blob: c873a027b7b282dff9a0ee5fd5167c4b24b546f6 [file] [log] [blame]
Enrico Granataff782382011-07-08 02:51:01 +00001<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
2<html xmlns="http://www.w3.org/1999/xhtml">
3 <head>
4 <meta http-equiv="Content-Type" content="text/html;
5 charset=ISO-8859-1">
6 <link href="style.css" rel="stylesheet" type="text/css">
7 <title>LLDB Homepage</title>
8 </head>
9 <body>
10 <div class="www_title"> The <strong>LLDB</strong> Debugger </div>
11 <div id="container">
12 <div id="content">
13 <!--#include virtual="sidebar.incl"-->
14 <div id="middle">
15 <div class="post">
16 <h1 class="postheader">Variable display</h1>
17 <div class="postcontent">
18
19 <p>LLDB was recently modified to allow users to define custom
20 formatting options for the variables display.</p>
21
22 <p>Usually, when you type <code>frame variable</code> or
23 run some <code>expression</code> LLDB will
24 automatically choose a format to display your results on
25 a per-type basis, as in the following example:</p>
26
27 <p> <code> <b>(lldb)</b> frame variable -T sp<br>
28 (SimpleWithPointers) sp = {<br>
29 &nbsp;&nbsp;&nbsp;&nbsp;(int *) x = 0x0000000100100120<br>
30 &nbsp;&nbsp;&nbsp;&nbsp;(float *) y =
31 0x0000000100100130<br>
32 &nbsp;&nbsp;&nbsp;&nbsp;(char *) z =
33 0x0000000100100140 "6"<br>
34 }<br>
35 </code> </p>
36
37 <p>However, in certain cases, you may want to associate a
38 different format to the display for certain datatypes.
39 To do so, you need to give hints to the debugger as to
40 how datatypes should be displayed.<br>
41 A new <b>type</b> command has been introduced in LLDB
42 which allows to do just that.<br>
43 </p>
44
45 <p>Using it you can obtain a format like this one for <code>sp</code>,
46 instead of the default shown above: </p>
47
48 <p> <code> <b>(lldb)</b> frame variable sp<br>
49 (SimpleWithPointers) sp =
50 (x=0x0000000100100120 -&gt; -1, y=0x0000000100100130
51 -&gt; -2, z="3")<br>
52 </code> </p>
53
Enrico Granata68506fb2011-08-22 16:10:25 +000054 <p>There are several features related to data visualization: <span
55 style="font-style: italic;">formats</span>, <span
56 style="font-style: italic;">summaries</span>, <span
57 style="font-style: italic;">filters</span>, <span
58 style="font-style: italic;">synthetic children</span>.</p>
Enrico Granataff782382011-07-08 02:51:01 +000059
Enrico Granata68506fb2011-08-22 16:10:25 +000060 <p>To reflect this, the the <b>type</b> command has four
Enrico Granataff782382011-07-08 02:51:01 +000061 subcommands:<br>
62 </p>
63
64 <p><code>type format</code></p>
65 <p><code>type summary</code></p>
Enrico Granata68506fb2011-08-22 16:10:25 +000066 <p><code>type filter</code></p>
67 <p><code>type synthetic</code></p>
68
Enrico Granataff782382011-07-08 02:51:01 +000069
70 <p>These commands are meant to bind printing options to
71 types. When variables are printed, LLDB will first check
72 if custom printing options have been associated to a
73 variable's type and, if so, use them instead of picking
74 the default choices.<br>
75 </p>
76
Enrico Granata68506fb2011-08-22 16:10:25 +000077 <p>Each of the commands has four subcommands available:<br>
Enrico Granataff782382011-07-08 02:51:01 +000078 </p>
79 <p><code>add</code>: associates a new printing option to one
80 or more types</p>
81 <p><code>delete</code>: deletes an existing association</p>
82 <p><code>list</code>: provides a listing of all
83 associations</p>
84 <p><code>clear</code>: deletes all associations</p>
85 </div>
86 </div>
87
88 <div class="post">
89 <h1 class="postheader">type format</h1>
90 <div class="postcontent">
91
92 <p>Type formats enable you to quickly override the default
93 format for displaying primitive types (the usual basic
94 C/C++/ObjC types: int, float, char, ...).</p>
95
96 <p>If for some reason you want all <code>int</code>
97 variables in your program to print out as hex, you can add
98 a format to the <code>int</code> type.<br></p>
99
Enrico Granata86e7c3e2011-07-12 22:56:10 +0000100 <p>This is done by typing
101 <table class="stats" width="620" cellspacing="0">
102 <td class="content">
103 <b>(lldb)</b> type format add -f hex int
104 </td>
105 <table>
106 at the LLDB command line.</p>
Enrico Granataff782382011-07-08 02:51:01 +0000107
108 <p>The <code>-f</code> option accepts a <a
109 href="#formatstable">format name</a>, and a list of
110 types to which you want the new format applied.</p>
111
112 <p>A frequent scenario is that your program has a <code>typedef</code>
113 for a numeric type that you know represents something
114 that must be printed in a certain way. Again, you can
115 add a format just to that typedef by using <code>type
116 format add</code> with the name alias.</p>
117
118 <p>But things can quickly get hierarchical. Let's say you
119 have a situation like the following:</p>
120
121 <p><code>typedef int A;<br>
122 typedef A B;<br>
123 typedef B C;<br>
124 typedef C D;<br>
125 </code></p>
126
127 <p>and you want to show all <code>A</code>'s as hex, all
128 <code>C'</code>s as pointers and leave the defaults
129 untouched for other types.</p>
130
131 <p>If you simply type <br>
Enrico Granata86e7c3e2011-07-12 22:56:10 +0000132 <table class="stats" width="620" cellspacing="0">
133 <td class="content">
134 <b>(lldb)</b> type format add -f hex A<br>
135 <b>(lldb)</b> type format add -f pointer C
136 </td>
137 <table>
Enrico Granataff782382011-07-08 02:51:01 +0000138 <br>
139 values of type <code>B</code> will be shown as hex
140 and values of type <code>D</code> as pointers.</p>
141
142 <p>This is because by default LLDB <i>cascades</i>
143 formats through typedef chains. In order to avoid that
144 you can use the option <code>-C no</code> to prevent
145 cascading, thus making the two commands required to
146 achieve your goal:<br>
Enrico Granata86e7c3e2011-07-12 22:56:10 +0000147 <table class="stats" width="620" cellspacing="0">
148 <td class="content">
149 <b>(lldb)</b> type format add -C no -f hex A<br>
150 <b>(lldb)</b> type format add -C no -f pointer C
151 </td>
152 <table>
Enrico Granataff782382011-07-08 02:51:01 +0000153
154 <p>Two additional options that you will want to look at
155 are <code>-p</code> and <code>-r</code>. These two
156 options prevent LLDB from applying a format for type <code>T</code>
157 to values of type <code>T*</code> and <code>T&amp;</code>
158 respectively.</p>
159
160 <p> <code> <b>(lldb)</b> type format add -f float32[]
161 int<br>
Enrico Granataef1923d2011-08-23 21:26:09 +0000162 <b>(lldb)</b> frame variable pointer *pointer -T<br>
Enrico Granataff782382011-07-08 02:51:01 +0000163 (int *) pointer = {1.46991e-39 1.4013e-45}<br>
164 (int) *pointer = {1.53302e-42}<br>
165 <b>(lldb)</b> type format add -f float32[] int -p<br>
Enrico Granataef1923d2011-08-23 21:26:09 +0000166 <b>(lldb)</b> frame variable pointer *pointer -T<br>
Enrico Granataff782382011-07-08 02:51:01 +0000167 (int *) pointer = 0x0000000100100180<br>
168 (int) *pointer = {1.53302e-42}<br>
169 </code> </p>
170
171 <p>As the previous example highlights, you will most
172 probably want to use <code>-p</code> for your formats.</p>
173
174 <p>If you need to delete a custom format simply type <code>type
175 format delete</code> followed by the name of the type
176 to which the format applies. To delete ALL formats, use
177 <code>type format clear</code>. To see all the formats
178 defined, type <code>type format list</code>.<br>
179 </p>
180
181 <p>If all you need to do, however, is display one variable
182 in a custom format, while leaving the others of the same
183 type untouched, you can simply type:<br>
184 <br>
Enrico Granata86e7c3e2011-07-12 22:56:10 +0000185 <table class="stats" width="620" cellspacing="0">
186 <td class="content">
187 <b>(lldb)</b> frame variable counter -f hex
188 </td>
189 <table>
Enrico Granataff782382011-07-08 02:51:01 +0000190
191 <p>This has the effect of displaying the value of <code>counter</code>
192 as an hexadecimal number, and will keep showing it this
193 way until you either pick a different format or till you
194 let your program run again.</p>
195
196 <p>Finally, this is a list of formatting options available
197 out of
198 which you can pick:</p><a name="formatstable"></a>
199 <table border="1">
200 <tbody>
201 <tr valign="top">
202 <td width="23%"><b>Format name</b></td>
203 <td><b>Abbreviation</b></td>
204 <td><b>Description</b></td>
205 </tr>
206 <tr valign="top">
207 <td><b>default</b></td>
208 <td><br>
209 </td>
210 <td>the default LLDB algorithm is used to pick a
211 format</td>
212 </tr>
213 <tr valign="top">
214 <td><b>boolean</b></td>
215 <td>B</td>
216 <td>show this as a true/false boolean, using the
217 customary rule that 0 is false and everything else
218 is true</td>
219 </tr>
220 <tr valign="top">
221 <td><b>binary</b></td>
222 <td>b</td>
223 <td>show this as a sequence of bits</td>
224 </tr>
225 <tr valign="top">
226 <td><b>bytes</b></td>
227 <td>y</td>
228 <td>show the bytes one after the other<br>
229 e.g. <code>(int) s.x = 07 00 00 00</code></td>
230 </tr>
231 <tr valign="top">
232 <td><b>bytes with ASCII</b></td>
233 <td>Y</td>
234 <td>show the bytes, but try to print them as ASCII
235 characters<br>
236 e.g. <code>(int *) c.sp.x = 50 f8 bf 5f ff 7f 00
237 00 P.._....</code></td>
238 </tr>
239 <tr valign="top">
240 <td><b>character</b></td>
241 <td>c</td>
242 <td>show the bytes printed as ASCII characters<br>
243 e.g. <code>(int *) c.sp.x =
244 P\xf8\xbf_\xff\x7f\0\0</code></td>
245 </tr>
246 <tr valign="top">
247 <td><b>printable character</b></td>
248 <td>C</td>
249 <td>show the bytes printed as printable ASCII
250 characters<br>
251 e.g. <code>(int *) c.sp.x = P.._....</code></td>
252 </tr>
253 <tr valign="top">
254 <td><b>complex float</b></td>
255 <td>F</td>
256 <td>interpret this value as the real and imaginary
257 part of a complex floating-point number<br>
258 e.g. <code>(int *) c.sp.x = 2.76658e+19 +
259 4.59163e-41i</code></td>
260 </tr>
261 <tr valign="top">
262 <td><b>c-string</b></td>
263 <td>s</td>
264 <td>show this as a 0-terminated C string</td>
265 </tr>
266 <tr valign="top">
267 <td><b>signed decimal</b></td>
268 <td>i</td>
269 <td>show this as a signed integer number (this does
270 not perform a cast, it simply shows the bytes as
271 signed integer)</td>
272 </tr>
273 <tr valign="top">
274 <td><b>enumeration</b></td>
275 <td>E</td>
276 <td>show this as an enumeration, printing the
277 value's name if available or the integer value
278 otherwise<br>
279 e.g. <code>(enum enumType) val_type = eValue2</code></td>
280 </tr>
281 <tr valign="top">
282 <td><b>hex</b></td>
283 <td>x</td>
284 <td>show this as in hexadecimal notation (this does
285 not perform a cast, it simply shows the bytes as
286 hex)</td>
287 </tr>
288 <tr valign="top">
289 <td><b>float</b></td>
290 <td>f</td>
291 <td>show this as a floating-point number (this does
292 not perform a cast, it simply interprets the bytes
293 as an IEEE754 floating-point value)</td>
294 </tr>
295 <tr valign="top">
296 <td><b>octal</b></td>
297 <td>o</td>
298 <td>show this in octal notation</td>
299 </tr>
300 <tr valign="top">
301 <td><b>OSType</b></td>
302 <td>O</td>
303 <td>show this as a MacOS OSType<br>
304 e.g. <code>(float) *c.sp.y = '\n\x1f\xd7\n'</code></td>
305 </tr>
306 <tr valign="top">
307 <td><b>unicode16</b></td>
308 <td>U</td>
309 <td>show this as UTF-16 characters<br>
310 e.g. <code>(float) *c.sp.y = 0xd70a 0x411f</code></td>
311 </tr>
312 <tr valign="top">
313 <td><b>unicode32</b></td>
314 <td><br>
315 </td>
316 <td>show this as UTF-32 characters<br>
317 e.g. <code>(float) *c.sp.y = 0x411fd70a</code></td>
318 </tr>
319 <tr valign="top">
320 <td><b>unsigned decimal</b></td>
321 <td>u</td>
322 <td>show this as an unsigned integer number (this
323 does not perform a cast, it simply shows the bytes
324 as unsigned integer)</td>
325 </tr>
326 <tr valign="top">
327 <td><b>pointer</b></td>
328 <td>p</td>
329 <td>show this as a native pointer (unless this is
330 really a pointer, the resulting address will
331 probably be invalid)</td>
332 </tr>
333 <tr valign="top">
334 <td><b>char[]</b></td>
335 <td><br>
336 </td>
337 <td>show this as an array of characters<br>
338 e.g. <code>(char) *c.sp.z = {X}</code></td>
339 </tr>
340 <tr valign="top">
341 <td><b>int8_t[], uint8_t[]<br>
342 int16_t[], uint16_t[]<br>
343 int32_t[], uint32_t[]<br>
344 int64_t[], uint64_t[]<br>
345 uint128_t[]</b></td>
346 <td><br>
347 </td>
348 <td>show this as an array of the corresponding
349 integer type<br>
350 e.g.<br>
351 <code>(int) sarray[0].x = {1 0 0 0}</code><br>
352 <code>(int) sarray[0].x = {0x00000001}</code></td>
353 </tr>
354 <tr valign="top">
355 <td><b>float32[], float64[]</b></td>
356 <td><br>
357 </td>
358 <td>show this as an array of the corresponding
359 floating-point type<br>
360 e.g. <code>(int *) pointer = {1.46991e-39
361 1.4013e-45}</code></td>
362 </tr>
363 <tr valign="top">
364 <td><b>complex integer</b></td>
365 <td>I</td>
366 <td>interpret this value as the real and imaginary
367 part of a complex integer number<br>
368 e.g. <code>(int *) pointer = 1048960 + 1i</code></td>
369 </tr>
370 <tr valign="top">
371 <td><b>character array</b></td>
372 <td>a</td>
373 <td>show this as a character array<br>
374 e.g. <code>(int *) pointer =
375 \x80\x01\x10\0\x01\0\0\0</code></td>
376 </tr>
377 </tbody>
378 </table>
379 </div>
380 </div>
381
382 <div class="post">
383 <h1 class="postheader">type summary</h1>
384 <div class="postcontent">
Enrico Granata86e7c3e2011-07-12 22:56:10 +0000385 <p>Type formats work by showing a different kind of display for
386 the value of a variable. However, they only work for basic types.
387 When you want to display a class or struct in a custom format, you
388 cannot do that using formats.</p>
389 <p>A different feature, type summaries, works by extracting
390 information from classes, structures, ... (<i>aggregate types</i>)
391 and arranging it in a user-defined format, as in the following example:</p>
Enrico Granataff782382011-07-08 02:51:01 +0000392 <p> <i>before adding a summary...</i><br>
Enrico Granataef1923d2011-08-23 21:26:09 +0000393 <code> <b>(lldb)</b> frame variable -T one<br>
Enrico Granataff782382011-07-08 02:51:01 +0000394 (i_am_cool) one = {<br>
Enrico Granata86e7c3e2011-07-12 22:56:10 +0000395 &nbsp;&nbsp;&nbsp;&nbsp;(int) integer = 3<br>
396 &nbsp;&nbsp;&nbsp;&nbsp;(float) floating = 3.14159<br>
397 &nbsp;&nbsp;&nbsp;&nbsp;(char) character = 'E'<br>
Enrico Granataff782382011-07-08 02:51:01 +0000398 }<br>
399 </code> <br>
400 <i>after adding a summary...</i><br>
Enrico Granataef1923d2011-08-23 21:26:09 +0000401 <code> <b>(lldb)</b> frame variable one<br>
Enrico Granataff782382011-07-08 02:51:01 +0000402 (i_am_cool) one = int = 3, float = 3.14159, char = 69<br>
403 </code> </p>
Enrico Granata8a717e52011-07-19 02:34:21 +0000404
405 <p>There are two ways to use type summaries: the first one is to bind a <i>
406 summary string</i> to the datatype; the second is to bind a Python script to the
407 datatype. Both options are enabled by the <code>type summary add</code>
Enrico Granataff782382011-07-08 02:51:01 +0000408 command.</p>
Enrico Granata86e7c3e2011-07-12 22:56:10 +0000409 <p>In the example, the command we type was:</p>
410 <table class="stats" width="620" cellspacing="0">
411 <td class="content">
Enrico Granataef1923d2011-08-23 21:26:09 +0000412 <b>(lldb)</b> type summary add --summary-string "int = ${var.integer}, float = ${var.floating}, char = ${var.character%u}" i_am_cool
Enrico Granata86e7c3e2011-07-12 22:56:10 +0000413 </td>
414 <table>
Enrico Granata8a717e52011-07-19 02:34:21 +0000415
416 <p>Initially, we will focus on summary strings, and then describe the Python binding
417 mechanism.</p>
418
Enrico Granataff782382011-07-08 02:51:01 +0000419 </div>
420 </div>
421 <div class="post">
422 <h1 class="postheader">Summary Strings</h1>
423 <div class="postcontent">
Enrico Granataede7bdf2011-07-13 00:00:57 +0000424 <p>While you may already have guessed a lot about the format of
425 summary strings from the above example, a detailed description
426 of their format follows.</p>
427
428 <p>Summary strings can contain plain text, control characters and
Enrico Granataff782382011-07-08 02:51:01 +0000429 special symbols that have access to information about
430 the current object and the overall program state.</p>
431 <p>Normal characters are any text that doesn't contain a <code><b>'{'</b></code>,
432 <code><b>'}'</b></code>, <code><b>'$'</b></code>, or <code><b>'\'</b></code>
433 character.</p>
434 <p>Variable names are found in between a <code><b>"${"</b></code>
435 prefix, and end with a <code><b>"}"</b></code> suffix.
436 In other words, a variable looks like <code>"<b>${frame.pc}</b>"</code>.</p>
437 <p>Basically, all the variables described in <a
438 href="formats.html">Frame and Thread Formatting</a>
439 are accepted. Also acceptable are the control characters
440 and scoping features described in that page.
441 Additionally, <code>${var</code> and <code>${*var</code>
442 become acceptable symbols in this scenario.</p>
443 <p>The simplest thing you can do is grab a member variable
444 of a class or structure by typing its <i>expression
445 path</i>. In the previous example, the expression path
Enrico Granataede7bdf2011-07-13 00:00:57 +0000446 for the floating member is simply <code>.floating</code>.
447 Thus, to ask the summary string to display <code>floating</code>
Enrico Granataff782382011-07-08 02:51:01 +0000448 you would type <code>${var.floating}</code> (<code>${var</code>
449 is a placeholder token replaced with whatever variable
450 is being displayed).</p>
451 <p>If you have code like the following: <br>
452 <code> struct A {<br>
Enrico Granataede7bdf2011-07-13 00:00:57 +0000453 &nbsp;&nbsp;&nbsp;&nbsp;int x;<br>
454 &nbsp;&nbsp;&nbsp;&nbsp;int y;<br>
Enrico Granataff782382011-07-08 02:51:01 +0000455 };<br>
456 struct B {<br>
Enrico Granataede7bdf2011-07-13 00:00:57 +0000457 &nbsp;&nbsp;&nbsp;&nbsp;A x;<br>
458 &nbsp;&nbsp;&nbsp;&nbsp;A y;<br>
459 &nbsp;&nbsp;&nbsp;&nbsp;int z;<br>
Enrico Granataff782382011-07-08 02:51:01 +0000460 };<br>
461 </code> the expression path for the <code>y</code>
462 member of the <code>x</code> member of an object of
463 type <code>B</code> would be <code>.x.y</code> and you
464 would type <code>${var.x.y}</code> to display it in a
465 summary string for type <code>B</code>. </p>
466 <p>As you could be using a summary string for both
467 displaying objects of type <code>T</code> or <code>T*</code>
468 (unless <code>-p</code> is used to prevent this), the
469 expression paths do not differentiate between <code>.</code>
470 and <code>-&gt;</code>, and the above expression path <code>.x.y</code>
471 would be just as good if you were displaying a <code>B*</code>,
472 or even if the actual definition of <code>B</code>
473 were: <code><br>
474 struct B {<br>
Enrico Granataede7bdf2011-07-13 00:00:57 +0000475 &nbsp;&nbsp;&nbsp;&nbsp;A *x;<br>
476 &nbsp;&nbsp;&nbsp;&nbsp;A y;<br>
477 &nbsp;&nbsp;&nbsp;&nbsp;int z;<br>
Enrico Granataff782382011-07-08 02:51:01 +0000478 };<br>
479 </code> </p>
480 <p>This is unlike the behaviour of <code>frame variable</code>
481 which, on the contrary, will enforce the distinction. As
482 hinted above, the rationale for this choice is that
483 waiving this distinction enables one to write a summary
484 string once for type <code>T</code> and use it for both
485 <code>T</code> and <code>T*</code> instances. As a
486 summary string is mostly about extracting nested
487 members' information, a pointer to an object is just as
488 good as the object itself for the purpose.</p>
489 <p>Of course, you can have multiple entries in one summary
Enrico Granataede7bdf2011-07-13 00:00:57 +0000490 string, as shown in the previous example.</p>
Enrico Granataff782382011-07-08 02:51:01 +0000491 <p>As you can see, the last expression path also contains
492 a <code>%u</code> symbol which is nowhere to be found
493 in the actual member variable name. The symbol is
494 reminding of a <code>printf()</code> format symbol, and
495 in fact it has a similar effect. If you add a % sign
496 followed by any one format name or abbreviation from the
497 above table after an expression path, the resulting
Enrico Granatae4e3e2c2011-07-22 00:16:08 +0000498 object will be displyed using the chosen format.</p>
499
500 <p>You can also use some other special format markers, not available
501 for type formatters, but which carry a special meaning when used in this
502 context:</p>
503
504 <table border="1">
505 <tbody>
506 <tr valign="top">
507 <td width="23%"><b>Symbol</b></td>
508 <td><b>Description</b></td>
509 </tr>
510 <tr valign="top">
511 <td><b>%S</b></td>
512 <td>Use this object's summary (the default for aggregate types)</td>
513 </tr>
514 <tr valign="top">
515 <td><b>%V</b></td>
516 <td>Use this object's value (the default for non-aggregate types)</td>
517 </tr>
518 <tr valign="top">
519 <td><b>%@</b></td>
520 <td>Use a language-runtime specific description (for C++ this does nothing,
521 for Objective-C it calls the NSPrintForDebugger API)</td>
522 </tr>
523 <tr valign="top">
524 <td><b>%L</b></td>
525 <td>Use this object's location (memory address, register name, ...)</td>
526 </tr>
Enrico Granata68506fb2011-08-22 16:10:25 +0000527 <tr valign="top">
528 <td><b>%#</b></td>
529 <td>Use the count of the children of this object</td>
530 </tr>
531 <tr valign="top">
532 <td><b>%T</b></td>
533 <td>Use this object's datatype name</td>
534 </tr>
Enrico Granatae4e3e2c2011-07-22 00:16:08 +0000535 </tbody>
536 </table>
537
Enrico Granataff782382011-07-08 02:51:01 +0000538 <p>As previously said, pointers and values are treated the
539 same way when getting to their members in an expression
540 path. However, if your expression path leads to a
541 pointer, LLDB will not automatically dereference it. In
542 order to obtain The deferenced value for a pointer, your
543 expression path must start with <code>${*var</code>
544 instead of <code>${var</code>. Because there is no need
545 to dereference pointers along your way, the
546 dereferencing symbol only applies to the result of the
547 whole expression path traversing. <br>
548 e.g. <code> <br>
Enrico Granataef1923d2011-08-23 21:26:09 +0000549 <b>(lldb)</b> frame variable -T c<br>
Enrico Granataff782382011-07-08 02:51:01 +0000550 (Couple) c = {<br>
Enrico Granataede7bdf2011-07-13 00:00:57 +0000551 &nbsp;&nbsp;&nbsp;&nbsp;(SimpleWithPointers) sp = {<br>
552 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(int *) x = 0x00000001001000b0<br>
553 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(float *) y = 0x00000001001000c0<br>
554 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(char *) z = 0x00000001001000d0 "X"<br>
555 &nbsp;&nbsp;&nbsp;&nbsp;}<br>
556 &nbsp;&nbsp;&nbsp;&nbsp;(Simple *) s = 0x00000001001000e0<br>
Enrico Granataff782382011-07-08 02:51:01 +0000557 }<br>
Enrico Granataede7bdf2011-07-13 00:00:57 +0000558 </code><br>
559
560 If one types the following commands:
561
562 <table class="stats" width="620" cellspacing="0">
563 <td class="content">
Enrico Granataef1923d2011-08-23 21:26:09 +0000564 <b>(lldb)</b> type summary add --summary-string "int = ${*var.sp.x},
Enrico Granataff782382011-07-08 02:51:01 +0000565 float = ${*var.sp.y}, char = ${*var.sp.z%u}, Simple =
566 ${*var.s}" Couple<br>
Enrico Granataede7bdf2011-07-13 00:00:57 +0000567 <b>(lldb)</b> type summary add -c -p Simple<br>
568 </td>
569 <table><br>
570
571 the output becomes: <br><code>
572
Enrico Granataef1923d2011-08-23 21:26:09 +0000573 <b>(lldb)</b> frame variable c<br>
Enrico Granataff782382011-07-08 02:51:01 +0000574 (Couple) c = int = 9, float = 9.99, char = 88, Simple
575 = (x=9, y=9.99, z='X')<br>
576 </code> </p>
577 <p>Option <code>-c</code> to <code>type summary add</code>
578 tells LLDB not to look for a summary string, but instead
579 to just print a listing of all the object's children on
Enrico Granataede7bdf2011-07-13 00:00:57 +0000580 one line, as shown in the summary for object Simple.</p>
581 <p> We are using the <code>-p</code> flag here to show that
582 aggregate types can be dereferenced as well as basic types.
583 The following command sequence would work just as well and
584 produce the same output:
585 <table class="stats" width="620" cellspacing="0">
586 <td class="content">
Enrico Granataef1923d2011-08-23 21:26:09 +0000587 <b>(lldb)</b> type summary add --summary-string "int = ${*var.sp.x},
Enrico Granataede7bdf2011-07-13 00:00:57 +0000588 float = ${*var.sp.y}, char = ${*var.sp.z%u}, Simple =
589 ${var.s}" Couple<br>
590 <b>(lldb)</b> type summary add -c Simple<br>
591 </td>
592 <table><br>
Enrico Granataff782382011-07-08 02:51:01 +0000593 </div>
594 </div>
595 <div class="post">
Enrico Granataede7bdf2011-07-13 00:00:57 +0000596 <h1 class="postheader">Bitfields and array syntax</h1>
Enrico Granataff782382011-07-08 02:51:01 +0000597 <div class="postcontent">
Enrico Granataff782382011-07-08 02:51:01 +0000598 <p>Sometimes, a basic type's value actually represents
599 several different values packed together in a bitfield.
600 With the classical view, there is no way to look at
601 them. Hexadecimal display can help, but if the bits
602 actually span byte boundaries, the help is limited.
603 Binary view would show it all without ambiguity, but is
604 often too detailed and hard to read for real-life
605 scenarios. To cope with the issue, LLDB supports native
606 bitfield formatting in summary strings. If your
607 expression paths leads to a so-called <i>scalar type</i>
608 (the usual int, float, char, double, short, long, long
609 long, double, long double and unsigned variants), you
610 can ask LLDB to only grab some bits out of the value and
611 display them in any format you like. The syntax is
612 similar to that used for arrays, just you can also give
613 a pair of indices separated by a <code>-</code>. <br>
614 e.g. <br>
Enrico Granataef1923d2011-08-23 21:26:09 +0000615 <code> <b>(lldb)</b> frame variable float_point<br>
Enrico Granataede7bdf2011-07-13 00:00:57 +0000616 (float) float_point = -3.14159<br> </code>
617 <table class="stats" width="620" cellspacing="0">
618 <td class="content">
Enrico Granataef1923d2011-08-23 21:26:09 +0000619 <b>(lldb)</b> type summary add --summary-string "Sign: ${var[31]%B}
Enrico Granataff782382011-07-08 02:51:01 +0000620 Exponent: ${var[30-23]%x} Mantissa: ${var[0-22]%u}"
Enrico Granataede7bdf2011-07-13 00:00:57 +0000621 float
622 </td>
623 <table><br>
624
625 <code>
Enrico Granataef1923d2011-08-23 21:26:09 +0000626 <b>(lldb)</b> frame variable float_point<br>
Enrico Granataff782382011-07-08 02:51:01 +0000627 (float) float_point = -3.14159 Sign: true Exponent:
628 0x00000080 Mantissa: 4788184<br>
629 </code> In this example, LLDB shows the internal
630 representation of a <code>float</code> variable by
Enrico Granataede7bdf2011-07-13 00:00:57 +0000631 extracting bitfields out of a float object.</p>
632
633 <p> As far as the syntax is concerned, it looks
634 much like the normal C array syntax, but also allows you
635 to specify 2 indices, separated by a - symbol (a range).
636 Ranges can be given either with the lower or the higher index
637 first, and range extremes are always included in the bits extracted. </p>
638
639 <p>LLDB also allows to use a similar syntax to display
Enrico Granataff782382011-07-08 02:51:01 +0000640 array members inside a summary string. For instance, you
641 may want to display all arrays of a given type using a
642 more compact notation than the default, and then just
643 delve into individual array members that prove
Enrico Granataede7bdf2011-07-13 00:00:57 +0000644 interesting to your debugging task. You can tell
645 LLDB to format arrays in special ways, possibly
646 independent of the way the array members' datatype is formatted. <br>
Enrico Granataff782382011-07-08 02:51:01 +0000647 e.g. <br>
Enrico Granataef1923d2011-08-23 21:26:09 +0000648 <code> <b>(lldb)</b> frame variable sarray<br>
Enrico Granataff782382011-07-08 02:51:01 +0000649 (Simple [3]) sarray = {<br>
Enrico Granataede7bdf2011-07-13 00:00:57 +0000650 &nbsp;&nbsp;&nbsp;&nbsp;[0] = {<br>
651 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;x = 1<br>
652 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;y = 2<br>
653 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;z = '\x03'<br>
654 &nbsp;&nbsp;&nbsp;&nbsp;}<br>
655 &nbsp;&nbsp;&nbsp;&nbsp;[1] = {<br>
656 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;x = 4<br>
657 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;y = 5<br>
658 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;z = '\x06'<br>
659 &nbsp;&nbsp;&nbsp;&nbsp;}<br>
660 &nbsp;&nbsp;&nbsp;&nbsp;[2] = {<br>
661 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;x = 7<br>
662 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;y = 8<br>
663 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;z = '\t'<br>
664 &nbsp;&nbsp;&nbsp;&nbsp;}<br>
665 }<br></code>
666
667 <table class="stats" width="620" cellspacing="0">
668 <td class="content">
Enrico Granataef1923d2011-08-23 21:26:09 +0000669 <b>(lldb)</b> type summary add --summary-string "${var[].x}" "Simple
Enrico Granataede7bdf2011-07-13 00:00:57 +0000670 [3]"
671 </td>
672 <table><br>
673
674 <code>
Enrico Granataef1923d2011-08-23 21:26:09 +0000675 <b>(lldb)</b> frame variable sarray<br>
Enrico Granataede7bdf2011-07-13 00:00:57 +0000676 (Simple [3]) sarray = [1,4,7]<br></code></p>
677
678 <p>The <code>[]</code> symbol amounts to: <i>if <code>var</code>
Enrico Granataff782382011-07-08 02:51:01 +0000679 is an array and I knows its size, apply this summary
680 string to every element of the array</i>. Here, we are
681 asking LLDB to display <code>.x</code> for every
682 element of the array, and in fact this is what happens.
683 If you find some of those integers anomalous, you can
684 then inspect that one item in greater detail, without
685 the array format getting in the way: <br>
Enrico Granataef1923d2011-08-23 21:26:09 +0000686 <code> <b>(lldb)</b> frame variable sarray[1]<br>
Enrico Granataff782382011-07-08 02:51:01 +0000687 (Simple) sarray[1] = {<br>
Enrico Granataede7bdf2011-07-13 00:00:57 +0000688 &nbsp;&nbsp;&nbsp;&nbsp;x = 4<br>
689 &nbsp;&nbsp;&nbsp;&nbsp;y = 5<br>
690 &nbsp;&nbsp;&nbsp;&nbsp;z = '\x06'<br>
Enrico Granataff782382011-07-08 02:51:01 +0000691 }<br>
692 </code> </p>
693 <p>You can also ask LLDB to only print a subset of the
694 array range by using the same syntax used to extract bit
Enrico Granataede7bdf2011-07-13 00:00:57 +0000695 for bitfields:
696 <table class="stats" width="620" cellspacing="0">
697 <td class="content">
Enrico Granataef1923d2011-08-23 21:26:09 +0000698 <b>(lldb)</b> type summary add --summary-string "${var[1-2].x}" "Simple
Enrico Granataede7bdf2011-07-13 00:00:57 +0000699 [3]"
700 </td>
701 <table><br>
702 <code>
Enrico Granataef1923d2011-08-23 21:26:09 +0000703 <b>(lldb)</b> frame variable sarray<br>
Enrico Granataede7bdf2011-07-13 00:00:57 +0000704 (Simple [3]) sarray = [4,7]<br></code></p>
705
Enrico Granataff782382011-07-08 02:51:01 +0000706 <p>The same logic works if you are printing a pointer
Enrico Granataede7bdf2011-07-13 00:00:57 +0000707 instead of an array, however in this latter case, the empty
708 square brackets operator <code>[]</code>
Enrico Granataff782382011-07-08 02:51:01 +0000709 cannot be used and you need to give exact range limits.</p>
Enrico Granataede7bdf2011-07-13 00:00:57 +0000710
711 <p>In general, LLDB needs the square brackets operator <code>[]</code> in
712 order to handle arrays and pointers correctly, and for pointers it also
713 needs a range. However, a few special cases are defined to make your life easier:
714 <ul>
715 <li>you can print a 0-terminated string (<i>C-string</i>) using the %s format,
716 omitting square brackets, as in:
717 <table class="stats" width="620" cellspacing="0">
718 <td class="content">
Enrico Granataef1923d2011-08-23 21:26:09 +0000719 <b>(lldb)</b> type summary add --summary-string "${var%s}" "char *"
Enrico Granataede7bdf2011-07-13 00:00:57 +0000720 </td>
721 <table>
722
723 This works for <code>char*</code> and <code>char[]</code> objects, and uses the
724 <code>\0</code> terminator
725 when possible to terminate the string, instead of relying on array length.
726
727 </li> </ul>
728 <ul>
729
730 <li>anyone of the array formats (<code>int8_t[]</code>,
731 <code>float32{}</code>, ...), and the <code>y</code>, <code>Y</code>
732 and <code>a</code> formats
733 work to print an array of a non-aggregate
734 type, even if square brackets are omitted.
735 <table class="stats" width="620" cellspacing="0">
736 <td class="content">
Enrico Granataef1923d2011-08-23 21:26:09 +0000737 <b>(lldb)</b> type summary add --summary-string "${var%int32_t[]}" "int [10]"
Enrico Granataede7bdf2011-07-13 00:00:57 +0000738 </td>
739 <table>
740
741 </ul>
742 This feature, however, is not enabled for pointers because there is no
743 way for LLDB to detect the end of the pointed data.
744 <br>
745 This also does not work for other formats (e.g. <code>boolean</code>), and you must
746 specify the square brackets operator to get the expected output.
747 </p>
748 </div>
749 </div>
750
751 <div class="post">
Enrico Granata8a717e52011-07-19 02:34:21 +0000752 <h1 class="postheader">Python scripting</h1>
Enrico Granataede7bdf2011-07-13 00:00:57 +0000753 <div class="postcontent">
Enrico Granata8a717e52011-07-19 02:34:21 +0000754
755 <p>Most of the times, summary strings prove good enough for the job of summarizing
756 the contents of a variable. However, as soon as you need to do more than picking
757 some values and rearranging them for display, summary strings stop being an
758 effective tool. This is because summary strings lack the power to actually perform
759 some computation on the value of variables.</p>
760 <p>To solve this issue, you can bind some Python scripting code as a summary for
761 your datatype, and that script has the ability to both extract children variables
762 as the summary strings do and to perform active computation on the extracted
763 values. As a small example, let's say we have a Rectangle class:</p>
764
765 <code>
766class Rectangle<br/>
767{<br/>
768private:<br/>
769 &nbsp;&nbsp;&nbsp;&nbsp;int height;<br/>
770 &nbsp;&nbsp;&nbsp;&nbsp;int width;<br/>
771public:<br/>
772 &nbsp;&nbsp;&nbsp;&nbsp;Rectangle() : height(3), width(5) {}<br/>
773 &nbsp;&nbsp;&nbsp;&nbsp;Rectangle(int H) : height(H), width(H*2-1) {}<br/>
774 &nbsp;&nbsp;&nbsp;&nbsp;Rectangle(int H, int W) : height(H), width(W) {}<br/>
775
776 &nbsp;&nbsp;&nbsp;&nbsp;int GetHeight() { return height; }<br/>
777 &nbsp;&nbsp;&nbsp;&nbsp;int GetWidth() { return width; }<br/>
778
779};<br/>
780</code>
781
782 <p>Summary strings are effective to reduce the screen real estate used by
783 the default viewing mode, but are not effective if we want to display the
784 area, perimeter and length of diagonal of <code>Rectangle</code> objects</p>
785
786 <p>To obtain this, we can simply attach a small Python script to the <code>Rectangle</code>
787 class, as shown in this example:</p>
788
789 <table class="stats" width="620" cellspacing="0">
790 <td class="content">
791 <b>(lldb)</b> type summary add -P Rectangle<br/>
792 Enter your Python command(s). Type 'DONE' to end.<br/>
793def function (valobj,dict):<br/>
794 &nbsp;&nbsp;&nbsp;&nbsp;height_val = valobj.GetChildMemberWithName('height')<br/>
795 &nbsp;&nbsp;&nbsp;&nbsp;width_val = valobj.GetChildMemberWithName('width')<br/>
796 &nbsp;&nbsp;&nbsp;&nbsp;height_str = height_val.GetValue()<br/>
797 &nbsp;&nbsp;&nbsp;&nbsp;width_str = width_val.GetValue()<br/>
798 &nbsp;&nbsp;&nbsp;&nbsp;height = int(height_str)<br/>
799 &nbsp;&nbsp;&nbsp;&nbsp;width = int(width_str)<br/>
800 &nbsp;&nbsp;&nbsp;&nbsp;area = height*width<br/>
801 &nbsp;&nbsp;&nbsp;&nbsp;perimeter = 2*height + 2*width<br/>
802 &nbsp;&nbsp;&nbsp;&nbsp;diag = sqrt(height*height+width*width)<br/>
803 &nbsp;&nbsp;&nbsp;&nbsp;return 'Area: ' + str(area) + ', Perimeter: ' + str(perimeter) + ', Diagonal: ' + str(diag)<br/>
804 &nbsp;&nbsp;&nbsp;&nbsp;DONE<br/>
805<b>(lldb)</b> script<br/>
806Python Interactive Interpreter. To exit, type 'quit()', 'exit()' or Ctrl-D.<br/>
807>>> from math import sqrt<br/>
808>>> quit()<br/>
809<b>(lldb)</b> frame variable<br/>
810(Rectangle) r1 = Area: 20, Perimeter: 18, Diagonal: 6.40312423743<br/>
811(Rectangle) r2 = Area: 72, Perimeter: 36, Diagonal: 13.416407865<br/>
812(Rectangle) r3 = Area: 16, Perimeter: 16, Diagonal: 5.65685424949<br/>
813 </td>
814 </table>
815
816 <p>In this scenario, you need to enter the interactive interpreter to import the
817 function sqrt() from the math library. As the example shows, everything you enter
818 into the interactive interpreter is saved for you to use it in scripts. This way
819 you can define your own utility functions and use them in your summary scripts if
820 necessary.</p>
821
822 <p>In order to write effective summary scripts, you need to know the LLDB public
823 API, which is the way Python code can access the LLDB object model. For further
824 details on the API you should look at <a href="scripting.html">this page</a>, or at
825 the LLDB <a href="docs.html">doxygen documentation</a> when it becomes available.</p>
826
827 <p>As a brief introduction, your script is encapsulated into a function that is
828 passed two parameters: <code>valobj</code> and <code>dict</code>.</p>
829
830 <p><code>dict</code> is an internal support parameter used by LLDB and you should
831 not use it.<br/><code>valobj</code> is the object encapsulating the actual
832 variable being displayed, and its type is SBValue. The most important thing you can
833 do with an SBValue is retrieve its children objects, by calling
834 <code>GetChildMemberWithName()</code>, passing it the child's name as a string, or ask
835 it for its value, by calling <code>GetValue()</code>, which returns a Python string.
836 </p>
837
838 <p>If you need to delve into several levels of hierarchy, as you can do with summary
Enrico Granataef1923d2011-08-23 21:26:09 +0000839 strings, you can use the method <code>GetValueForExpressionPath()</code>, passing it
Enrico Granata8a717e52011-07-19 02:34:21 +0000840 an expression path just like those you could use for summary strings. However, if you need
841 to access array slices, you cannot do that (yet) via this method call, and you must
842 use <code>GetChildMemberWithName()</code> querying it for the array items one by one.
843
844 <p>Other than interactively typing a Python script there are two other ways for you
845 to input a Python script as a summary:
846
847 <ul>
Enrico Granataef1923d2011-08-23 21:26:09 +0000848 <li> using the --python-script option to <code>type summary add </code> and typing the script
Enrico Granata8a717e52011-07-19 02:34:21 +0000849 code as an option argument; as in: </ul>
850
851 <table class="stats" width="620" cellspacing="0">
852 <td class="content">
Enrico Granataef1923d2011-08-23 21:26:09 +0000853 <b>(lldb)</b> type summary add --python-script "height =
Enrico Granata8a717e52011-07-19 02:34:21 +0000854 int(valobj.GetChildMemberWithName('height').GetValue());width =
855 int(valobj.GetChildMemberWithName('width').GetValue());
856 return 'Area: ' + str(height*width)" Rectangle<br/>
857 </td>
858 </table>
859 <ul>
860 <li> using the -F option to <code>type summary add </code> and giving the name of a
861 Python function with the correct prototype. Most probably, you will define (or have
862 already defined) the function in the interactive interpreter, or somehow
863 loaded it from a file.
864 </ul>
865
866 </p>
867
Enrico Granataede7bdf2011-07-13 00:00:57 +0000868 </div>
869 </div>
870
Enrico Granata8a717e52011-07-19 02:34:21 +0000871 <div class="post">
872 <h1 class="postheader">Regular expression typenames</h1>
873 <div class="postcontent">
Enrico Granataff782382011-07-08 02:51:01 +0000874 <p>As you noticed, in order to associate the custom
875 summary string to the array types, one must give the
876 array size as part of the typename. This can long become
877 tiresome when using arrays of different sizes, <code>Simple
878
879 [3]</code>, <code>Simple [9]</code>, <code>Simple
880 [12]</code>, ...</p>
881 <p>If you use the <code>-x</code> option, type names are
882 treated as regular expressions instead of type names.
Enrico Granataede7bdf2011-07-13 00:00:57 +0000883 This would let you rephrase the above example
884 for arrays of type <code>Simple [3]</code> as: <br>
885
886 <table class="stats" width="620" cellspacing="0">
887 <td class="content">
Enrico Granataef1923d2011-08-23 21:26:09 +0000888 <b>(lldb)</b> type summary add --summary-string "${var[].x}"
Enrico Granataede7bdf2011-07-13 00:00:57 +0000889 -x "Simple \[[0-9]+\]"
890 </td>
891 <table>
892
893 <code>
Enrico Granataef1923d2011-08-23 21:26:09 +0000894 <b>(lldb)</b> frame variable sarray<br>
Enrico Granataff782382011-07-08 02:51:01 +0000895 (Simple [3]) sarray = [1,4,7]<br>
896 </code> The above scenario works for <code>Simple [3]</code>
897 as well as for any other array of <code>Simple</code>
898 objects. </p>
899 <p>While this feature is mostly useful for arrays, you
900 could also use regular expressions to catch other type
901 sets grouped by name. However, as regular expression
902 matching is slower than normal name matching, LLDB will
903 first try to match by name in any way it can, and only
904 when this fails, will it resort to regular expression
905 matching. Thus, if your type has a base class with a
906 cascading summary, this will be preferred over any
907 regular expression match for your type itself.</p>
Enrico Granataef1923d2011-08-23 21:26:09 +0000908
909 <p>The regular expression language used by LLDB is <a href="http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions">the POSIX extended regular expression language</a>, as defined by <a href="http://pubs.opengroup.org/onlinepubs/7908799/xsh/regex.h.html">the SUS</a>.
910
Enrico Granataff782382011-07-08 02:51:01 +0000911 </div>
912 </div>
Enrico Granataede7bdf2011-07-13 00:00:57 +0000913
914 <div class="post">
915 <h1 class="postheader">Named summaries</h1>
916 <div class="postcontent">
917 <p>For a given datatype, there may be different meaningful summary
918 representations. However, currently, only one summary can be associated
919 to a given datatype. If you need to temporarily override the association
920 for a variable, without changing the summary string bound to the datatype,
921 you can use named summaries.</p>
922
923 <p>Named summaries work by attaching a name to a summary string when creating
924 it. Then, when there is a need to attach the summary string to a variable, the
925 <code>frame variable</code> command, supports a <code>--summary</code> option
926 that tells LLDB to use the named summary given instead of the default one.</p>
927
928 <table class="stats" width="620" cellspacing="0">
929 <td class="content">
Enrico Granataef1923d2011-08-23 21:26:09 +0000930 <b>(lldb)</b> type summary add --summary-string "x=${var.integer}" --name NamedSummary
Enrico Granataede7bdf2011-07-13 00:00:57 +0000931 </td>
932 <table>
Enrico Granataef1923d2011-08-23 21:26:09 +0000933 <code> <b>(lldb)</b> frame variable one<br>
Enrico Granataede7bdf2011-07-13 00:00:57 +0000934 (i_am_cool) one = int = 3, float = 3.14159, char = 69<br>
Enrico Granataef1923d2011-08-23 21:26:09 +0000935 <b>(lldb)</b> frame variable one --summary NamedSummary<br>
Enrico Granataede7bdf2011-07-13 00:00:57 +0000936 (i_am_cool) one = x=3<br>
937 </code> </p>
938
Enrico Granataf7a9b142011-07-15 02:26:42 +0000939 <p>When defining a named summmary, binding it to one or more types becomes optional.
940 Even if you bind the named summary to a type, and later change the summary string
941 for that type, the named summary will not be changed by that. You can delete
942 named summaries by using the <code>type summary delete</code> command, as if the
943 summary name was the datatype that the summary is applied to</p>
944
945 <p>A summary attached to a variable using the </code>--summary</code> option,
946 has the same semantics that a custom format attached using the <code>-f</code>
947 option has: it stays attached till you attach a new one, or till you let
948 your program run again.</p>
949
Enrico Granataede7bdf2011-07-13 00:00:57 +0000950 </div>
951 </div>
952
Enrico Granata68506fb2011-08-22 16:10:25 +0000953 <div class="post">
954 <h1 class="postheader">Synthetic children</h1>
955 <div class="postcontent">
956 <p>Summaries work well when one is able to navigate through an expression path.
957 In order for LLDB to do so, appropriate debugging information must be available.</p>
958 <p>Some types are <i>opaque</i>, i.e. no knowledge of their internals is provided.
959 When that's the case, expression paths do not work correctly.</p>
960 <p>In other cases, the internals are available to use in expression paths, but they
961 do not provide a user-friendly representation of the object's value.</p>
962 <p>For instance, consider an STL vector:</p>
963 <code>
964 <b>(lldb)</b> frame variable numbers -T<br/>
Enrico Granataef1923d2011-08-23 21:26:09 +0000965 (std::vector&lt;int&gt;) numbers = {<br/>
966&nbsp;&nbsp;&nbsp;&nbsp;(std::_Vector_base&lt;int, std::allocator&lt;int&gt; &gt;) std::_Vector_base&lt;int, std::allocator&lt;int&gt; &gt; = {<br/>
967&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(std::_Vector_base&lt;int, std::allocator&tl;int&gt; &gt;::_Vector_impl) _M_impl = {<br/>
Enrico Granata68506fb2011-08-22 16:10:25 +0000968&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(int *) _M_start = 0x00000001001008a0<br/>
969&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(int *) _M_finish = 0x00000001001008a8<br/>
970&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(int *) _M_end_of_storage = 0x00000001001008a8<br/>
971&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;}<br/>
972&nbsp;&nbsp;&nbsp;&nbsp;}<br/>
973 }<br/>
974 </code>
975 <p>Here, you can see how the type is implemented, and you can write a summary for that implementation
976 but that is not going to help you infer what items are actually stored in the vector.</p>
977 <p>What you would like to see is probably something like:</p>
978 <code>
979 <b>(lldb)</b> frame variable numbers -T<br/>
Enrico Granataef1923d2011-08-23 21:26:09 +0000980 (std::vector&lt;int&gt;) numbers = {<br/>
Enrico Granata68506fb2011-08-22 16:10:25 +0000981 &nbsp;&nbsp;&nbsp;&nbsp;(int) [0] = 1<br/>
982 &nbsp;&nbsp;&nbsp;&nbsp;(int) [1] = 12<br/>
983 &nbsp;&nbsp;&nbsp;&nbsp;(int) [2] = 123<br/>
984 &nbsp;&nbsp;&nbsp;&nbsp;(int) [3] = 1234<br/>
985 }<br/>
986 </code>
987 <p>Synthetic children are a way to get that result.</p>
988 <p>The feature is based upon the idea of providing a new set of children for a variable that replaces the ones
989 available by default through the debug information. In the example, we can use synthetic children to provide
990 the vector items as children for the std::vector object.</p>
991 <p>In order to create synthetic children, you need to provide a Python class that adheres to a given <i>interface</i>
992 (the word is italicized because Python has no explicit notion of interface. By that word we mean a given set of methods
993 must be implemented by the Python class):</p>
994 <code>
995 <font color=blue>class</font> SyntheticChildrenProvider:<br/>
996 &nbsp;&nbsp;&nbsp;&nbsp;<font color=blue>def</font> __init__(self, valobj, dict):<br/>
997 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;this call should initialize the Python object using valobj as the variable to provide synthetic children for <br/>
998 &nbsp;&nbsp;&nbsp;&nbsp;<font color=blue>def</font> num_children(self): <br/>
999 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;this call should return the number of children that you want your object to have <br/>
1000 &nbsp;&nbsp;&nbsp;&nbsp;<font color=blue>def</font> get_child_index(self,name): <br/>
1001 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;this call should return the index of the synthetic child whose name is given as argument <br/>
1002 &nbsp;&nbsp;&nbsp;&nbsp;<font color=blue>def</font> get_child_at_index(self,index): <br/>
1003 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;this call should return a new LLDB SBValue object representing the child at the index given as argument <br/>
1004 &nbsp;&nbsp;&nbsp;&nbsp;<font color=blue>def</font> update(self): <br/>
1005 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;this call should be used to update the internal state of this Python object whenever the state of the variables in LLDB changes.
1006 Currently this method is optional, because the internal state of synthetic children providers will not be preserved. However, this is meant to change in future versions
1007 of LLDB.<br/>
1008 </code>
1009 <p>For examples of how synthetic children are created, you are encouraged to look at <a href="http://llvm.org/svn/llvm-project/lldb/trunk/examples/synthetic/">examples/synthetic</a> in the LLDB trunk.</p>
Enrico Granataef1923d2011-08-23 21:26:09 +00001010
1011 <p>Once a synthetic children provider is written, one must load it into LLDB before it can be used.
1012 Currently, one can use the LLDB <code>script</code> command to type Python code interactively,
1013 or use the <code>script import <i>module</i></code> command to load Python code from a Python module
1014 (ordinary rules apply to importing modules this way). A third option is to type the code for
1015 the provider class interactively while adding it.</p>
1016
1017 <p>For example, let's pretend we have a class Foo for which a synthetic children provider class Foo_Provider
1018 is available, in a Python module named Foo_Tools. The following interaction sets Foo_Provider as a synthetic
1019 children provider in LLDB:</p>
1020
1021 <table class="stats" width="620" cellspacing="0">
1022 <td class="content">
1023 <b>(lldb)</b> script import Foo_Tools<br/>
1024 <b>(lldb)</b> type synthetic add Foo --python-class Foo_Tools.Foo_Provider
1025 </td>
1026 <table>
1027 <code> <b>(lldb)</b> frame variable a_foo<br/>
1028 (Foo) a_foo = {<br/>
1029 &nbsp;&nbsp;&nbsp;&nbsp;x = 1<br/>
1030 &nbsp;&nbsp;&nbsp;&nbsp;y = "Hello world"<br/>
1031 } <br/>
1032 </code> </p>
1033
1034 <p>Currently, in LLDB <a href="http://llvm.org/svn/llvm-project/lldb/trunk/">top of tree</a>, synthetic children providers are enabled for
1035 <code>std::vector&lt;T&gt;</code>, <code>std::list&lt;T&gt;</code> and <code>std::map&lt;K,V&gt;</code>.</p>
1036
1037 <p>Synthetic children enable a new symbol for summary strings, <code>${svar</code>. This symbol tells LLDB to refer expression paths to the
1038 synthetic children instead of the real ones. While in certain cases, you can use <code>${var.<i>synthetic-child-path</i>}</code> and LLDB will
1039 access the synthetic child correctly, it is best to always use <code>${svar</code> to refer to synthetic children. For instance,</p>
1040
1041 <table class="stats" width="620" cellspacing="0">
1042 <td class="content">
1043 <b>(lldb)</b> type summary add --expand -x "std::vector&lt;" --summary-string "${svar%#} items"
1044 </td>
1045 <table>
1046 <code> <b>(lldb)</b> frame variable numbers<br/>
1047 (std::vector&lt;int&gt;) numbers = 4 items {<br/>
1048 &nbsp;&nbsp;&nbsp;&nbsp;(int) [0] = 1<br/>
1049 &nbsp;&nbsp;&nbsp;&nbsp;(int) [1] = 12<br/>
1050 &nbsp;&nbsp;&nbsp;&nbsp;(int) [2] = 123<br/>
1051 &nbsp;&nbsp;&nbsp;&nbsp;(int) [3] = 1234<br/>
1052 }<br/>
1053 </code> </p>
1054
Enrico Granata68506fb2011-08-22 16:10:25 +00001055 </div>
1056 </div>
Enrico Granataef1923d2011-08-23 21:26:09 +00001057
1058 <div class="post">
1059 <h1 class="postheader">Filters</h1>
1060 <div class="postcontent">
1061
1062 <p>Filters are a solution to the display of complex classes.
1063 At times, classes have many member variables but not all of these are actually
1064 necessary for the user to see.</p>
1065 <p>A filter will solve this issue by only letting the user see those member
1066 variables he cares about. Of course, the equivalent of a filter can be implemented easily
1067 using synthetic children, but a filter lets you get the job done without having to write
1068 Python code.</p>
1069 <p>For instance, if your class <code>Foobar</code> has member variables named <code>A</code> thru <code>Z</code>, but you only need to see
1070 the ones named <code>B</code>, <code>H</code> and <code>Q</code>, you can define a filter:
1071 <table class="stats" width="620" cellspacing="0">
1072 <td class="content">
1073 <b>(lldb)</b> type filter add Foo --child B --child H --child Q
1074 </td>
1075 <table>
1076 <code> <b>(lldb)</b> frame variable a_foobar<br/>
1077 (Foobar) a_foobar = {<br/>
1078 &nbsp;&nbsp;&nbsp;&nbsp;(int) B = 1<br/>
1079 &nbsp;&nbsp;&nbsp;&nbsp;(char) H = 'H'<br/>
1080 &nbsp;&nbsp;&nbsp;&nbsp;(std::string) Q = "Hello world"<br/>
1081 }<br/>
1082 </code> </p>
1083
1084 </div>
1085 </div>
1086
Enrico Granataede7bdf2011-07-13 00:00:57 +00001087
Enrico Granataff782382011-07-08 02:51:01 +00001088 <div class="post">
Enrico Granata68506fb2011-08-22 16:10:25 +00001089 <h1 class="postheader">Finding formatters 101</h1>
Enrico Granataff782382011-07-08 02:51:01 +00001090 <div class="postcontent">
1091 <p>While the rules for finding an appropriate format for a
1092 type are relatively simple (just go through typedef
Enrico Granata68506fb2011-08-22 16:10:25 +00001093 hierarchies), searching formatters for a type goes through
1094 a rather intricate set of rules. Namely, what happens is:</p>
Enrico Granataff782382011-07-08 02:51:01 +00001095 <ul>
Enrico Granata68506fb2011-08-22 16:10:25 +00001096 <li>If there is a formatter for the type of the variable,
Enrico Granataff782382011-07-08 02:51:01 +00001097 use it</li>
Enrico Granata68506fb2011-08-22 16:10:25 +00001098 <li>If this object is a pointer, and there is a formatter
Enrico Granataff782382011-07-08 02:51:01 +00001099 for the pointee type that does not skip pointers, use
1100 it</li>
1101 <li>If this object is a reference, and there is a
1102 summary for the pointee type that does not skip
1103 references, use it</li>
1104 <li>If this object is an Objective-C class with a parent
1105 class, look at the parent class (and parent of parent,
Enrico Granata68506fb2011-08-22 16:10:25 +00001106 ...). This phase can be based upon the actual type of
1107 the object as inferred by the value of its <code>isa</code>
1108 pointer, or upon the debugging information inferred by the
1109 debugger. The user can use the dynamic typing settings to
1110 elect one or the other behavior.</li>
Enrico Granataff782382011-07-08 02:51:01 +00001111 <li>If this object is a C++ class with base classes,
1112 look at base classes (and bases of bases, ...)</li>
1113 <li>If this object is a C++ class with virtual base
1114 classes, look at the virtual base classes (and bases
1115 of bases, ...)</li>
1116 <li>If this object's type is a typedef, go through
Enrico Granata86e7c3e2011-07-12 22:56:10 +00001117 typedef hierarchy (LLDB might not be able to do this if
1118 the compiler has not emitted enough information. If the
1119 required information to traverse typedef hierarchies is
1120 missing, type cascading will not work. The
1121 <a href="http://clang.llvm.org/">clang compiler</a>,
1122 part of the LLVM project, emits the correct debugging
1123 information for LLDB to cascade)</li>
Enrico Granataff782382011-07-08 02:51:01 +00001124 <li>If everything has failed, repeat the above search,
1125 looking for regular expressions instead of exact
1126 matches</li>
1127 </ul>
1128 </div>
1129 </div>
1130 <div class="post">
1131 <h1 class="postheader">TODOs</h1>
1132 <div class="postcontent">
1133 <ul>
1134 <li>There's no way to do multiple dereferencing, and you
1135 need to be careful what the dereferencing operation is
1136 binding to in complicated scenarios</li>
Enrico Granata68506fb2011-08-22 16:10:25 +00001137 <li>Synthetic children providers cannot have a permanent state</li>
Enrico Granataff782382011-07-08 02:51:01 +00001138 <li><code>type format add</code> does not support the <code>-x</code>
1139 option</li>
Enrico Granata8a717e52011-07-19 02:34:21 +00001140 <strike><li>Object location cannot be printed in the summary
1141 string</li></strike>
Enrico Granataff782382011-07-08 02:51:01 +00001142 </ul>
1143 </div>
1144 </div>
1145 </div>
1146 </div>
1147 </div>
1148 </body>
1149</html>