#include <map>
25
26using namespace llvm;
27
28IRInterpreter::IRInterpreter(lldb_private::ClangExpressionDeclMap &decl_map,
29 lldb_private::Stream *error_stream) :
30 m_decl_map(decl_map),
31 m_error_stream(error_stream)
32{
33
34}
35
36IRInterpreter::~IRInterpreter()
37{
38
39}
40
41static std::string
42PrintValue(const Value *value, bool truncate = false)
43{
44 std::string s;
45 raw_string_ostream rso(s);
46 value->print(rso);
47 rso.flush();
48 if (truncate)
49 s.resize(s.length() - 1);
50
51 size_t offset;
52 while ((offset = s.find('\n')) != s.npos)
53 s.erase(offset, 1);
54 while (s[0] == ' ' || s[0] == '\t')
55 s.erase(0, 1);
56
57 return s;
58}
59
60static std::string
61PrintType(const Type *type, bool truncate = false)
62{
63 std::string s;
64 raw_string_ostream rso(s);
65 type->print(rso);
66 rso.flush();
67 if (truncate)
68 s.resize(s.length() - 1);
69 return s;
70}
71
72typedef lldb::SharedPtr <lldb_private::DataEncoder>::Type DataEncoderSP;
73typedef lldb::SharedPtr <lldb_private::DataExtractor>::Type DataExtractorSP;
74
75class Memory
76{
77public:
78 typedef uint32_t index_t;
79
80 struct Allocation
81 {
82 // m_virtual_address is always the address of the variable in the virtual memory
83 // space provided by Memory.
84 //
85 // m_origin is always non-NULL and describes the source of the data (possibly
86 // m_data if this allocation is the authoritative source).
87 //
88 // Possible value configurations:
89 //
90 // Allocation type getValueType() getContextType() m_origin->GetScalar() m_data
91 // =========================================================================================================================
92 // FileAddress eValueTypeFileAddress eContextTypeInvalid A location in a binary NULL
93 // image
94 //
95 // LoadAddress eValueTypeLoadAddress eContextTypeInvalid A location in the target's NULL
96 // virtual memory
97 //
98 // Alloca eValueTypeHostAddress eContextTypeInvalid == m_data->GetBytes() Deleted at end of
99 // execution
100 //
101 // PersistentVar eValueTypeHostAddress eContextTypeClangType A persistent variable's NULL
102 // location in LLDB's memory
103 //
104 // Register [ignored] eContextTypeRegister [ignored] Flushed to the register
105 // at the end of execution
106
107 lldb::addr_t m_virtual_address;
108 size_t m_extent;
109 lldb_private::Value m_origin;
110 lldb::DataBufferSP m_data;
111
112 Allocation (lldb::addr_t virtual_address,
113 size_t extent,
114 lldb::DataBufferSP data) :
115 m_virtual_address(virtual_address),
116 m_extent(extent),
117 m_data(data)
118 {
119 }
120
121 Allocation (const Allocation &allocation) :
122 m_virtual_address(allocation.m_virtual_address),
123 m_extent(allocation.m_extent),
124 m_origin(allocation.m_origin),
125 m_data(allocation.m_data)
126 {
127 }
128 };
129
130 typedef lldb::SharedPtr <Allocation>::Type AllocationSP;
131
132 struct Region
133 {
134 AllocationSP m_allocation;
135 uint64_t m_base;
136 uint64_t m_extent;
137
138 Region () :
139 m_allocation(),
140 m_base(0),
141 m_extent(0)
142 {
143 }
144
145 Region (AllocationSP allocation, uint64_t base, uint64_t extent) :
146 m_allocation(allocation),
147 m_base(base),
148 m_extent(extent)
149 {
150 }
151
152 Region (const Region &region) :
153 m_allocation(region.m_allocation),
154 m_base(region.m_base),
155 m_extent(region.m_extent)
156 {
157 }
158
159 bool IsValid ()
160 {
161 return m_allocation != NULL;
162 }
163
164 bool IsInvalid ()
165 {
166 return m_allocation == NULL;
167 }
168 };
169
170 typedef std::vector <AllocationSP> MemoryMap;
171
172private:
173 lldb::addr_t m_addr_base;
174 lldb::addr_t m_addr_max;
175 MemoryMap m_memory;
176 lldb::ByteOrder m_byte_order;
177 lldb::addr_t m_addr_byte_size;
178 TargetData &m_target_data;
179
180 lldb_private::ClangExpressionDeclMap &m_decl_map;
181
182 MemoryMap::iterator LookupInternal (lldb::addr_t addr)
183 {
184 for (MemoryMap::iterator i = m_memory.begin(), e = m_memory.end();
185 i != e;
186 ++i)
187 {
188 if ((*i)->m_virtual_address <= addr &&
189 (*i)->m_virtual_address + (*i)->m_extent > addr)
190 return i;
191 }
192
193 return m_memory.end();
194 }
195
196public:
197 Memory (TargetData &target_data,
198 lldb_private::ClangExpressionDeclMap &decl_map,
199 lldb::addr_t alloc_start,
200 lldb::addr_t alloc_max) :
201 m_addr_base(alloc_start),
202 m_addr_max(alloc_max),
203 m_target_data(target_data),
204 m_decl_map(decl_map)
205 {
206 m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig);
207 m_addr_byte_size = (target_data.getPointerSize());
208 }
209
210 Region Malloc (size_t size, size_t align)
211 {
212 lldb::DataBufferSP data(new lldb_private::DataBufferHeap(size, 0));
213
214 if (data)
215 {
216 index_t index = m_memory.size();
217
218 const size_t mask = (align - 1);
219
220 m_addr_base += mask;
221 m_addr_base &= ~mask;
222
223 if (m_addr_base + size < m_addr_base ||
224 m_addr_base + size > m_addr_max)
225 return Region();
226
227 uint64_t base = m_addr_base;
228
229 m_memory.push_back(AllocationSP(new Allocation(base, size, data)));
230
231 m_addr_base += size;
232
233 AllocationSP alloc = m_memory[index];
234
235 alloc->m_origin.GetScalar() = (unsigned long long)data->GetBytes();
236 alloc->m_origin.SetContext(lldb_private::Value::eContextTypeInvalid, NULL);
237 alloc->m_origin.SetValueType(lldb_private::Value::eValueTypeHostAddress);
238
239 return Region(alloc, base, size);
240 }
241
242 return Region();
243 }
244
245 Region Malloc (Type *type)
246 {
247 return Malloc (m_target_data.getTypeAllocSize(type),
248 m_target_data.getPrefTypeAlignment(type));
249 }
250
251 Region Place (Type *type, lldb::addr_t base, lldb_private::Value &value)
252 {
253 index_t index = m_memory.size();
254 size_t size = m_target_data.getTypeAllocSize(type);
255
256 m_memory.push_back(AllocationSP(new Allocation(base, size, lldb::DataBufferSP())));
257
258 AllocationSP alloc = m_memory[index];
259
260 alloc->m_origin = value;
261
262 return Region(alloc, base, size);
263 }
264
265 void Free (lldb::addr_t addr)
266 {
267 MemoryMap::iterator i = LookupInternal (addr);
268
269 if (i != m_memory.end())
270 m_memory.erase(i);
271 }
272
273 Region Lookup (lldb::addr_t addr, Type *type)
274 {
275 MemoryMap::iterator i = LookupInternal(addr);
276
277 if (i == m_memory.end())
278 return Region();
279
280 size_t size = m_target_data.getTypeStoreSize(type);
281
282 return Region(*i, addr, size);
283 }
284
285 DataEncoderSP GetEncoder (Region region)
286 {
287 if (region.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress)
288 return DataEncoderSP();
289
290 lldb::DataBufferSP buffer = region.m_allocation->m_data;
291
292 if (!buffer)
293 return DataEncoderSP();
294
295 size_t base_offset = (size_t)(region.m_base - region.m_allocation->m_virtual_address);
296
297 return DataEncoderSP(new lldb_private::DataEncoder(buffer->GetBytes() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size));
298 }
299
300 DataExtractorSP GetExtractor (Region region)
301 {
302 if (region.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress)
303 return DataExtractorSP();
304
305 lldb::DataBufferSP buffer = region.m_allocation->m_data;
306 size_t base_offset = (size_t)(region.m_base - region.m_allocation->m_virtual_address);
307
308 if (buffer)
309 return DataExtractorSP(new lldb_private::DataExtractor(buffer->GetBytes() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size));
310 else
311 return DataExtractorSP(new lldb_private::DataExtractor((uint8_t*)region.m_allocation->m_origin.GetScalar().ULongLong() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size));
312 }
313
314 lldb_private::Value GetAccessTarget(lldb::addr_t addr)
315 {
316 MemoryMap::iterator i = LookupInternal(addr);
317
318 if (i == m_memory.end())
319 return lldb_private::Value();
320
321 lldb_private::Value target = (*i)->m_origin;
322
323 if (target.GetContextType() == lldb_private::Value::eContextTypeRegisterInfo)
324 {
325 target.SetContext(lldb_private::Value::eContextTypeInvalid, NULL);
326 target.SetValueType(lldb_private::Value::eValueTypeHostAddress);
327 target.GetScalar() = (unsigned long long)(*i)->m_data->GetBytes();
328 }
329
330 target.GetScalar() += (addr - (*i)->m_virtual_address);
331
332 return target;
333 }
334
335 bool Write (lldb::addr_t addr, const uint8_t *data, size_t length)
336 {
337 lldb_private::Value target = GetAccessTarget(addr);
338
339 return m_decl_map.WriteTarget(target, data, length);
340 }
341
342 bool Read (uint8_t *data, lldb::addr_t addr, size_t length)
343 {
344 lldb_private::Value target = GetAccessTarget(addr);
345
346 return m_decl_map.ReadTarget(data, target, length);
347 }
348
349 std::string PrintData (lldb::addr_t addr, size_t length)
350 {
351 lldb_private::Value target = GetAccessTarget(addr);
352
353 lldb_private::DataBufferHeap buf(length, 0);
354
355 if (!m_decl_map.ReadTarget(buf.GetBytes(), target, length))
356 return std::string("<couldn't read data>");
357
358 lldb_private::StreamString ss;
359
360 for (size_t i = 0; i < length; i++)
361 {
362 if ((!(i & 0xf)) && i)
363 ss.Printf("%02hhx - ", buf.GetBytes()[i]);
364 else
365 ss.Printf("%02hhx ", buf.GetBytes()[i]);
366 }
367
368 return ss.GetString();
369 }
370
371 std::string SummarizeRegion (Region &region)
372 {
373 lldb_private::StreamString ss;
374
375 lldb_private::Value base = GetAccessTarget(region.m_base);
376
377 ss.Printf("%llx [%s - %s %llx]",
378 region.m_base,
379 lldb_private::Value::GetValueTypeAsCString(base.GetValueType()),
380 lldb_private::Value::GetContextTypeAsCString(base.GetContextType()),
381 base.GetScalar().ULongLong());
382
383 ss.Printf(" %s", PrintData(region.m_base, region.m_extent).c_str());
384
385 return ss.GetString();
386 }
387};
388
389class InterpreterStackFrame
390{
391public:
392 typedef std::map <const Value*, Memory::Region> ValueMap;
393
394 ValueMap m_values;
395 Memory &m_memory;
396 TargetData &m_target_data;
397 lldb_private::ClangExpressionDeclMap &m_decl_map;
398 const BasicBlock *m_bb;
399 BasicBlock::const_iterator m_ii;
400 BasicBlock::const_iterator m_ie;
401
402 lldb::ByteOrder m_byte_order;
403 size_t m_addr_byte_size;
404
405 InterpreterStackFrame (TargetData &target_data,
406 Memory &memory,
407 lldb_private::ClangExpressionDeclMap &decl_map) :
408 m_target_data (target_data),
409 m_memory (memory),
410 m_decl_map (decl_map)
411 {
412 m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig);
413 m_addr_byte_size = (target_data.getPointerSize());
414 }
415
416 void Jump (const BasicBlock *bb)
417 {
418 m_bb = bb;
419 m_ii = m_bb->begin();
420 m_ie = m_bb->end();
421 }
422
423 bool Cache (Memory::AllocationSP allocation, Type *type)
424 {
425 if (allocation->m_origin.GetContextType() != lldb_private::Value::eContextTypeRegisterInfo)
426 return false;
427
428 return m_decl_map.ReadTarget(allocation->m_data->GetBytes(), allocation->m_origin, allocation->m_data->GetByteSize());
429 }
430
431 std::string SummarizeValue (const Value *value)
432 {
433 lldb_private::StreamString ss;
434
435 ss.Printf("%s", PrintValue(value).c_str());
436
437 ValueMap::iterator i = m_values.find(value);
438
439 if (i != m_values.end())
440 {
441 Memory::Region region = i->second;
442
443 ss.Printf(" %s", m_memory.SummarizeRegion(region).c_str());
444 }
445
446 return ss.GetString();
447 }
448
449 bool AssignToMatchType (lldb_private::Scalar &scalar, uint64_t u64value, Type *type)
450 {
451 size_t type_size = m_target_data.getTypeStoreSize(type);
452
453 switch (type_size)
454 {
455 case 1:
456 scalar = (uint8_t)u64value;
457 break;
458 case 2:
459 scalar = (uint16_t)u64value;
460 break;
461 case 4:
462 scalar = (uint32_t)u64value;
463 break;
464 case 8:
465 scalar = (uint64_t)u64value;
466 break;
467 default:
468 return false;
469 }
470
471 return true;
472 }
473
474 bool EvaluateValue (lldb_private::Scalar &scalar, const Value *value, Module &module)
475 {
476 const Constant *constant = dyn_cast<Constant>(value);
477
478 if (constant)
479 {
480 if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant))
481 {
482 return AssignToMatchType(scalar, constant_int->getLimitedValue(), value->getType());
483 }
484 }
485 else
486 {
487 Memory::Region region = ResolveValue(value, module);
488 DataExtractorSP value_extractor = m_memory.GetExtractor(region);
489
490 if (!value_extractor)
491 return false;
492
493 size_t value_size = m_target_data.getTypeStoreSize(value->getType());
494
495 uint32_t offset = 0;
496 uint64_t u64value = value_extractor->GetMaxU64(&offset, value_size);
497
498 return AssignToMatchType(scalar, u64value, value->getType());
499 }
500
501 return false;
502 }
503
504 bool AssignValue (const Value *value, lldb_private::Scalar &scalar, Module &module)
505 {
506 Memory::Region region = ResolveValue (value, module);
507
508 lldb_private::Scalar cast_scalar;
509
510 if (!AssignToMatchType(cast_scalar, scalar.GetRawBits64(0), value->getType()))
511 return false;
512
513 lldb_private::DataBufferHeap buf(cast_scalar.GetByteSize(), 0);
514
515 lldb_private::Error err;
516
517 if (!cast_scalar.GetAsMemoryData(buf.GetBytes(), buf.GetByteSize(), m_byte_order, err))
518 return false;
519
520 DataEncoderSP region_encoder = m_memory.GetEncoder(region);
521
522 memcpy(region_encoder->GetDataStart(), buf.GetBytes(), buf.GetByteSize());
523
524 return true;
525 }
526
527 bool ResolveConstant (Memory::Region &region, const Constant *constant)
528 {
529 size_t constant_size = m_target_data.getTypeStoreSize(constant->getType());
530
531 if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant))
532 {
533 const uint64_t *raw_data = constant_int->getValue().getRawData();
534 return m_memory.Write(region.m_base, (const uint8_t*)raw_data, constant_size);
535 }
536 if (const ConstantFP *constant_fp = dyn_cast<ConstantFP>(constant))
537 {
538 const uint64_t *raw_data = constant_fp->getValueAPF().bitcastToAPInt().getRawData();
539 return m_memory.Write(region.m_base, (const uint8_t*)raw_data, constant_size);
540 }
541
542 return false;
543 }
544
545 Memory::Region ResolveValue (const Value *value, Module &module)
546 {
547 ValueMap::iterator i = m_values.find(value);
548
549 if (i != m_values.end())
550 return i->second;
551
552 const GlobalValue *global_value = dyn_cast<GlobalValue>(value);
553
554 // Attempt to resolve the value using the program's data.
555 // If it is, the values to be created are:
556 //
557 // data_region - a region of memory in which the variable's data resides.
558 // ref_region - a region of memory in which its address (i.e., &var) resides.
559 // In the JIT case, this region would be a member of the struct passed in.
560 // pointer_region - a region of memory in which the address of the pointer
561 // resides. This is an IR-level variable.
562 do
563 {
564 if (!global_value)
565 break;
566
567 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
568
569 clang::NamedDecl *decl = IRForTarget::DeclForGlobal(global_value, &module);
570
571 if (!decl)
572 break;
573
574 lldb_private::Value resolved_value = m_decl_map.LookupDecl(decl);
575
576 if (resolved_value.GetScalar().GetType() != lldb_private::Scalar::e_void)
577 {
578 if (resolved_value.GetContextType() == lldb_private::Value::eContextTypeRegisterInfo)
579 {
580 Memory::Region data_region = m_memory.Malloc(value->getType());
581 data_region.m_allocation->m_origin = resolved_value;
582 Memory::Region ref_region = m_memory.Malloc(value->getType());
583 Memory::Region pointer_region = m_memory.Malloc(value->getType());
584
585 if (!Cache(data_region.m_allocation, value->getType()))
586 return Memory::Region();
587
588 if (ref_region.IsInvalid())
589 return Memory::Region();
590
591 if (pointer_region.IsInvalid())
592 return Memory::Region();
593
594 DataEncoderSP ref_encoder = m_memory.GetEncoder(ref_region);
595
596 if (ref_encoder->PutAddress(0, data_region.m_base) == UINT32_MAX)
597 return Memory::Region();
598
599 DataEncoderSP pointer_encoder = m_memory.GetEncoder(pointer_region);
600
601 if (pointer_encoder->PutAddress(0, ref_region.m_base) == UINT32_MAX)
602 return Memory::Region();
603
604 m_values[value] = pointer_region;
605 return pointer_region;
606 }
607 else if (isa<clang::FunctionDecl>(decl))
608 {
609 if (log)
610 log->Printf("The interpreter does not handle function pointers at the moment");
611
612 return Memory::Region();
613 }
614 else
615 {
616 Memory::Region data_region = m_memory.Place(value->getType(), resolved_value.GetScalar().ULongLong(), resolved_value);
617 Memory::Region ref_region = m_memory.Malloc(value->getType());
618 Memory::Region pointer_region = m_memory.Malloc(value->getType());
619
620 if (ref_region.IsInvalid())
621 return Memory::Region();
622
623 if (pointer_region.IsInvalid())
624 return Memory::Region();
625
626 DataEncoderSP ref_encoder = m_memory.GetEncoder(ref_region);
627
628 if (ref_encoder->PutAddress(0, data_region.m_base) == UINT32_MAX)
629 return Memory::Region();
630
631 DataEncoderSP pointer_encoder = m_memory.GetEncoder(pointer_region);
632
633 if (pointer_encoder->PutAddress(0, ref_region.m_base) == UINT32_MAX)
634 return Memory::Region();
635
636 m_values[value] = pointer_region;
637
638 if (log)
639 {
640 log->Printf("Made an allocation for %s", PrintValue(global_value).c_str());
641 log->Printf(" Data contents : %s", m_memory.PrintData(data_region.m_base, data_region.m_extent).c_str());
642 log->Printf(" Data region : %llx", (unsigned long long)data_region.m_base);
643 log->Printf(" Ref region : %llx", (unsigned long long)ref_region.m_base);
644 log->Printf(" Pointer region : %llx", (unsigned long long)pointer_region.m_base);
645 }
646
647 return pointer_region;
648 }
649 }
650 }
651 while(0);
652
653 // Fall back and allocate space [allocation type Alloca]
654
655 Type *type = value->getType();
656
657 lldb::ValueSP backing_value(new lldb_private::Value);
658
659 Memory::Region data_region = m_memory.Malloc(type);
660 data_region.m_allocation->m_origin.GetScalar() = (unsigned long long)data_region.m_allocation->m_data->GetBytes();
661 data_region.m_allocation->m_origin.SetContext(lldb_private::Value::eContextTypeInvalid, NULL);
662 data_region.m_allocation->m_origin.SetValueType(lldb_private::Value::eValueTypeHostAddress);
663
664 const Constant *constant = dyn_cast<Constant>(value);
665
666 do
667 {
668 if (!constant)
669 break;
670
671 if (!ResolveConstant (data_region, constant))
672 return Memory::Region();
673 }
674 while(0);
675
676 m_values[value] = data_region;
677 return data_region;
678 }
679
680 bool ConstructResult (lldb::ClangExpressionVariableSP &result,
681 const GlobalValue *result_value,
682 const lldb_private::ConstString &result_name,
683 lldb_private::TypeFromParser result_type,
684 Module &module)
685 {
686 // The result_value resolves to P, a pointer to a region R containing the result data.
687 // If the result variable is a reference, the region R contains a pointer to the result R_final in the original process.
688
689 if (!result_value)
690 return true; // There was no slot for a result – the expression doesn't return one.
691
692 ValueMap::iterator i = m_values.find(result_value);
693
694 if (i == m_values.end())
695 return false; // There was a slot for the result, but we didn't write into it.
696
697 Memory::Region P = i->second;
698 DataExtractorSP P_extractor = m_memory.GetExtractor(P);
699
700 if (!P_extractor)
701 return false;
702
703 Type *pointer_ty = result_value->getType();
704 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty);
705 if (!pointer_ptr_ty)
706 return false;
707 Type *R_ty = pointer_ptr_ty->getElementType();
708
709 uint32_t offset = 0;
710 lldb::addr_t pointer = P_extractor->GetAddress(&offset);
711
712 Memory::Region R = m_memory.Lookup(pointer, R_ty);
713
714 if (R.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress ||
715 !R.m_allocation->m_data)
716 return false;
717
718 lldb_private::Value base;
719
720 if (m_decl_map.ResultIsReference(result_name))
721 {
722 PointerType *R_ptr_ty = dyn_cast<PointerType>(R_ty);
723 if (!R_ptr_ty)
724 return false;
725 Type *R_final_ty = R_ptr_ty->getElementType();
726
727 DataExtractorSP R_extractor = m_memory.GetExtractor(R);
728
729 if (!R_extractor)
730 return false;
731
732 offset = 0;
733 lldb::addr_t R_pointer = R_extractor->GetAddress(&offset);
734
735 Memory::Region R_final = m_memory.Lookup(R_pointer, R_final_ty);
736
737 if (!R_final.m_allocation)
738 return false;
739
740 base = R_final.m_allocation->m_origin;
741 base.GetScalar() += (R_final.m_base - R_final.m_allocation->m_virtual_address);
742 }
743 else
744 {
745 base.SetContext(lldb_private::Value::eContextTypeInvalid, NULL);
746 base.SetValueType(lldb_private::Value::eValueTypeHostAddress);
747 base.GetScalar() = (unsigned long long)R.m_allocation->m_data->GetBytes() + (R.m_base - R.m_allocation->m_virtual_address);
748 }
749
750 return m_decl_map.CompleteResultVariable (result, base, result_name, result_type);
751 }
752};
753
754bool
755IRInterpreter::maybeRunOnFunction (lldb::ClangExpressionVariableSP &result,
756 const lldb_private::ConstString &result_name,
757 lldb_private::TypeFromParser result_type,
758 Function &llvm_function,
759 Module &llvm_module)
760{
761 if (supportsFunction (llvm_function))
762 return runOnFunction(result,
763 result_name,
764 result_type,
765 llvm_function,
766 llvm_module);
767 else
768 return false;
769}
770
771bool
772IRInterpreter::supportsFunction (Function &llvm_function)
773{
774 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
775
776 for (Function::iterator bbi = llvm_function.begin(), bbe = llvm_function.end();
777 bbi != bbe;
778 ++bbi)
779 {
780 for (BasicBlock::iterator ii = bbi->begin(), ie = bbi->end();
781 ii != ie;
782 ++ii)
783 {
784 switch (ii->getOpcode())
785 {
786 default:
787 {
788 if (log)
789 log->Printf("Unsupported instruction: %s", PrintValue(ii).c_str());
790 return false;
791 }
792 case Instruction::Add:
793 case Instruction::Alloca:
794 case Instruction::BitCast:
795 case Instruction::Br:
796 case Instruction::GetElementPtr:
797 break;
798 case Instruction::ICmp:
799 {
800 ICmpInst *icmp_inst = dyn_cast<ICmpInst>(ii);
801
802 if (!icmp_inst)
803 return false;
804
805 switch (icmp_inst->getPredicate())
806 {
807 default:
808 {
809 if (log)
810 log->Printf("Unsupported ICmp predicate: %s", PrintValue(ii).c_str());
811 return false;
812 }
813 case CmpInst::ICMP_EQ:
814 case CmpInst::ICMP_NE:
815 case CmpInst::ICMP_UGT:
816 case CmpInst::ICMP_UGE:
817 case CmpInst::ICMP_ULT:
818 case CmpInst::ICMP_ULE:
819 case CmpInst::ICMP_SGT:
820 case CmpInst::ICMP_SGE:
821 case CmpInst::ICMP_SLT:
822 case CmpInst::ICMP_SLE:
823 break;
824 }
825 }
826 break;
827 case Instruction::Load:
828 case Instruction::Mul:
829 case Instruction::Ret:
830 case Instruction::SDiv:
831 case Instruction::Store:
832 case Instruction::Sub:
833 case Instruction::UDiv:
834 break;
835 }
836 }
837 }
838
839 return true;
840}
841
842bool
843IRInterpreter::runOnFunction (lldb::ClangExpressionVariableSP &result,
844 const lldb_private::ConstString &result_name,
845 lldb_private::TypeFromParser result_type,
846 Function &llvm_function,
847 Module &llvm_module)
848{
849 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
850
851 lldb_private::ClangExpressionDeclMap::TargetInfo target_info = m_decl_map.GetTargetInfo();
852
853 if (!target_info.IsValid())
854 return false;
855
856 lldb::addr_t alloc_min;
857 lldb::addr_t alloc_max;
858
859 switch (target_info.address_byte_size)
860 {
861 default:
862 return false;
863 case 4:
864 alloc_min = 0x00001000llu;
865 alloc_max = 0x0000ffffllu;
866 break;
867 case 8:
868 alloc_min = 0x0000000000001000llu;
869 alloc_max = 0x000000000000ffffllu;
870 break;
871 }
872
873 TargetData target_data(&llvm_module);
874 if (target_data.getPointerSize() != target_info.address_byte_size)
875 return false;
876 if (target_data.isLittleEndian() != (target_info.byte_order == lldb::eByteOrderLittle))
877 return false;
878
879 Memory memory(target_data, m_decl_map, alloc_min, alloc_max);
880 InterpreterStackFrame frame(target_data, memory, m_decl_map);
881
882 uint32_t num_insts = 0;
883
884 frame.Jump(llvm_function.begin());
885
886 while (frame.m_ii != frame.m_ie && (++num_insts < 4096))
887 {
888 const Instruction *inst = frame.m_ii;
889
890 if (log)
891 log->Printf("Interpreting %s", PrintValue(inst).c_str());
892
893 switch (inst->getOpcode())
894 {
895 default:
896 break;
897 case Instruction::Add:
898 case Instruction::Sub:
899 case Instruction::Mul:
900 case Instruction::SDiv:
901 case Instruction::UDiv:
902 {
903 const BinaryOperator *bin_op = dyn_cast<BinaryOperator>(inst);
904
905 if (!bin_op)
906 {
907 if (log)
908 log->Printf("getOpcode() returns %s, but instruction is not a BinaryOperator", inst->getOpcodeName());
909
910 return false;
911 }
912
913 Value *lhs = inst->getOperand(0);
914 Value *rhs = inst->getOperand(1);
915
916 lldb_private::Scalar L;
917 lldb_private::Scalar R;
918
919 if (!frame.EvaluateValue(L, lhs, llvm_module))
920 {
921 if (log)
922 log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str());
923
924 return false;
925 }
926
927 if (!frame.EvaluateValue(R, rhs, llvm_module))
928 {
929 if (log)
930 log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str());
931
932 return false;
933 }
934
935 lldb_private::Scalar result;
936
937 switch (inst->getOpcode())
938 {
939 default:
940 break;
941 case Instruction::Add:
942 result = L + R;
943 break;
944 case Instruction::Mul:
945 result = L * R;
946 break;
947 case Instruction::Sub:
948 result = L - R;
949 break;
950 case Instruction::SDiv:
951 result = L / R;
952 break;
953 case Instruction::UDiv:
954 result = L.GetRawBits64(0) / R.GetRawBits64(1);
955 break;
956 }
957
958 frame.AssignValue(inst, result, llvm_module);
959
960 if (log)
961 {
962 log->Printf("Interpreted a %s", inst->getOpcodeName());
963 log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str());
964 log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str());
965 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str());
966 }
967 }
968 break;
969 case Instruction::Alloca:
970 {
971 const AllocaInst *alloca_inst = dyn_cast<AllocaInst>(inst);
972
973 if (!alloca_inst)
974 {
975 if (log)
976 log->Printf("getOpcode() returns Alloca, but instruction is not an AllocaInst");
977
978 return false;
979 }
980
981 if (alloca_inst->isArrayAllocation())
982 {
983 if (log)
984 log->Printf("AllocaInsts are not handled if isArrayAllocation() is true");
985
986 return false;
987 }
988
989 // The semantics of Alloca are:
990 // Create a region R of virtual memory of type T, backed by a data buffer
991 // Create a region P of virtual memory of type T*, backed by a data buffer
992 // Write the virtual address of R into P
993
994 Type *T = alloca_inst->getAllocatedType();
995 Type *Tptr = alloca_inst->getType();
996
997 Memory::Region R = memory.Malloc(T);
998
999 if (R.IsInvalid())
1000 {
1001 if (log)
1002 log->Printf("Couldn't allocate memory for an AllocaInst");
1003
1004 return false;
1005 }
1006
1007 Memory::Region P = memory.Malloc(Tptr);
1008
1009 if (P.IsInvalid())
1010 {
1011 if (log)
1012 log->Printf("Couldn't allocate the result pointer for an AllocaInst");
1013
1014 return false;
1015 }
1016
1017 DataEncoderSP P_encoder = memory.GetEncoder(P);
1018
1019 if (P_encoder->PutAddress(0, R.m_base) == UINT32_MAX)
1020 {
1021 if (log)
1022 log->Printf("Couldn't write the reseult pointer for an AllocaInst");
1023
1024 return false;
1025 }
1026
1027 frame.m_values[alloca_inst] = P;
1028
1029 if (log)
1030 {
1031 log->Printf("Interpreted an AllocaInst");
1032 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str());
1033 log->Printf(" P : %s", frame.SummarizeValue(alloca_inst).c_str());
1034 }
1035 }
1036 break;
1037 case Instruction::BitCast:
1038 {
1039 const BitCastInst *bit_cast_inst = dyn_cast<BitCastInst>(inst);
1040
1041 if (!bit_cast_inst)
1042 {
1043 if (log)
1044 log->Printf("getOpcode() returns BitCast, but instruction is not a BitCastInst");
1045
1046 return false;
1047 }
1048
1049 Value *source = bit_cast_inst->getOperand(0);
1050
1051 lldb_private::Scalar S;
1052
1053 if (!frame.EvaluateValue(S, source, llvm_module))
1054 {
1055 if (log)
1056 log->Printf("Couldn't evaluate %s", PrintValue(source).c_str());
1057
1058 return false;
1059 }
1060
1061 frame.AssignValue(inst, S, llvm_module);
1062 }
1063 break;
1064 case Instruction::Br:
1065 {
1066 const BranchInst *br_inst = dyn_cast<BranchInst>(inst);
1067
1068 if (!br_inst)
1069 {
1070 if (log)
1071 log->Printf("getOpcode() returns Br, but instruction is not a BranchInst");
1072
1073 return false;
1074 }
1075
1076 if (br_inst->isConditional())
1077 {
1078 Value *condition = br_inst->getCondition();
1079
1080 lldb_private::Scalar C;
1081
1082 if (!frame.EvaluateValue(C, condition, llvm_module))
1083 {
1084 if (log)
1085 log->Printf("Couldn't evaluate %s", PrintValue(condition).c_str());
1086
1087 return false;
1088 }
1089
1090 if (C.GetRawBits64(0))
1091 frame.Jump(br_inst->getSuccessor(0));
1092 else
1093 frame.Jump(br_inst->getSuccessor(1));
1094
1095 if (log)
1096 {
1097 log->Printf("Interpreted a BrInst with a condition");
1098 log->Printf(" cond : %s", frame.SummarizeValue(condition).c_str());
1099 }
1100 }
1101 else
1102 {
1103 frame.Jump(br_inst->getSuccessor(0));
1104
1105 if (log)
1106 {
1107 log->Printf("Interpreted a BrInst with no condition");
1108 }
1109 }
1110 }
1111 continue;
1112 case Instruction::GetElementPtr:
1113 {
1114 const GetElementPtrInst *gep_inst = dyn_cast<GetElementPtrInst>(inst);
1115
1116 if (!gep_inst)
1117 {
1118 if (log)
1119 log->Printf("getOpcode() returns GetElementPtr, but instruction is not a GetElementPtrInst");
1120
1121 return false;
1122 }
1123
1124 const Value *pointer_operand = gep_inst->getPointerOperand();
1125 Type *pointer_type = pointer_operand->getType();
1126
1127 lldb_private::Scalar P;
1128
1129 if (!frame.EvaluateValue(P, pointer_operand, llvm_module))
1130 return false;
1131
1132 SmallVector <Value *, 8> indices (gep_inst->idx_begin(),
1133 gep_inst->idx_end());
1134
1135 uint64_t offset = target_data.getIndexedOffset(pointer_type, indices);
1136
1137 lldb_private::Scalar Poffset = P + offset;
1138
1139 frame.AssignValue(inst, Poffset, llvm_module);
1140
1141 if (log)
1142 {
1143 log->Printf("Interpreted a GetElementPtrInst");
1144 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str());
1145 log->Printf(" Poffset : %s", frame.SummarizeValue(inst).c_str());
1146 }
1147 }
1148 break;
1149 case Instruction::ICmp:
1150 {
1151 const ICmpInst *icmp_inst = dyn_cast<ICmpInst>(inst);
1152
1153 if (!icmp_inst)
1154 {
1155 if (log)
1156 log->Printf("getOpcode() returns ICmp, but instruction is not an ICmpInst");
1157
1158 return false;
1159 }
1160
1161 CmpInst::Predicate predicate = icmp_inst->getPredicate();
1162
1163 Value *lhs = inst->getOperand(0);
1164 Value *rhs = inst->getOperand(1);
1165
1166 lldb_private::Scalar L;
1167 lldb_private::Scalar R;
1168
1169 if (!frame.EvaluateValue(L, lhs, llvm_module))
1170 {
1171 if (log)
1172 log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str());
1173
1174 return false;
1175 }
1176
1177 if (!frame.EvaluateValue(R, rhs, llvm_module))
1178 {
1179 if (log)
1180 log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str());
1181
1182 return false;
1183 }
1184
1185 lldb_private::Scalar result;
1186
1187 switch (predicate)
1188 {
1189 default:
1190 return false;
1191 case CmpInst::ICMP_EQ:
1192 result = (L == R);
1193 break;
1194 case CmpInst::ICMP_NE:
1195 result = (L != R);
1196 break;
1197 case CmpInst::ICMP_UGT:
1198 result = (L.GetRawBits64(0) > R.GetRawBits64(0));
1199 break;
1200 case CmpInst::ICMP_UGE:
1201 result = (L.GetRawBits64(0) >= R.GetRawBits64(0));
1202 break;
1203 case CmpInst::ICMP_ULT:
1204 result = (L.GetRawBits64(0) < R.GetRawBits64(0));
1205 break;
1206 case CmpInst::ICMP_ULE:
1207 result = (L.GetRawBits64(0) <= R.GetRawBits64(0));
1208 break;
1209 case CmpInst::ICMP_SGT:
1210 result = (L > R);
1211 break;
1212 case CmpInst::ICMP_SGE:
1213 result = (L >= R);
1214 break;
1215 case CmpInst::ICMP_SLT:
1216 result = (L < R);
1217 break;
1218 case CmpInst::ICMP_SLE:
1219 result = (L <= R);
1220 break;
1221 }
1222
1223 frame.AssignValue(inst, result, llvm_module);
1224
1225 if (log)
1226 {
1227 log->Printf("Interpreted an ICmpInst");
1228 log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str());
1229 log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str());
1230 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str());
1231 }
1232 }
1233 break;
1234 case Instruction::Load:
1235 {
1236 const LoadInst *load_inst = dyn_cast<LoadInst>(inst);
1237
1238 if (!load_inst)
1239 {
1240 if (log)
1241 log->Printf("getOpcode() returns Load, but instruction is not a LoadInst");
1242
1243 return false;
1244 }
1245
1246 // The semantics of Load are:
1247 // Create a region D that will contain the loaded data
1248 // Resolve the region P containing a pointer
1249 // Dereference P to get the region R that the data should be loaded from
1250 // Transfer a unit of type type(D) from R to D
1251
1252 const Value *pointer_operand = load_inst->getPointerOperand();
1253
1254 Type *pointer_ty = pointer_operand->getType();
1255 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty);
1256 if (!pointer_ptr_ty)
1257 return false;
1258 Type *target_ty = pointer_ptr_ty->getElementType();
1259
1260 Memory::Region D = frame.ResolveValue(load_inst, llvm_module);
1261 Memory::Region P = frame.ResolveValue(pointer_operand, llvm_module);
1262
1263 if (D.IsInvalid())
1264 {
1265 if (log)
1266 log->Printf("LoadInst's value doesn't resolve to anything");
1267
1268 return false;
1269 }
1270
1271 if (P.IsInvalid())
1272 {
1273 if (log)
1274 log->Printf("LoadInst's pointer doesn't resolve to anything");
1275
1276 return false;
1277 }
1278
1279 DataExtractorSP P_extractor(memory.GetExtractor(P));
1280 DataEncoderSP D_encoder(memory.GetEncoder(D));
1281
1282 uint32_t offset = 0;
1283 lldb::addr_t pointer = P_extractor->GetAddress(&offset);
1284
1285 Memory::Region R = memory.Lookup(pointer, target_ty);
1286
1287 memory.Read(D_encoder->GetDataStart(), R.m_base, target_data.getTypeStoreSize(target_ty));
1288
1289 if (log)
1290 {
1291 log->Printf("Interpreted a LoadInst");
1292 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str());
1293 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str());
1294 log->Printf(" D : %s", frame.SummarizeValue(load_inst).c_str());
1295 }
1296 }
1297 break;
1298 case Instruction::Ret:
1299 {
1300 if (result_name.IsEmpty())
1301 return true;
1302
1303 GlobalValue *result_value = llvm_module.getNamedValue(result_name.GetCString());
1304 return frame.ConstructResult(result, result_value, result_name, result_type, llvm_module);
1305 }
1306 case Instruction::Store:
1307 {
1308 const StoreInst *store_inst = dyn_cast<StoreInst>(inst);
1309
1310 if (!store_inst)
1311 {
1312 if (log)
1313 log->Printf("getOpcode() returns Store, but instruction is not a StoreInst");
1314
1315 return false;
1316 }
1317
1318 // The semantics of Store are:
1319 // Resolve the region D containing the data to be stored
1320 // Resolve the region P containing a pointer
1321 // Dereference P to get the region R that the data should be stored in
1322 // Transfer a unit of type type(D) from D to R
1323
1324 const Value *value_operand = store_inst->getValueOperand();
1325 const Value *pointer_operand = store_inst->getPointerOperand();
1326
1327 Type *pointer_ty = pointer_operand->getType();
1328 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty);
1329 if (!pointer_ptr_ty)
1330 return false;
1331 Type *target_ty = pointer_ptr_ty->getElementType();
1332
1333 Memory::Region D = frame.ResolveValue(value_operand, llvm_module);
1334 Memory::Region P = frame.ResolveValue(pointer_operand, llvm_module);
1335
1336 if (D.IsInvalid())
1337 {
1338 if (log)
1339 log->Printf("StoreInst's value doesn't resolve to anything");
1340
1341 return false;
1342 }
1343
1344 if (P.IsInvalid())
1345 {
1346 if (log)
1347 log->Printf("StoreInst's pointer doesn't resolve to anything");
1348
1349 return false;
1350 }
1351
1352 DataExtractorSP P_extractor(memory.GetExtractor(P));
1353 DataExtractorSP D_extractor(memory.GetExtractor(D));
1354
1355 if (!P_extractor || !D_extractor)
1356 return false;
1357
1358 uint32_t offset = 0;
1359 lldb::addr_t pointer = P_extractor->GetAddress(&offset);
1360
1361 Memory::Region R = memory.Lookup(pointer, target_ty);
1362
1363 if (R.IsInvalid())
1364 {
1365 if (log)
1366 log->Printf("StoreInst's pointer doesn't point to a valid target");
1367
1368 return false;
1369 }
1370
1371 memory.Write(R.m_base, D_extractor->GetDataStart(), target_data.getTypeStoreSize(target_ty));
1372
1373 if (log)
1374 {
1375 log->Printf("Interpreted a StoreInst");
1376 log->Printf(" D : %s", frame.SummarizeValue(value_operand).c_str());
1377 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str());
1378 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str());
1379 }
1380 }
1381 break;
1382 }
1383
1384 ++frame.m_ii;
1385 }
1386
1387 if (num_insts >= 4096)
1388 return false;
1389
1390 return false;
1391}