blob: 948125b97149b68be55bd1bc845e6c69fce4f9ad [file] [log] [blame]
Chris Lattner24943d22010-06-08 16:52:24 +00001//===-- DNB.cpp -------------------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Created by Greg Clayton on 3/23/07.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DNB.h"
15#include <signal.h>
16#include <stdio.h>
17#include <stdlib.h>
18#include <sys/resource.h>
19#include <sys/stat.h>
20#include <sys/types.h>
21#include <sys/wait.h>
22#include <unistd.h>
23#include <sys/sysctl.h>
24#include <map>
25#include <vector>
26
27#include "MacOSX/MachProcess.h"
28#include "MacOSX/MachTask.h"
29#include "CFString.h"
30#include "DNBLog.h"
31#include "DNBDataRef.h"
32#include "DNBThreadResumeActions.h"
33#include "DNBTimer.h"
34
35typedef std::tr1::shared_ptr<MachProcess> MachProcessSP;
36typedef std::map<nub_process_t, MachProcessSP> ProcessMap;
37typedef ProcessMap::iterator ProcessMapIter;
38typedef ProcessMap::const_iterator ProcessMapConstIter;
39
40static size_t GetAllInfos (std::vector<struct kinfo_proc>& proc_infos);
41static size_t GetAllInfosMatchingName (const char *process_name, std::vector<struct kinfo_proc>& matching_proc_infos);
42
43//----------------------------------------------------------------------
44// A Thread safe singleton to get a process map pointer.
45//
46// Returns a pointer to the existing process map, or a pointer to a
47// newly created process map if CAN_CREATE is non-zero.
48//----------------------------------------------------------------------
49static ProcessMap*
50GetProcessMap(bool can_create)
51{
52 static ProcessMap* g_process_map_ptr = NULL;
53
54 if (can_create && g_process_map_ptr == NULL)
55 {
56 static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER;
57 PTHREAD_MUTEX_LOCKER (locker, &g_process_map_mutex);
58 if (g_process_map_ptr == NULL)
59 g_process_map_ptr = new ProcessMap;
60 }
61 return g_process_map_ptr;
62}
63
64//----------------------------------------------------------------------
65// Add PID to the shared process pointer map.
66//
67// Return non-zero value if we succeed in adding the process to the map.
68// The only time this should fail is if we run out of memory and can't
69// allocate a ProcessMap.
70//----------------------------------------------------------------------
71static nub_bool_t
72AddProcessToMap (nub_process_t pid, MachProcessSP& procSP)
73{
74 ProcessMap* process_map = GetProcessMap(true);
75 if (process_map)
76 {
77 process_map->insert(std::make_pair(pid, procSP));
78 return true;
79 }
80 return false;
81}
82
83//----------------------------------------------------------------------
84// Remove the shared pointer for PID from the process map.
85//
86// Returns the number of items removed from the process map.
87//----------------------------------------------------------------------
88static size_t
89RemoveProcessFromMap (nub_process_t pid)
90{
91 ProcessMap* process_map = GetProcessMap(false);
92 if (process_map)
93 {
94 return process_map->erase(pid);
95 }
96 return 0;
97}
98
99//----------------------------------------------------------------------
100// Get the shared pointer for PID from the existing process map.
101//
102// Returns true if we successfully find a shared pointer to a
103// MachProcess object.
104//----------------------------------------------------------------------
105static nub_bool_t
106GetProcessSP (nub_process_t pid, MachProcessSP& procSP)
107{
108 ProcessMap* process_map = GetProcessMap(false);
109 if (process_map != NULL)
110 {
111 ProcessMapIter pos = process_map->find(pid);
112 if (pos != process_map->end())
113 {
114 procSP = pos->second;
115 return true;
116 }
117 }
118 procSP.reset();
119 return false;
120}
121
122
123static void *
124waitpid_thread (void *arg)
125{
126 const pid_t pid = (pid_t)(intptr_t)arg;
127 int status;
128 while (1)
129 {
130 pid_t child_pid = waitpid(pid, &status, 0);
131 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): waitpid (pid = %i, &status, 0) => %i, status = %i, errno = %i", pid, child_pid, status, errno);
132
133 if (child_pid < 0)
134 {
135 if (errno == EINTR)
136 continue;
137 break;
138 }
139 else
140 {
141 if (WIFSTOPPED(status))
142 {
143 continue;
144 }
145 else// if (WIFEXITED(status) || WIFSIGNALED(status))
146 {
147 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): setting exit status for pid = %i to %i", child_pid, status);
148 DNBProcessSetExitStatus (child_pid, status);
149 return NULL;
150 }
151 }
152 }
153
154 // We should never exit as long as our child process is alive, so if we
155 // do something else went wrong and we should exit...
156 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): main loop exited, setting exit status to an invalid value (-1) for pid %i", pid);
157 DNBProcessSetExitStatus (pid, -1);
158 return NULL;
159}
160
161static bool
162spawn_waitpid_thread (pid_t pid)
163{
164 pthread_t thread = THREAD_NULL;
165 ::pthread_create (&thread, NULL, waitpid_thread, (void *)(intptr_t)pid);
166 if (thread != THREAD_NULL)
167 {
168 ::pthread_detach (thread);
169 return true;
170 }
171 return false;
172}
173
174nub_process_t
175DNBProcessLaunch (const char *path,
176 char const *argv[],
177 const char *envp[],
178 const char *stdio_path,
179 nub_launch_flavor_t launch_flavor,
Greg Clayton452bf612010-08-31 18:35:14 +0000180 int disable_aslr,
Chris Lattner24943d22010-06-08 16:52:24 +0000181 char *err_str,
182 size_t err_len)
183{
Greg Clayton452bf612010-08-31 18:35:14 +0000184 DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, launch_flavor = %u, disable_aslr = %d, err = %p, err_len = %zu) called...", __FUNCTION__, path, argv, envp, launch_flavor, disable_aslr, err_str, err_len);
Chris Lattner24943d22010-06-08 16:52:24 +0000185
186 if (err_str && err_len > 0)
187 err_str[0] = '\0';
188 struct stat path_stat;
189 if (::stat(path, &path_stat) == -1)
190 {
191 char stat_error[256];
192 ::strerror_r (errno, stat_error, sizeof(stat_error));
193 snprintf(err_str, err_len, "%s (%s)", stat_error, path);
194 return INVALID_NUB_PROCESS;
195 }
196
197 MachProcessSP processSP (new MachProcess);
198 if (processSP.get())
199 {
200 DNBError launch_err;
Greg Clayton452bf612010-08-31 18:35:14 +0000201 pid_t pid = processSP->LaunchForDebug(path, argv, envp, stdio_path, launch_flavor, disable_aslr, launch_err);
Chris Lattner24943d22010-06-08 16:52:24 +0000202 if (err_str)
203 {
204 *err_str = '\0';
205 if (launch_err.Fail())
206 {
207 const char *launch_err_str = launch_err.AsString();
208 if (launch_err_str)
209 {
210 strncpy(err_str, launch_err_str, err_len-1);
211 err_str[err_len-1] = '\0'; // Make sure the error string is terminated
212 }
213 }
214 }
215
216 DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid);
217
218 if (pid != INVALID_NUB_PROCESS)
219 {
220 // Spawn a thread to reap our child inferior process...
221 spawn_waitpid_thread (pid);
222
223 if (processSP->Task().TaskPortForProcessID (launch_err) == TASK_NULL)
224 {
225 // We failed to get the task for our process ID which is bad.
226 if (err_str && err_len > 0)
227 {
228 if (launch_err.AsString())
229 {
230 ::snprintf (err_str, err_len, "failed to get the task for process %i (%s)", pid, launch_err.AsString());
231 }
232 else
233 {
234 ::snprintf (err_str, err_len, "failed to get the task for process %i", pid);
235 }
236 }
237 }
238 else
239 {
240 assert(AddProcessToMap(pid, processSP));
241 return pid;
242 }
243 }
244 }
245 return INVALID_NUB_PROCESS;
246}
247
248nub_process_t
249DNBProcessAttachByName (const char *name, struct timespec *timeout, char *err_str, size_t err_len)
250{
251 if (err_str && err_len > 0)
252 err_str[0] = '\0';
253 std::vector<struct kinfo_proc> matching_proc_infos;
254 size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos);
255 if (num_matching_proc_infos == 0)
256 {
257 DNBLogError ("error: no processes match '%s'\n", name);
258 return INVALID_NUB_PROCESS;
259 }
260 else if (num_matching_proc_infos > 1)
261 {
262 DNBLogError ("error: %u processes match '%s':\n", num_matching_proc_infos, name);
263 size_t i;
264 for (i=0; i<num_matching_proc_infos; ++i)
265 DNBLogError ("%6u - %s\n", matching_proc_infos[i].kp_proc.p_pid, matching_proc_infos[i].kp_proc.p_comm);
266 return INVALID_NUB_PROCESS;
267 }
268 else
269 {
270 return DNBProcessAttach (matching_proc_infos[0].kp_proc.p_pid, timeout, err_str, err_len);
271 }
272}
273
274nub_process_t
275DNBProcessAttach (nub_process_t attach_pid, struct timespec *timeout, char *err_str, size_t err_len)
276{
277 if (err_str && err_len > 0)
278 err_str[0] = '\0';
279
280 pid_t pid;
281 MachProcessSP processSP(new MachProcess);
282 if (processSP.get())
283 {
284 DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", attach_pid);
285 pid = processSP->AttachForDebug (attach_pid, err_str, err_len);
286
287 if (pid != INVALID_NUB_PROCESS)
288 {
289 assert(AddProcessToMap(pid, processSP));
290 spawn_waitpid_thread(pid);
291 }
292 }
293
294 while (pid != INVALID_NUB_PROCESS)
295 {
296 // Wait for process to start up and hit entry point
297 DNBLogThreadedIf (LOG_PROCESS, "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged "
298 "| eEventProcessStoppedStateChanged, true, INFINITE)...",
299 __FUNCTION__, pid);
300 nub_event_t set_events = DNBProcessWaitForEvents (pid,
301 eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged,
302 true, timeout);
303 DNBLogThreadedIf (LOG_PROCESS, "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged "
304 "| eEventProcessStoppedStateChanged, true, INFINITE) => 0x%8.8x",
305 __FUNCTION__, pid, set_events);
306
307 if (set_events == 0)
308 {
309 if (err_str && err_len > 0)
310 snprintf(err_str, err_len, "operation timed out");
311 pid = INVALID_NUB_PROCESS;
312 }
313 else
314 {
315 if (set_events & (eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged))
316 {
317 nub_state_t pid_state = DNBProcessGetState (pid);
318 DNBLogThreadedIf (LOG_PROCESS, "%s process %4.4x state changed (eEventProcessStateChanged): %s",
319 __FUNCTION__, pid, DNBStateAsString(pid_state));
320
321 switch (pid_state)
322 {
323 default:
324 case eStateInvalid:
325 case eStateUnloaded:
326 case eStateAttaching:
327 case eStateLaunching:
328 case eStateSuspended:
329 break; // Ignore
330
331 case eStateRunning:
332 case eStateStepping:
333 // Still waiting to stop at entry point...
334 break;
335
336 case eStateStopped:
337 case eStateCrashed:
338 return pid;
339 case eStateDetached:
340 case eStateExited:
341 if (err_str && err_len > 0)
342 snprintf(err_str, err_len, "process exited");
343 return INVALID_NUB_PROCESS;
344 }
345 }
346
347 DNBProcessResetEvents(pid, set_events);
348 }
349 }
350
351 return INVALID_NUB_PROCESS;
352}
353
354static size_t
355GetAllInfos(std::vector<struct kinfo_proc>& proc_infos)
356{
357 size_t size;
358 int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL };
359 u_int namelen = sizeof(name)/sizeof(int);
360 int err;
361
362 // Try to find out how many processes are around so we can
363 // size the buffer appropriately. sysctl's man page specifically suggests
364 // this approach, and says it returns a bit larger size than needed to
365 // handle any new processes created between then and now.
366
367 err = ::sysctl (name, namelen, NULL, &size, NULL, 0);
368
369 if ((err < 0) && (err != ENOMEM))
370 {
371 proc_infos.clear();
372 perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)");
373 return 0;
374 }
375
376
377 // Increase the size of the buffer by a few processes in case more have
378 // been spawned
379 proc_infos.resize (size / sizeof(struct kinfo_proc));
380 size = proc_infos.size() * sizeof(struct kinfo_proc); // Make sure we don't exceed our resize...
381 err = ::sysctl (name, namelen, &proc_infos[0], &size, NULL, 0);
382 if (err < 0)
383 {
384 proc_infos.clear();
385 return 0;
386 }
387
388 // Trim down our array to fit what we actually got back
389 proc_infos.resize(size / sizeof(struct kinfo_proc));
390 return proc_infos.size();
391}
392
393
394static size_t
395GetAllInfosMatchingName(const char *full_process_name, std::vector<struct kinfo_proc>& matching_proc_infos)
396{
397
398 matching_proc_infos.clear();
399 if (full_process_name && full_process_name[0])
400 {
401 // We only get the process name, not the full path, from the proc_info. So just take the
402 // base name of the process name...
403 const char *process_name;
404 process_name = strrchr (full_process_name, '/');
405 if (process_name == NULL)
406 process_name = full_process_name;
407 else
408 process_name++;
409
410 std::vector<struct kinfo_proc> proc_infos;
411 const size_t num_proc_infos = GetAllInfos(proc_infos);
412 if (num_proc_infos > 0)
413 {
414 uint32_t i;
415 for (i=0; i<num_proc_infos; i++)
416 {
417 // Skip zombie processes and processes with unset status
418 if (proc_infos[i].kp_proc.p_stat == 0 || proc_infos[i].kp_proc.p_stat == SZOMB)
419 continue;
420
421 // Check for process by name. We only check the first MAXCOMLEN
422 // chars as that is all that kp_proc.p_comm holds.
423 if (::strncasecmp(proc_infos[i].kp_proc.p_comm, process_name, MAXCOMLEN) == 0)
424 {
425 // We found a matching process, add it to our list
426 matching_proc_infos.push_back(proc_infos[i]);
427 }
428 }
429 }
430 }
431 // return the newly added matches.
432 return matching_proc_infos.size();
433}
434
435nub_process_t
Greg Claytonc1d37752010-10-18 01:45:30 +0000436DNBProcessAttachWait (const char *waitfor_process_name,
437 nub_launch_flavor_t launch_flavor,
438 struct timespec *timeout_abstime,
439 useconds_t waitfor_interval,
440 char *err_str,
441 size_t err_len,
Chris Lattner24943d22010-06-08 16:52:24 +0000442 DNBShouldCancelCallback should_cancel_callback,
443 void *callback_data)
444{
445 DNBError prepare_error;
446 std::vector<struct kinfo_proc> exclude_proc_infos;
447 size_t num_exclude_proc_infos;
448
449 // If the PrepareForAttach returns a valid token, use MachProcess to check
450 // for the process, otherwise scan the process table.
451
452 const void *attach_token = MachProcess::PrepareForAttach (waitfor_process_name, launch_flavor, true, prepare_error);
453
454 if (prepare_error.Fail())
455 {
456 DNBLogError ("Error in PrepareForAttach: %s", prepare_error.AsString());
457 return INVALID_NUB_PROCESS;
458 }
459
460 if (attach_token == NULL)
461 num_exclude_proc_infos = GetAllInfosMatchingName (waitfor_process_name, exclude_proc_infos);
462
463 DNBLogThreadedIf (LOG_PROCESS, "Waiting for '%s' to appear...\n", waitfor_process_name);
464
465 // Loop and try to find the process by name
466 nub_process_t waitfor_pid = INVALID_NUB_PROCESS;
467
468 while (waitfor_pid == INVALID_NUB_PROCESS)
469 {
470 if (attach_token != NULL)
471 {
472 nub_process_t pid;
473 pid = MachProcess::CheckForProcess(attach_token);
474 if (pid != INVALID_NUB_PROCESS)
475 {
476 waitfor_pid = pid;
477 break;
478 }
479 }
480 else
481 {
482
483 // Get the current process list, and check for matches that
484 // aren't in our original list. If anyone wants to attach
485 // to an existing process by name, they should do it with
486 // --attach=PROCNAME. Else we will wait for the first matching
487 // process that wasn't in our exclusion list.
488 std::vector<struct kinfo_proc> proc_infos;
489 const size_t num_proc_infos = GetAllInfosMatchingName (waitfor_process_name, proc_infos);
490 for (size_t i=0; i<num_proc_infos; i++)
491 {
492 nub_process_t curr_pid = proc_infos[i].kp_proc.p_pid;
493 for (size_t j=0; j<num_exclude_proc_infos; j++)
494 {
495 if (curr_pid == exclude_proc_infos[j].kp_proc.p_pid)
496 {
497 // This process was in our exclusion list, don't use it.
498 curr_pid = INVALID_NUB_PROCESS;
499 break;
500 }
501 }
502
503 // If we didn't find CURR_PID in our exclusion list, then use it.
504 if (curr_pid != INVALID_NUB_PROCESS)
505 {
506 // We found our process!
507 waitfor_pid = curr_pid;
508 break;
509 }
510 }
511 }
512
513 // If we haven't found our process yet, check for a timeout
514 // and then sleep for a bit until we poll again.
515 if (waitfor_pid == INVALID_NUB_PROCESS)
516 {
517 if (timeout_abstime != NULL)
518 {
519 // Check to see if we have a waitfor-duration option that
520 // has timed out?
521 if (DNBTimer::TimeOfDayLaterThan(*timeout_abstime))
522 {
523 if (err_str && err_len > 0)
524 snprintf(err_str, err_len, "operation timed out");
525 DNBLogError ("error: waiting for process '%s' timed out.\n", waitfor_process_name);
526 return INVALID_NUB_PROCESS;
527 }
528 }
529
530 // Call the should cancel callback as well...
531
532 if (should_cancel_callback != NULL
533 && should_cancel_callback (callback_data))
534 {
535 DNBLogThreadedIf (LOG_PROCESS, "DNBProcessAttachWait cancelled by should_cancel callback.");
536 waitfor_pid = INVALID_NUB_PROCESS;
537 break;
538 }
539
540 ::usleep (waitfor_interval); // Sleep for WAITFOR_INTERVAL, then poll again
541 }
542 }
543
544 if (waitfor_pid != INVALID_NUB_PROCESS)
545 {
546 DNBLogThreadedIf (LOG_PROCESS, "Attaching to %s with pid %i...\n", waitfor_process_name, waitfor_pid);
547 waitfor_pid = DNBProcessAttach (waitfor_pid, timeout_abstime, err_str, err_len);
548 }
549
550 bool success = waitfor_pid != INVALID_NUB_PROCESS;
551 MachProcess::CleanupAfterAttach (attach_token, success, prepare_error);
552
553 return waitfor_pid;
554}
555
556nub_bool_t
557DNBProcessDetach (nub_process_t pid)
558{
559 MachProcessSP procSP;
560 if (GetProcessSP (pid, procSP))
561 {
562 return procSP->Detach();
563 }
564 return false;
565}
566
567nub_bool_t
568DNBProcessKill (nub_process_t pid)
569{
570 MachProcessSP procSP;
571 if (GetProcessSP (pid, procSP))
572 {
573 return procSP->Kill ();
574 }
575 return false;
576}
577
578nub_bool_t
579DNBProcessSignal (nub_process_t pid, int signal)
580{
581 MachProcessSP procSP;
582 if (GetProcessSP (pid, procSP))
583 {
584 return procSP->Signal (signal);
585 }
586 return false;
587}
588
589
590nub_bool_t
591DNBProcessIsAlive (nub_process_t pid)
592{
593 MachProcessSP procSP;
594 if (GetProcessSP (pid, procSP))
595 {
596 return MachTask::IsValid (procSP->Task().TaskPort());
597 }
598 return eStateInvalid;
599}
600
601//----------------------------------------------------------------------
602// Process and Thread state information
603//----------------------------------------------------------------------
604nub_state_t
605DNBProcessGetState (nub_process_t pid)
606{
607 MachProcessSP procSP;
608 if (GetProcessSP (pid, procSP))
609 {
610 return procSP->GetState();
611 }
612 return eStateInvalid;
613}
614
615//----------------------------------------------------------------------
616// Process and Thread state information
617//----------------------------------------------------------------------
618nub_bool_t
619DNBProcessGetExitStatus (nub_process_t pid, int* status)
620{
621 MachProcessSP procSP;
622 if (GetProcessSP (pid, procSP))
623 {
624 return procSP->GetExitStatus(status);
625 }
626 return false;
627}
628
629nub_bool_t
630DNBProcessSetExitStatus (nub_process_t pid, int status)
631{
632 MachProcessSP procSP;
633 if (GetProcessSP (pid, procSP))
634 {
635 procSP->SetExitStatus(status);
636 return true;
637 }
638 return false;
639}
640
641
642const char *
643DNBThreadGetName (nub_process_t pid, nub_thread_t tid)
644{
645 MachProcessSP procSP;
646 if (GetProcessSP (pid, procSP))
647 return procSP->ThreadGetName(tid);
648 return NULL;
649}
650
651
652nub_bool_t
653DNBThreadGetIdentifierInfo (nub_process_t pid, nub_thread_t tid, thread_identifier_info_data_t *ident_info)
654{
655 MachProcessSP procSP;
656 if (GetProcessSP (pid, procSP))
657 return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info);
658 return false;
659}
660
661nub_state_t
662DNBThreadGetState (nub_process_t pid, nub_thread_t tid)
663{
664 MachProcessSP procSP;
665 if (GetProcessSP (pid, procSP))
666 {
667 return procSP->ThreadGetState(tid);
668 }
669 return eStateInvalid;
670}
671
672const char *
673DNBStateAsString(nub_state_t state)
674{
675 switch (state)
676 {
677 case eStateUnloaded: return "Unloaded";
678 case eStateAttaching: return "Attaching";
679 case eStateLaunching: return "Launching";
680 case eStateStopped: return "Stopped";
681 case eStateRunning: return "Running";
682 case eStateStepping: return "Stepping";
683 case eStateCrashed: return "Crashed";
684 case eStateDetached: return "Detached";
685 case eStateExited: return "Exited";
686 case eStateSuspended: return "Suspended";
687 }
688 return "nub_state_t ???";
689}
690
691const char *
692DNBProcessGetExecutablePath (nub_process_t pid)
693{
694 MachProcessSP procSP;
695 if (GetProcessSP (pid, procSP))
696 {
697 return procSP->Path();
698 }
699 return NULL;
700}
701
702nub_size_t
703DNBProcessGetArgumentCount (nub_process_t pid)
704{
705 MachProcessSP procSP;
706 if (GetProcessSP (pid, procSP))
707 {
708 return procSP->ArgumentCount();
709 }
710 return 0;
711}
712
713const char *
714DNBProcessGetArgumentAtIndex (nub_process_t pid, nub_size_t idx)
715{
716 MachProcessSP procSP;
717 if (GetProcessSP (pid, procSP))
718 {
719 return procSP->ArgumentAtIndex (idx);
720 }
721 return NULL;
722}
723
724
725//----------------------------------------------------------------------
726// Execution control
727//----------------------------------------------------------------------
728nub_bool_t
729DNBProcessResume (nub_process_t pid, const DNBThreadResumeAction *actions, size_t num_actions)
730{
731 DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
732 MachProcessSP procSP;
733 if (GetProcessSP (pid, procSP))
734 {
735 DNBThreadResumeActions thread_actions (actions, num_actions);
736
737 // Below we add a default thread plan just in case one wasn't
738 // provided so all threads always know what they were supposed to do
739 if (thread_actions.IsEmpty())
740 {
741 // No thread plans were given, so the default it to run all threads
742 thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0);
743 }
744 else
745 {
746 // Some thread plans were given which means anything that wasn't
747 // specified should remain stopped.
748 thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0);
749 }
750 return procSP->Resume (thread_actions);
751 }
752 return false;
753}
754
755nub_bool_t
756DNBProcessHalt (nub_process_t pid)
757{
758 DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
759 MachProcessSP procSP;
760 if (GetProcessSP (pid, procSP))
761 return procSP->Signal (SIGSTOP);
762 return false;
763}
764//
765//nub_bool_t
766//DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step)
767//{
768// DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", __FUNCTION__, pid, tid, (uint32_t)step);
769// MachProcessSP procSP;
770// if (GetProcessSP (pid, procSP))
771// {
772// return procSP->Resume(tid, step, 0);
773// }
774// return false;
775//}
776//
777//nub_bool_t
778//DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t step, int signal)
779//{
780// DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal);
781// MachProcessSP procSP;
782// if (GetProcessSP (pid, procSP))
783// {
784// return procSP->Resume(tid, step, signal);
785// }
786// return false;
787//}
788
789nub_event_t
790DNBProcessWaitForEvents (nub_process_t pid, nub_event_t event_mask, bool wait_for_set, struct timespec* timeout)
791{
792 nub_event_t result = 0;
793 MachProcessSP procSP;
794 if (GetProcessSP (pid, procSP))
795 {
796 if (wait_for_set)
797 result = procSP->Events().WaitForSetEvents(event_mask, timeout);
798 else
799 result = procSP->Events().WaitForEventsToReset(event_mask, timeout);
800 }
801 return result;
802}
803
804void
805DNBProcessResetEvents (nub_process_t pid, nub_event_t event_mask)
806{
807 MachProcessSP procSP;
808 if (GetProcessSP (pid, procSP))
809 procSP->Events().ResetEvents(event_mask);
810}
811
812void
813DNBProcessInterruptEvents (nub_process_t pid)
814{
815 MachProcessSP procSP;
816 if (GetProcessSP (pid, procSP))
817 procSP->Events().SetEvents(eEventProcessAsyncInterrupt);
818}
819
820
821// Breakpoints
822nub_break_t
823DNBBreakpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, nub_bool_t hardware)
824{
825 MachProcessSP procSP;
826 if (GetProcessSP (pid, procSP))
827 {
828 return procSP->CreateBreakpoint(addr, size, hardware, THREAD_NULL);
829 }
830 return INVALID_NUB_BREAK_ID;
831}
832
833nub_bool_t
834DNBBreakpointClear (nub_process_t pid, nub_break_t breakID)
835{
836 if (NUB_BREAK_ID_IS_VALID(breakID))
837 {
838 MachProcessSP procSP;
839 if (GetProcessSP (pid, procSP))
840 {
841 return procSP->DisableBreakpoint(breakID, true);
842 }
843 }
844 return false; // Failed
845}
846
847nub_ssize_t
848DNBBreakpointGetHitCount (nub_process_t pid, nub_break_t breakID)
849{
850 if (NUB_BREAK_ID_IS_VALID(breakID))
851 {
852 MachProcessSP procSP;
853 if (GetProcessSP (pid, procSP))
854 {
855 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
856 if (bp)
857 return bp->GetHitCount();
858 }
859 }
860 return 0;
861}
862
863nub_ssize_t
864DNBBreakpointGetIgnoreCount (nub_process_t pid, nub_break_t breakID)
865{
866 if (NUB_BREAK_ID_IS_VALID(breakID))
867 {
868 MachProcessSP procSP;
869 if (GetProcessSP (pid, procSP))
870 {
871 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
872 if (bp)
873 return bp->GetIgnoreCount();
874 }
875 }
876 return 0;
877}
878
879nub_bool_t
880DNBBreakpointSetIgnoreCount (nub_process_t pid, nub_break_t breakID, nub_size_t ignore_count)
881{
882 if (NUB_BREAK_ID_IS_VALID(breakID))
883 {
884 MachProcessSP procSP;
885 if (GetProcessSP (pid, procSP))
886 {
887 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
888 if (bp)
889 {
890 bp->SetIgnoreCount(ignore_count);
891 return true;
892 }
893 }
894 }
895 return false;
896}
897
898// Set the callback function for a given breakpoint. The callback function will
899// get called as soon as the breakpoint is hit. The function will be called
900// with the process ID, thread ID, breakpoint ID and the baton, and can return
901//
902nub_bool_t
903DNBBreakpointSetCallback (nub_process_t pid, nub_break_t breakID, DNBCallbackBreakpointHit callback, void *baton)
904{
905 if (NUB_BREAK_ID_IS_VALID(breakID))
906 {
907 MachProcessSP procSP;
908 if (GetProcessSP (pid, procSP))
909 {
910 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
911 if (bp)
912 {
913 bp->SetCallback(callback, baton);
914 return true;
915 }
916 }
917 }
918 return false;
919}
920
921//----------------------------------------------------------------------
922// Dump the breakpoints stats for process PID for a breakpoint by ID.
923//----------------------------------------------------------------------
924void
925DNBBreakpointPrint (nub_process_t pid, nub_break_t breakID)
926{
927 MachProcessSP procSP;
928 if (GetProcessSP (pid, procSP))
929 procSP->DumpBreakpoint(breakID);
930}
931
932//----------------------------------------------------------------------
933// Watchpoints
934//----------------------------------------------------------------------
935nub_watch_t
936DNBWatchpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, uint32_t watch_flags, nub_bool_t hardware)
937{
938 MachProcessSP procSP;
939 if (GetProcessSP (pid, procSP))
940 {
941 return procSP->CreateWatchpoint(addr, size, watch_flags, hardware, THREAD_NULL);
942 }
943 return INVALID_NUB_BREAK_ID;
944}
945
946nub_bool_t
947DNBWatchpointClear (nub_process_t pid, nub_watch_t watchID)
948{
949 if (NUB_BREAK_ID_IS_VALID(watchID))
950 {
951 MachProcessSP procSP;
952 if (GetProcessSP (pid, procSP))
953 {
954 return procSP->DisableWatchpoint(watchID, true);
955 }
956 }
957 return false; // Failed
958}
959
960nub_ssize_t
961DNBWatchpointGetHitCount (nub_process_t pid, nub_watch_t watchID)
962{
963 if (NUB_BREAK_ID_IS_VALID(watchID))
964 {
965 MachProcessSP procSP;
966 if (GetProcessSP (pid, procSP))
967 {
968 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
969 if (bp)
970 return bp->GetHitCount();
971 }
972 }
973 return 0;
974}
975
976nub_ssize_t
977DNBWatchpointGetIgnoreCount (nub_process_t pid, nub_watch_t watchID)
978{
979 if (NUB_BREAK_ID_IS_VALID(watchID))
980 {
981 MachProcessSP procSP;
982 if (GetProcessSP (pid, procSP))
983 {
984 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
985 if (bp)
986 return bp->GetIgnoreCount();
987 }
988 }
989 return 0;
990}
991
992nub_bool_t
993DNBWatchpointSetIgnoreCount (nub_process_t pid, nub_watch_t watchID, nub_size_t ignore_count)
994{
995 if (NUB_BREAK_ID_IS_VALID(watchID))
996 {
997 MachProcessSP procSP;
998 if (GetProcessSP (pid, procSP))
999 {
1000 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1001 if (bp)
1002 {
1003 bp->SetIgnoreCount(ignore_count);
1004 return true;
1005 }
1006 }
1007 }
1008 return false;
1009}
1010
1011// Set the callback function for a given watchpoint. The callback function will
1012// get called as soon as the watchpoint is hit. The function will be called
1013// with the process ID, thread ID, watchpoint ID and the baton, and can return
1014//
1015nub_bool_t
1016DNBWatchpointSetCallback (nub_process_t pid, nub_watch_t watchID, DNBCallbackBreakpointHit callback, void *baton)
1017{
1018 if (NUB_BREAK_ID_IS_VALID(watchID))
1019 {
1020 MachProcessSP procSP;
1021 if (GetProcessSP (pid, procSP))
1022 {
1023 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1024 if (bp)
1025 {
1026 bp->SetCallback(callback, baton);
1027 return true;
1028 }
1029 }
1030 }
1031 return false;
1032}
1033
1034//----------------------------------------------------------------------
1035// Dump the watchpoints stats for process PID for a watchpoint by ID.
1036//----------------------------------------------------------------------
1037void
1038DNBWatchpointPrint (nub_process_t pid, nub_watch_t watchID)
1039{
1040 MachProcessSP procSP;
1041 if (GetProcessSP (pid, procSP))
1042 procSP->DumpWatchpoint(watchID);
1043}
1044
1045//----------------------------------------------------------------------
1046// Read memory in the address space of process PID. This call will take
1047// care of setting and restoring permissions and breaking up the memory
1048// read into multiple chunks as required.
1049//
1050// RETURNS: number of bytes actually read
1051//----------------------------------------------------------------------
1052nub_size_t
1053DNBProcessMemoryRead (nub_process_t pid, nub_addr_t addr, nub_size_t size, void *buf)
1054{
1055 MachProcessSP procSP;
1056 if (GetProcessSP (pid, procSP))
1057 return procSP->ReadMemory(addr, size, buf);
1058 return 0;
1059}
1060
1061//----------------------------------------------------------------------
1062// Write memory to the address space of process PID. This call will take
1063// care of setting and restoring permissions and breaking up the memory
1064// write into multiple chunks as required.
1065//
1066// RETURNS: number of bytes actually written
1067//----------------------------------------------------------------------
1068nub_size_t
1069DNBProcessMemoryWrite (nub_process_t pid, nub_addr_t addr, nub_size_t size, const void *buf)
1070{
1071 MachProcessSP procSP;
1072 if (GetProcessSP (pid, procSP))
1073 return procSP->WriteMemory(addr, size, buf);
1074 return 0;
1075}
1076
1077nub_addr_t
1078DNBProcessMemoryAllocate (nub_process_t pid, nub_size_t size, uint32_t permissions)
1079{
1080 MachProcessSP procSP;
1081 if (GetProcessSP (pid, procSP))
1082 return procSP->Task().AllocateMemory (size, permissions);
1083 return 0;
1084}
1085
1086nub_bool_t
1087DNBProcessMemoryDeallocate (nub_process_t pid, nub_addr_t addr)
1088{
1089 MachProcessSP procSP;
1090 if (GetProcessSP (pid, procSP))
1091 return procSP->Task().DeallocateMemory (addr);
1092 return 0;
1093}
1094
1095
1096//----------------------------------------------------------------------
1097// Formatted output that uses memory and registers from process and
1098// thread in place of arguments.
1099//----------------------------------------------------------------------
1100nub_size_t
1101DNBPrintf (nub_process_t pid, nub_thread_t tid, nub_addr_t base_addr, FILE *file, const char *format)
1102{
1103 if (file == NULL)
1104 return 0;
1105 enum printf_flags
1106 {
1107 alternate_form = (1 << 0),
1108 zero_padding = (1 << 1),
1109 negative_field_width = (1 << 2),
1110 blank_space = (1 << 3),
1111 show_sign = (1 << 4),
1112 show_thousands_separator= (1 << 5),
1113 };
1114
1115 enum printf_length_modifiers
1116 {
1117 length_mod_h = (1 << 0),
1118 length_mod_hh = (1 << 1),
1119 length_mod_l = (1 << 2),
1120 length_mod_ll = (1 << 3),
1121 length_mod_L = (1 << 4),
1122 length_mod_j = (1 << 5),
1123 length_mod_t = (1 << 6),
1124 length_mod_z = (1 << 7),
1125 length_mod_q = (1 << 8),
1126 };
1127
1128 nub_addr_t addr = base_addr;
1129 char *end_format = (char*)format + strlen(format);
1130 char *end = NULL; // For strtoXXXX calls;
1131 std::basic_string<uint8_t> buf;
1132 nub_size_t total_bytes_read = 0;
1133 DNBDataRef data;
1134 const char *f;
1135 for (f = format; *f != '\0' && f < end_format; f++)
1136 {
1137 char ch = *f;
1138 switch (ch)
1139 {
1140 case '%':
1141 {
1142 f++; // Skip the '%' character
1143 int min_field_width = 0;
1144 int precision = 0;
1145 uint32_t flags = 0;
1146 uint32_t length_modifiers = 0;
1147 uint32_t byte_size = 0;
1148 uint32_t actual_byte_size = 0;
1149 bool is_string = false;
1150 bool is_register = false;
1151 DNBRegisterValue register_value;
1152 int64_t register_offset = 0;
1153 nub_addr_t register_addr = INVALID_NUB_ADDRESS;
1154
1155 // Create the format string to use for this conversion specification
1156 // so we can remove and mprintf specific flags and formatters.
1157 std::string fprintf_format("%");
1158
1159 // Decode any flags
1160 switch (*f)
1161 {
1162 case '#': fprintf_format += *f++; flags |= alternate_form; break;
1163 case '0': fprintf_format += *f++; flags |= zero_padding; break;
1164 case '-': fprintf_format += *f++; flags |= negative_field_width; break;
1165 case ' ': fprintf_format += *f++; flags |= blank_space; break;
1166 case '+': fprintf_format += *f++; flags |= show_sign; break;
1167 case ',': fprintf_format += *f++; flags |= show_thousands_separator;break;
1168 case '{':
1169 case '[':
1170 {
1171 // We have a register name specification that can take two forms:
1172 // ${regname} or ${regname+offset}
1173 // The action is to read the register value and add the signed offset
1174 // (if any) and use that as the value to format.
1175 // $[regname] or $[regname+offset]
1176 // The action is to read the register value and add the signed offset
1177 // (if any) and use the result as an address to dereference. The size
1178 // of what is dereferenced is specified by the actual byte size that
1179 // follows the minimum field width and precision (see comments below).
1180 switch (*f)
1181 {
1182 case '{':
1183 case '[':
1184 {
1185 char open_scope_ch = *f;
1186 f++;
1187 const char *reg_name = f;
1188 size_t reg_name_length = strcspn(f, "+-}]");
1189 if (reg_name_length > 0)
1190 {
1191 std::string register_name(reg_name, reg_name_length);
1192 f += reg_name_length;
1193 register_offset = strtoll(f, &end, 0);
1194 if (f < end)
1195 f = end;
1196 if ((open_scope_ch == '{' && *f != '}') || (open_scope_ch == '[' && *f != ']'))
1197 {
1198 fprintf(file, "error: Invalid register format string. Valid formats are %%{regname} or %%{regname+offset}, %%[regname] or %%[regname+offset]\n");
1199 return total_bytes_read;
1200 }
1201 else
1202 {
1203 f++;
1204 if (DNBThreadGetRegisterValueByName(pid, tid, REGISTER_SET_ALL, register_name.c_str(), &register_value))
1205 {
1206 // Set the address to dereference using the register value plus the offset
1207 switch (register_value.info.size)
1208 {
1209 default:
1210 case 0:
1211 fprintf (file, "error: unsupported register size of %u.\n", register_value.info.size);
1212 return total_bytes_read;
1213
1214 case 1: register_addr = register_value.value.uint8 + register_offset; break;
1215 case 2: register_addr = register_value.value.uint16 + register_offset; break;
1216 case 4: register_addr = register_value.value.uint32 + register_offset; break;
1217 case 8: register_addr = register_value.value.uint64 + register_offset; break;
1218 case 16:
1219 if (open_scope_ch == '[')
1220 {
1221 fprintf (file, "error: register size (%u) too large for address.\n", register_value.info.size);
1222 return total_bytes_read;
1223 }
1224 break;
1225 }
1226
1227 if (open_scope_ch == '{')
1228 {
1229 byte_size = register_value.info.size;
1230 is_register = true; // value is in a register
1231
1232 }
1233 else
1234 {
1235 addr = register_addr; // Use register value and offset as the address
1236 }
1237 }
1238 else
1239 {
1240 fprintf(file, "error: unable to read register '%s' for process %#.4x and thread %#.4x\n", register_name.c_str(), pid, tid);
1241 return total_bytes_read;
1242 }
1243 }
1244 }
1245 }
1246 break;
1247
1248 default:
1249 fprintf(file, "error: %%$ must be followed by (regname + n) or [regname + n]\n");
1250 return total_bytes_read;
1251 }
1252 }
1253 break;
1254 }
1255
1256 // Check for a minimum field width
1257 if (isdigit(*f))
1258 {
1259 min_field_width = strtoul(f, &end, 10);
1260 if (end > f)
1261 {
1262 fprintf_format.append(f, end - f);
1263 f = end;
1264 }
1265 }
1266
1267
1268 // Check for a precision
1269 if (*f == '.')
1270 {
1271 f++;
1272 if (isdigit(*f))
1273 {
1274 fprintf_format += '.';
1275 precision = strtoul(f, &end, 10);
1276 if (end > f)
1277 {
1278 fprintf_format.append(f, end - f);
1279 f = end;
1280 }
1281 }
1282 }
1283
1284
1285 // mprintf specific: read the optional actual byte size (abs)
1286 // after the standard minimum field width (mfw) and precision (prec).
1287 // Standard printf calls you can have "mfw.prec" or ".prec", but
1288 // mprintf can have "mfw.prec.abs", ".prec.abs" or "..abs". This is nice
1289 // for strings that may be in a fixed size buffer, but may not use all bytes
1290 // in that buffer for printable characters.
1291 if (*f == '.')
1292 {
1293 f++;
1294 actual_byte_size = strtoul(f, &end, 10);
1295 if (end > f)
1296 {
1297 byte_size = actual_byte_size;
1298 f = end;
1299 }
1300 }
1301
1302 // Decode the length modifiers
1303 switch (*f)
1304 {
1305 case 'h': // h and hh length modifiers
1306 fprintf_format += *f++;
1307 length_modifiers |= length_mod_h;
1308 if (*f == 'h')
1309 {
1310 fprintf_format += *f++;
1311 length_modifiers |= length_mod_hh;
1312 }
1313 break;
1314
1315 case 'l': // l and ll length modifiers
1316 fprintf_format += *f++;
1317 length_modifiers |= length_mod_l;
1318 if (*f == 'h')
1319 {
1320 fprintf_format += *f++;
1321 length_modifiers |= length_mod_ll;
1322 }
1323 break;
1324
1325 case 'L': fprintf_format += *f++; length_modifiers |= length_mod_L; break;
1326 case 'j': fprintf_format += *f++; length_modifiers |= length_mod_j; break;
1327 case 't': fprintf_format += *f++; length_modifiers |= length_mod_t; break;
1328 case 'z': fprintf_format += *f++; length_modifiers |= length_mod_z; break;
1329 case 'q': fprintf_format += *f++; length_modifiers |= length_mod_q; break;
1330 }
1331
1332 // Decode the conversion specifier
1333 switch (*f)
1334 {
1335 case '_':
1336 // mprintf specific format items
1337 {
1338 ++f; // Skip the '_' character
1339 switch (*f)
1340 {
1341 case 'a': // Print the current address
1342 ++f;
1343 fprintf_format += "ll";
1344 fprintf_format += *f; // actual format to show address with folows the 'a' ("%_ax")
1345 fprintf (file, fprintf_format.c_str(), addr);
1346 break;
1347 case 'o': // offset from base address
1348 ++f;
1349 fprintf_format += "ll";
1350 fprintf_format += *f; // actual format to show address with folows the 'a' ("%_ox")
1351 fprintf(file, fprintf_format.c_str(), addr - base_addr);
1352 break;
1353 default:
1354 fprintf (file, "error: unsupported mprintf specific format character '%c'.\n", *f);
1355 break;
1356 }
1357 continue;
1358 }
1359 break;
1360
1361 case 'D':
1362 case 'O':
1363 case 'U':
1364 fprintf_format += *f;
1365 if (byte_size == 0)
1366 byte_size = sizeof(long int);
1367 break;
1368
1369 case 'd':
1370 case 'i':
1371 case 'o':
1372 case 'u':
1373 case 'x':
1374 case 'X':
1375 fprintf_format += *f;
1376 if (byte_size == 0)
1377 {
1378 if (length_modifiers & length_mod_hh)
1379 byte_size = sizeof(char);
1380 else if (length_modifiers & length_mod_h)
1381 byte_size = sizeof(short);
1382 if (length_modifiers & length_mod_ll)
1383 byte_size = sizeof(long long);
1384 else if (length_modifiers & length_mod_l)
1385 byte_size = sizeof(long);
1386 else
1387 byte_size = sizeof(int);
1388 }
1389 break;
1390
1391 case 'a':
1392 case 'A':
1393 case 'f':
1394 case 'F':
1395 case 'e':
1396 case 'E':
1397 case 'g':
1398 case 'G':
1399 fprintf_format += *f;
1400 if (byte_size == 0)
1401 {
1402 if (length_modifiers & length_mod_L)
1403 byte_size = sizeof(long double);
1404 else
1405 byte_size = sizeof(double);
1406 }
1407 break;
1408
1409 case 'c':
1410 if ((length_modifiers & length_mod_l) == 0)
1411 {
1412 fprintf_format += *f;
1413 if (byte_size == 0)
1414 byte_size = sizeof(char);
1415 break;
1416 }
1417 // Fall through to 'C' modifier below...
1418
1419 case 'C':
1420 fprintf_format += *f;
1421 if (byte_size == 0)
1422 byte_size = sizeof(wchar_t);
1423 break;
1424
1425 case 's':
1426 fprintf_format += *f;
1427 if (is_register || byte_size == 0)
1428 is_string = 1;
1429 break;
1430
1431 case 'p':
1432 fprintf_format += *f;
1433 if (byte_size == 0)
1434 byte_size = sizeof(void*);
1435 break;
1436 }
1437
1438 if (is_string)
1439 {
1440 std::string mem_string;
1441 const size_t string_buf_len = 4;
1442 char string_buf[string_buf_len+1];
1443 char *string_buf_end = string_buf + string_buf_len;
1444 string_buf[string_buf_len] = '\0';
1445 nub_size_t bytes_read;
1446 nub_addr_t str_addr = is_register ? register_addr : addr;
1447 while ((bytes_read = DNBProcessMemoryRead(pid, str_addr, string_buf_len, &string_buf[0])) > 0)
1448 {
1449 // Did we get a NULL termination character yet?
1450 if (strchr(string_buf, '\0') == string_buf_end)
1451 {
1452 // no NULL terminator yet, append as a std::string
1453 mem_string.append(string_buf, string_buf_len);
1454 str_addr += string_buf_len;
1455 }
1456 else
1457 {
1458 // yep
1459 break;
1460 }
1461 }
1462 // Append as a C-string so we don't get the extra NULL
1463 // characters in the temp buffer (since it was resized)
1464 mem_string += string_buf;
1465 size_t mem_string_len = mem_string.size() + 1;
1466 fprintf(file, fprintf_format.c_str(), mem_string.c_str());
1467 if (mem_string_len > 0)
1468 {
1469 if (!is_register)
1470 {
1471 addr += mem_string_len;
1472 total_bytes_read += mem_string_len;
1473 }
1474 }
1475 else
1476 return total_bytes_read;
1477 }
1478 else
1479 if (byte_size > 0)
1480 {
1481 buf.resize(byte_size);
1482 nub_size_t bytes_read = 0;
1483 if (is_register)
1484 bytes_read = register_value.info.size;
1485 else
1486 bytes_read = DNBProcessMemoryRead(pid, addr, buf.size(), &buf[0]);
1487 if (bytes_read > 0)
1488 {
1489 if (!is_register)
1490 total_bytes_read += bytes_read;
1491
1492 if (bytes_read == byte_size)
1493 {
1494 switch (*f)
1495 {
1496 case 'd':
1497 case 'i':
1498 case 'o':
1499 case 'u':
1500 case 'X':
1501 case 'x':
1502 case 'a':
1503 case 'A':
1504 case 'f':
1505 case 'F':
1506 case 'e':
1507 case 'E':
1508 case 'g':
1509 case 'G':
1510 case 'p':
1511 case 'c':
1512 case 'C':
1513 {
1514 if (is_register)
1515 data.SetData(&register_value.value.v_uint8[0], register_value.info.size);
1516 else
1517 data.SetData(&buf[0], bytes_read);
1518 DNBDataRef::offset_t data_offset = 0;
1519 if (byte_size <= 4)
1520 {
1521 uint32_t u32 = data.GetMax32(&data_offset, byte_size);
1522 // Show the actual byte width when displaying hex
1523 fprintf(file, fprintf_format.c_str(), u32);
1524 }
1525 else if (byte_size <= 8)
1526 {
1527 uint64_t u64 = data.GetMax64(&data_offset, byte_size);
1528 // Show the actual byte width when displaying hex
1529 fprintf(file, fprintf_format.c_str(), u64);
1530 }
1531 else
1532 {
1533 fprintf(file, "error: integer size not supported, must be 8 bytes or less (%u bytes).\n", byte_size);
1534 }
1535 if (!is_register)
1536 addr += byte_size;
1537 }
1538 break;
1539
1540 case 's':
1541 fprintf(file, fprintf_format.c_str(), buf.c_str());
1542 addr += byte_size;
1543 break;
1544
1545 default:
1546 fprintf(file, "error: unsupported conversion specifier '%c'.\n", *f);
1547 break;
1548 }
1549 }
1550 }
1551 }
1552 else
1553 return total_bytes_read;
1554 }
1555 break;
1556
1557 case '\\':
1558 {
1559 f++;
1560 switch (*f)
1561 {
1562 case 'e': ch = '\e'; break;
1563 case 'a': ch = '\a'; break;
1564 case 'b': ch = '\b'; break;
1565 case 'f': ch = '\f'; break;
1566 case 'n': ch = '\n'; break;
1567 case 'r': ch = '\r'; break;
1568 case 't': ch = '\t'; break;
1569 case 'v': ch = '\v'; break;
1570 case '\'': ch = '\''; break;
1571 case '\\': ch = '\\'; break;
1572 case '0':
1573 case '1':
1574 case '2':
1575 case '3':
1576 case '4':
1577 case '5':
1578 case '6':
1579 case '7':
1580 ch = strtoul(f, &end, 8);
1581 f = end;
1582 break;
1583 default:
1584 ch = *f;
1585 break;
1586 }
1587 fputc(ch, file);
1588 }
1589 break;
1590
1591 default:
1592 fputc(ch, file);
1593 break;
1594 }
1595 }
1596 return total_bytes_read;
1597}
1598
1599
1600//----------------------------------------------------------------------
1601// Get the number of threads for the specified process.
1602//----------------------------------------------------------------------
1603nub_size_t
1604DNBProcessGetNumThreads (nub_process_t pid)
1605{
1606 MachProcessSP procSP;
1607 if (GetProcessSP (pid, procSP))
1608 return procSP->GetNumThreads();
1609 return 0;
1610}
1611
1612//----------------------------------------------------------------------
1613// Get the thread ID of the current thread.
1614//----------------------------------------------------------------------
1615nub_thread_t
1616DNBProcessGetCurrentThread (nub_process_t pid)
1617{
1618 MachProcessSP procSP;
1619 if (GetProcessSP (pid, procSP))
1620 return procSP->GetCurrentThread();
1621 return 0;
1622}
1623
1624//----------------------------------------------------------------------
1625// Change the current thread.
1626//----------------------------------------------------------------------
1627nub_thread_t
1628DNBProcessSetCurrentThread (nub_process_t pid, nub_thread_t tid)
1629{
1630 MachProcessSP procSP;
1631 if (GetProcessSP (pid, procSP))
1632 return procSP->SetCurrentThread (tid);
1633 return INVALID_NUB_THREAD;
1634}
1635
1636
1637//----------------------------------------------------------------------
1638// Dump a string describing a thread's stop reason to the specified file
1639// handle
1640//----------------------------------------------------------------------
1641nub_bool_t
1642DNBThreadGetStopReason (nub_process_t pid, nub_thread_t tid, struct DNBThreadStopInfo *stop_info)
1643{
1644 MachProcessSP procSP;
1645 if (GetProcessSP (pid, procSP))
1646 return procSP->GetThreadStoppedReason (tid, stop_info);
1647 return false;
1648}
1649
1650//----------------------------------------------------------------------
1651// Return string description for the specified thread.
1652//
1653// RETURNS: NULL if the thread isn't valid, else a NULL terminated C
1654// string from a static buffer that must be copied prior to subsequent
1655// calls.
1656//----------------------------------------------------------------------
1657const char *
1658DNBThreadGetInfo (nub_process_t pid, nub_thread_t tid)
1659{
1660 MachProcessSP procSP;
1661 if (GetProcessSP (pid, procSP))
1662 return procSP->GetThreadInfo (tid);
1663 return NULL;
1664}
1665
1666//----------------------------------------------------------------------
1667// Get the thread ID given a thread index.
1668//----------------------------------------------------------------------
1669nub_thread_t
1670DNBProcessGetThreadAtIndex (nub_process_t pid, size_t thread_idx)
1671{
1672 MachProcessSP procSP;
1673 if (GetProcessSP (pid, procSP))
1674 return procSP->GetThreadAtIndex (thread_idx);
1675 return INVALID_NUB_THREAD;
1676}
1677
1678nub_addr_t
1679DNBProcessGetSharedLibraryInfoAddress (nub_process_t pid)
1680{
1681 MachProcessSP procSP;
1682 DNBError err;
1683 if (GetProcessSP (pid, procSP))
1684 return procSP->Task().GetDYLDAllImageInfosAddress (err);
1685 return INVALID_NUB_ADDRESS;
1686}
1687
1688
1689nub_bool_t
1690DNBProcessSharedLibrariesUpdated(nub_process_t pid)
1691{
1692 MachProcessSP procSP;
1693 if (GetProcessSP (pid, procSP))
1694 {
1695 procSP->SharedLibrariesUpdated ();
1696 return true;
1697 }
1698 return false;
1699}
1700
1701//----------------------------------------------------------------------
1702// Get the current shared library information for a process. Only return
1703// the shared libraries that have changed since the last shared library
1704// state changed event if only_changed is non-zero.
1705//----------------------------------------------------------------------
1706nub_size_t
1707DNBProcessGetSharedLibraryInfo (nub_process_t pid, nub_bool_t only_changed, struct DNBExecutableImageInfo **image_infos)
1708{
1709 MachProcessSP procSP;
1710 if (GetProcessSP (pid, procSP))
1711 return procSP->CopyImageInfos (image_infos, only_changed);
1712
1713 // If we have no process, then return NULL for the shared library info
1714 // and zero for shared library count
1715 *image_infos = NULL;
1716 return 0;
1717}
1718
1719//----------------------------------------------------------------------
1720// Get the register set information for a specific thread.
1721//----------------------------------------------------------------------
1722const DNBRegisterSetInfo *
1723DNBGetRegisterSetInfo (nub_size_t *num_reg_sets)
1724{
1725 return DNBArch::GetRegisterSetInfo (num_reg_sets);
1726}
1727
1728
1729//----------------------------------------------------------------------
1730// Read a register value by register set and register index.
1731//----------------------------------------------------------------------
1732nub_bool_t
1733DNBThreadGetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value)
1734{
1735 MachProcessSP procSP;
1736 ::bzero (value, sizeof(DNBRegisterValue));
1737 if (GetProcessSP (pid, procSP))
1738 {
1739 if (tid != INVALID_NUB_THREAD)
1740 return procSP->GetRegisterValue (tid, set, reg, value);
1741 }
1742 return false;
1743}
1744
1745nub_bool_t
1746DNBThreadSetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value)
1747{
1748 if (tid != INVALID_NUB_THREAD)
1749 {
1750 MachProcessSP procSP;
1751 if (GetProcessSP (pid, procSP))
1752 return procSP->SetRegisterValue (tid, set, reg, value);
1753 }
1754 return false;
1755}
1756
1757nub_size_t
1758DNBThreadGetRegisterContext (nub_process_t pid, nub_thread_t tid, void *buf, size_t buf_len)
1759{
1760 MachProcessSP procSP;
1761 if (GetProcessSP (pid, procSP))
1762 {
1763 if (tid != INVALID_NUB_THREAD)
1764 return procSP->GetThreadList().GetRegisterContext (tid, buf, buf_len);
1765 }
1766 ::bzero (buf, buf_len);
1767 return 0;
1768
1769}
1770
1771nub_size_t
1772DNBThreadSetRegisterContext (nub_process_t pid, nub_thread_t tid, const void *buf, size_t buf_len)
1773{
1774 MachProcessSP procSP;
1775 if (GetProcessSP (pid, procSP))
1776 {
1777 if (tid != INVALID_NUB_THREAD)
1778 return procSP->GetThreadList().SetRegisterContext (tid, buf, buf_len);
1779 }
1780 return 0;
1781}
1782
1783//----------------------------------------------------------------------
1784// Read a register value by name.
1785//----------------------------------------------------------------------
1786nub_bool_t
1787DNBThreadGetRegisterValueByName (nub_process_t pid, nub_thread_t tid, uint32_t reg_set, const char *reg_name, DNBRegisterValue *value)
1788{
1789 MachProcessSP procSP;
1790 ::bzero (value, sizeof(DNBRegisterValue));
1791 if (GetProcessSP (pid, procSP))
1792 {
1793 const struct DNBRegisterSetInfo *set_info;
1794 nub_size_t num_reg_sets = 0;
1795 set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1796 if (set_info)
1797 {
1798 uint32_t set = reg_set;
1799 uint32_t reg;
1800 if (set == REGISTER_SET_ALL)
1801 {
1802 for (set = 1; set < num_reg_sets; ++set)
1803 {
1804 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1805 {
1806 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1807 return procSP->GetRegisterValue (tid, set, reg, value);
1808 }
1809 }
1810 }
1811 else
1812 {
1813 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1814 {
1815 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1816 return procSP->GetRegisterValue (tid, set, reg, value);
1817 }
1818 }
1819 }
1820 }
1821 return false;
1822}
1823
1824
1825//----------------------------------------------------------------------
1826// Read a register set and register number from the register name.
1827//----------------------------------------------------------------------
1828nub_bool_t
1829DNBGetRegisterInfoByName (const char *reg_name, DNBRegisterInfo* info)
1830{
1831 const struct DNBRegisterSetInfo *set_info;
1832 nub_size_t num_reg_sets = 0;
1833 set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1834 if (set_info)
1835 {
1836 uint32_t set, reg;
1837 for (set = 1; set < num_reg_sets; ++set)
1838 {
1839 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1840 {
1841 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1842 {
1843 *info = set_info[set].registers[reg];
1844 return true;
1845 }
1846 }
1847 }
1848
1849 for (set = 1; set < num_reg_sets; ++set)
1850 {
1851 uint32_t reg;
1852 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1853 {
1854 if (set_info[set].registers[reg].alt == NULL)
1855 continue;
1856
1857 if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0)
1858 {
1859 *info = set_info[set].registers[reg];
1860 return true;
1861 }
1862 }
1863 }
1864 }
1865
1866 ::bzero (info, sizeof(DNBRegisterInfo));
1867 return false;
1868}
1869
1870
1871//----------------------------------------------------------------------
1872// Set the name to address callback function that this nub can use
1873// for any name to address lookups that are needed.
1874//----------------------------------------------------------------------
1875nub_bool_t
1876DNBProcessSetNameToAddressCallback (nub_process_t pid, DNBCallbackNameToAddress callback, void *baton)
1877{
1878 MachProcessSP procSP;
1879 if (GetProcessSP (pid, procSP))
1880 {
1881 procSP->SetNameToAddressCallback (callback, baton);
1882 return true;
1883 }
1884 return false;
1885}
1886
1887
1888//----------------------------------------------------------------------
1889// Set the name to address callback function that this nub can use
1890// for any name to address lookups that are needed.
1891//----------------------------------------------------------------------
1892nub_bool_t
1893DNBProcessSetSharedLibraryInfoCallback (nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, void *baton)
1894{
1895 MachProcessSP procSP;
1896 if (GetProcessSP (pid, procSP))
1897 {
1898 procSP->SetSharedLibraryInfoCallback (callback, baton);
1899 return true;
1900 }
1901 return false;
1902}
1903
1904nub_addr_t
1905DNBProcessLookupAddress (nub_process_t pid, const char *name, const char *shlib)
1906{
1907 MachProcessSP procSP;
1908 if (GetProcessSP (pid, procSP))
1909 {
1910 return procSP->LookupSymbol (name, shlib);
1911 }
1912 return INVALID_NUB_ADDRESS;
1913}
1914
1915
1916nub_size_t
1917DNBProcessGetAvailableSTDOUT (nub_process_t pid, char *buf, nub_size_t buf_size)
1918{
1919 MachProcessSP procSP;
1920 if (GetProcessSP (pid, procSP))
1921 return procSP->GetAvailableSTDOUT (buf, buf_size);
1922 return 0;
1923}
1924
1925nub_size_t
1926DNBProcessGetAvailableSTDERR (nub_process_t pid, char *buf, nub_size_t buf_size)
1927{
1928 MachProcessSP procSP;
1929 if (GetProcessSP (pid, procSP))
1930 return procSP->GetAvailableSTDERR (buf, buf_size);
1931 return 0;
1932}
1933
1934nub_size_t
1935DNBProcessGetStopCount (nub_process_t pid)
1936{
1937 MachProcessSP procSP;
1938 if (GetProcessSP (pid, procSP))
1939 return procSP->StopCount();
1940 return 0;
1941}
1942
1943nub_bool_t
1944DNBResolveExecutablePath (const char *path, char *resolved_path, size_t resolved_path_size)
1945{
1946 if (path == NULL || path[0] == '\0')
1947 return false;
1948
1949 char max_path[PATH_MAX];
1950 std::string result;
1951 CFString::GlobPath(path, result);
1952
1953 if (result.empty())
1954 result = path;
1955
1956 if (realpath(path, max_path))
1957 {
1958 // Found the path relatively...
1959 ::strncpy(resolved_path, max_path, resolved_path_size);
1960 return strlen(resolved_path) + 1 < resolved_path_size;
1961 }
1962 else
1963 {
1964 // Not a relative path, check the PATH environment variable if the
1965 const char *PATH = getenv("PATH");
1966 if (PATH)
1967 {
1968 const char *curr_path_start = PATH;
1969 const char *curr_path_end;
1970 while (curr_path_start && *curr_path_start)
1971 {
1972 curr_path_end = strchr(curr_path_start, ':');
1973 if (curr_path_end == NULL)
1974 {
1975 result.assign(curr_path_start);
1976 curr_path_start = NULL;
1977 }
1978 else if (curr_path_end > curr_path_start)
1979 {
1980 size_t len = curr_path_end - curr_path_start;
1981 result.assign(curr_path_start, len);
1982 curr_path_start += len + 1;
1983 }
1984 else
1985 break;
1986
1987 result += '/';
1988 result += path;
1989 struct stat s;
1990 if (stat(result.c_str(), &s) == 0)
1991 {
1992 ::strncpy(resolved_path, result.c_str(), resolved_path_size);
1993 return result.size() + 1 < resolved_path_size;
1994 }
1995 }
1996 }
1997 }
1998 return false;
1999}
2000