| //===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements an abstract sparse conditional propagation algorithm, | 
 | // modeled after SCCP, but with a customizable lattice function. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "sparseprop" | 
 | #include "llvm/Analysis/SparsePropagation.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | using namespace llvm; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                  AbstractLatticeFunction Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | AbstractLatticeFunction::~AbstractLatticeFunction() {} | 
 |  | 
 | /// PrintValue - Render the specified lattice value to the specified stream. | 
 | void AbstractLatticeFunction::PrintValue(LatticeVal V, raw_ostream &OS) { | 
 |   if (V == UndefVal) | 
 |     OS << "undefined"; | 
 |   else if (V == OverdefinedVal) | 
 |     OS << "overdefined"; | 
 |   else if (V == UntrackedVal) | 
 |     OS << "untracked"; | 
 |   else | 
 |     OS << "unknown lattice value"; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                          SparseSolver Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// getOrInitValueState - Return the LatticeVal object that corresponds to the | 
 | /// value, initializing the value's state if it hasn't been entered into the | 
 | /// map yet.   This function is necessary because not all values should start | 
 | /// out in the underdefined state... Arguments should be overdefined, and | 
 | /// constants should be marked as constants. | 
 | /// | 
 | SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) { | 
 |   DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V); | 
 |   if (I != ValueState.end()) return I->second;  // Common case, in the map | 
 |    | 
 |   LatticeVal LV; | 
 |   if (LatticeFunc->IsUntrackedValue(V)) | 
 |     return LatticeFunc->getUntrackedVal(); | 
 |   else if (Constant *C = dyn_cast<Constant>(V)) | 
 |     LV = LatticeFunc->ComputeConstant(C); | 
 |   else if (Argument *A = dyn_cast<Argument>(V)) | 
 |     LV = LatticeFunc->ComputeArgument(A); | 
 |   else if (!isa<Instruction>(V)) | 
 |     // All other non-instructions are overdefined. | 
 |     LV = LatticeFunc->getOverdefinedVal(); | 
 |   else | 
 |     // All instructions are underdefined by default. | 
 |     LV = LatticeFunc->getUndefVal(); | 
 |    | 
 |   // If this value is untracked, don't add it to the map. | 
 |   if (LV == LatticeFunc->getUntrackedVal()) | 
 |     return LV; | 
 |   return ValueState[V] = LV; | 
 | } | 
 |  | 
 | /// UpdateState - When the state for some instruction is potentially updated, | 
 | /// this function notices and adds I to the worklist if needed. | 
 | void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) { | 
 |   DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst); | 
 |   if (I != ValueState.end() && I->second == V) | 
 |     return;  // No change. | 
 |    | 
 |   // An update.  Visit uses of I. | 
 |   ValueState[&Inst] = V; | 
 |   InstWorkList.push_back(&Inst); | 
 | } | 
 |  | 
 | /// MarkBlockExecutable - This method can be used by clients to mark all of | 
 | /// the blocks that are known to be intrinsically live in the processed unit. | 
 | void SparseSolver::MarkBlockExecutable(BasicBlock *BB) { | 
 |   DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); | 
 |   BBExecutable.insert(BB);   // Basic block is executable! | 
 |   BBWorkList.push_back(BB);  // Add the block to the work list! | 
 | } | 
 |  | 
 | /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB | 
 | /// work list if it is not already executable... | 
 | void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { | 
 |   if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) | 
 |     return;  // This edge is already known to be executable! | 
 |    | 
 |   DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() | 
 |         << " -> " << Dest->getName() << "\n"); | 
 |  | 
 |   if (BBExecutable.count(Dest)) { | 
 |     // The destination is already executable, but we just made an edge | 
 |     // feasible that wasn't before.  Revisit the PHI nodes in the block | 
 |     // because they have potentially new operands. | 
 |     for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) | 
 |       visitPHINode(*cast<PHINode>(I)); | 
 |      | 
 |   } else { | 
 |     MarkBlockExecutable(Dest); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /// getFeasibleSuccessors - Return a vector of booleans to indicate which | 
 | /// successors are reachable from a given terminator instruction. | 
 | void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI, | 
 |                                          SmallVectorImpl<bool> &Succs, | 
 |                                          bool AggressiveUndef) { | 
 |   Succs.resize(TI.getNumSuccessors()); | 
 |   if (TI.getNumSuccessors() == 0) return; | 
 |    | 
 |   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { | 
 |     if (BI->isUnconditional()) { | 
 |       Succs[0] = true; | 
 |       return; | 
 |     } | 
 |      | 
 |     LatticeVal BCValue; | 
 |     if (AggressiveUndef) | 
 |       BCValue = getOrInitValueState(BI->getCondition()); | 
 |     else | 
 |       BCValue = getLatticeState(BI->getCondition()); | 
 |      | 
 |     if (BCValue == LatticeFunc->getOverdefinedVal() || | 
 |         BCValue == LatticeFunc->getUntrackedVal()) { | 
 |       // Overdefined condition variables can branch either way. | 
 |       Succs[0] = Succs[1] = true; | 
 |       return; | 
 |     } | 
 |  | 
 |     // If undefined, neither is feasible yet. | 
 |     if (BCValue == LatticeFunc->getUndefVal()) | 
 |       return; | 
 |  | 
 |     Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this); | 
 |     if (C == 0 || !isa<ConstantInt>(C)) { | 
 |       // Non-constant values can go either way. | 
 |       Succs[0] = Succs[1] = true; | 
 |       return; | 
 |     } | 
 |  | 
 |     // Constant condition variables mean the branch can only go a single way | 
 |     Succs[C->isNullValue()] = true; | 
 |     return; | 
 |   } | 
 |    | 
 |   if (isa<InvokeInst>(TI)) { | 
 |     // Invoke instructions successors are always executable. | 
 |     // TODO: Could ask the lattice function if the value can throw. | 
 |     Succs[0] = Succs[1] = true; | 
 |     return; | 
 |   } | 
 |    | 
 |   if (isa<IndirectBrInst>(TI)) { | 
 |     Succs.assign(Succs.size(), true); | 
 |     return; | 
 |   } | 
 |    | 
 |   SwitchInst &SI = cast<SwitchInst>(TI); | 
 |   LatticeVal SCValue; | 
 |   if (AggressiveUndef) | 
 |     SCValue = getOrInitValueState(SI.getCondition()); | 
 |   else | 
 |     SCValue = getLatticeState(SI.getCondition()); | 
 |    | 
 |   if (SCValue == LatticeFunc->getOverdefinedVal() || | 
 |       SCValue == LatticeFunc->getUntrackedVal()) { | 
 |     // All destinations are executable! | 
 |     Succs.assign(TI.getNumSuccessors(), true); | 
 |     return; | 
 |   } | 
 |    | 
 |   // If undefined, neither is feasible yet. | 
 |   if (SCValue == LatticeFunc->getUndefVal()) | 
 |     return; | 
 |    | 
 |   Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this); | 
 |   if (C == 0 || !isa<ConstantInt>(C)) { | 
 |     // All destinations are executable! | 
 |     Succs.assign(TI.getNumSuccessors(), true); | 
 |     return; | 
 |   } | 
 |    | 
 |   Succs[SI.findCaseValue(cast<ConstantInt>(C))] = true; | 
 | } | 
 |  | 
 |  | 
 | /// isEdgeFeasible - Return true if the control flow edge from the 'From' | 
 | /// basic block to the 'To' basic block is currently feasible... | 
 | bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To, | 
 |                                   bool AggressiveUndef) { | 
 |   SmallVector<bool, 16> SuccFeasible; | 
 |   TerminatorInst *TI = From->getTerminator(); | 
 |   getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef); | 
 |    | 
 |   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) | 
 |     if (TI->getSuccessor(i) == To && SuccFeasible[i]) | 
 |       return true; | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | void SparseSolver::visitTerminatorInst(TerminatorInst &TI) { | 
 |   SmallVector<bool, 16> SuccFeasible; | 
 |   getFeasibleSuccessors(TI, SuccFeasible, true); | 
 |    | 
 |   BasicBlock *BB = TI.getParent(); | 
 |    | 
 |   // Mark all feasible successors executable... | 
 |   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) | 
 |     if (SuccFeasible[i]) | 
 |       markEdgeExecutable(BB, TI.getSuccessor(i)); | 
 | } | 
 |  | 
 | void SparseSolver::visitPHINode(PHINode &PN) { | 
 |   // The lattice function may store more information on a PHINode than could be | 
 |   // computed from its incoming values.  For example, SSI form stores its sigma | 
 |   // functions as PHINodes with a single incoming value. | 
 |   if (LatticeFunc->IsSpecialCasedPHI(&PN)) { | 
 |     LatticeVal IV = LatticeFunc->ComputeInstructionState(PN, *this); | 
 |     if (IV != LatticeFunc->getUntrackedVal()) | 
 |       UpdateState(PN, IV); | 
 |     return; | 
 |   } | 
 |  | 
 |   LatticeVal PNIV = getOrInitValueState(&PN); | 
 |   LatticeVal Overdefined = LatticeFunc->getOverdefinedVal(); | 
 |    | 
 |   // If this value is already overdefined (common) just return. | 
 |   if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal()) | 
 |     return;  // Quick exit | 
 |    | 
 |   // Super-extra-high-degree PHI nodes are unlikely to ever be interesting, | 
 |   // and slow us down a lot.  Just mark them overdefined. | 
 |   if (PN.getNumIncomingValues() > 64) { | 
 |     UpdateState(PN, Overdefined); | 
 |     return; | 
 |   } | 
 |    | 
 |   // Look at all of the executable operands of the PHI node.  If any of them | 
 |   // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the | 
 |   // transfer function to give us the merge of the incoming values. | 
 |   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { | 
 |     // If the edge is not yet known to be feasible, it doesn't impact the PHI. | 
 |     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true)) | 
 |       continue; | 
 |      | 
 |     // Merge in this value. | 
 |     LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i)); | 
 |     if (OpVal != PNIV) | 
 |       PNIV = LatticeFunc->MergeValues(PNIV, OpVal); | 
 |      | 
 |     if (PNIV == Overdefined) | 
 |       break;  // Rest of input values don't matter. | 
 |   } | 
 |  | 
 |   // Update the PHI with the compute value, which is the merge of the inputs. | 
 |   UpdateState(PN, PNIV); | 
 | } | 
 |  | 
 |  | 
 | void SparseSolver::visitInst(Instruction &I) { | 
 |   // PHIs are handled by the propagation logic, they are never passed into the | 
 |   // transfer functions. | 
 |   if (PHINode *PN = dyn_cast<PHINode>(&I)) | 
 |     return visitPHINode(*PN); | 
 |    | 
 |   // Otherwise, ask the transfer function what the result is.  If this is | 
 |   // something that we care about, remember it. | 
 |   LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this); | 
 |   if (IV != LatticeFunc->getUntrackedVal()) | 
 |     UpdateState(I, IV); | 
 |    | 
 |   if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I)) | 
 |     visitTerminatorInst(*TI); | 
 | } | 
 |  | 
 | void SparseSolver::Solve(Function &F) { | 
 |   MarkBlockExecutable(&F.getEntryBlock()); | 
 |    | 
 |   // Process the work lists until they are empty! | 
 |   while (!BBWorkList.empty() || !InstWorkList.empty()) { | 
 |     // Process the instruction work list. | 
 |     while (!InstWorkList.empty()) { | 
 |       Instruction *I = InstWorkList.back(); | 
 |       InstWorkList.pop_back(); | 
 |  | 
 |       DEBUG(dbgs() << "\nPopped off I-WL: " << *I << "\n"); | 
 |  | 
 |       // "I" got into the work list because it made a transition.  See if any | 
 |       // users are both live and in need of updating. | 
 |       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); | 
 |            UI != E; ++UI) { | 
 |         Instruction *U = cast<Instruction>(*UI); | 
 |         if (BBExecutable.count(U->getParent()))   // Inst is executable? | 
 |           visitInst(*U); | 
 |       } | 
 |     } | 
 |  | 
 |     // Process the basic block work list. | 
 |     while (!BBWorkList.empty()) { | 
 |       BasicBlock *BB = BBWorkList.back(); | 
 |       BBWorkList.pop_back(); | 
 |  | 
 |       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB); | 
 |  | 
 |       // Notify all instructions in this basic block that they are newly | 
 |       // executable. | 
 |       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) | 
 |         visitInst(*I); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SparseSolver::Print(Function &F, raw_ostream &OS) const { | 
 |   OS << "\nFUNCTION: " << F.getNameStr() << "\n"; | 
 |   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { | 
 |     if (!BBExecutable.count(BB)) | 
 |       OS << "INFEASIBLE: "; | 
 |     OS << "\t"; | 
 |     if (BB->hasName()) | 
 |       OS << BB->getNameStr() << ":\n"; | 
 |     else | 
 |       OS << "; anon bb\n"; | 
 |     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { | 
 |       LatticeFunc->PrintValue(getLatticeState(I), OS); | 
 |       OS << *I << "\n"; | 
 |     } | 
 |      | 
 |     OS << "\n"; | 
 |   } | 
 | } | 
 |  |