Breaking up the PowerPC target into 32- and 64-bit subparts, Part III: the rest.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15636 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/PowerPC/PPC.h b/lib/Target/PowerPC/PPC.h
index de4318d..cd0f1d7 100644
--- a/lib/Target/PowerPC/PPC.h
+++ b/lib/Target/PowerPC/PPC.h
@@ -15,19 +15,13 @@
 #ifndef TARGET_POWERPC_H
 #define TARGET_POWERPC_H
 
-#include <iosfwd>
-
 namespace llvm {
 
 class FunctionPass;
-class TargetMachine;
 
-// Here is where you would define factory methods for powerpc-specific
-// passes. For example:
-FunctionPass *createPPCSimpleInstructionSelector(TargetMachine &TM);
-FunctionPass *createPPCAsmPrinterPass(std::ostream &OS, TargetMachine &TM);
 FunctionPass *createPowerPCPEI();
 FunctionPass *createPPCBranchSelectionPass();
+
 } // end namespace llvm;
 
 // Defines symbolic names for PowerPC registers.  This defines a mapping from
diff --git a/lib/Target/PowerPC/PPCJITInfo.h b/lib/Target/PowerPC/PPCJITInfo.h
index bd80851..5c9bbb4 100644
--- a/lib/Target/PowerPC/PPCJITInfo.h
+++ b/lib/Target/PowerPC/PPCJITInfo.h
@@ -11,16 +11,16 @@
 //
 //===----------------------------------------------------------------------===//
 
-#ifndef POWERPCJITINFO_H
-#define POWERPCJITINFO_H
+#ifndef POWERPC_JITINFO_H
+#define POWERPC_JITINFO_H
 
 #include "llvm/Target/TargetJITInfo.h"
 
 namespace llvm {
   class TargetMachine;
-  class IntrinsicLowering;
 
   class PowerPCJITInfo : public TargetJITInfo {
+  protected:
     TargetMachine &TM;
   public:
     PowerPCJITInfo(TargetMachine &tm) : TM(tm) {}
diff --git a/lib/Target/PowerPC/PPCTargetMachine.cpp b/lib/Target/PowerPC/PPCTargetMachine.cpp
index 438fd07..60ddcde 100644
--- a/lib/Target/PowerPC/PPCTargetMachine.cpp
+++ b/lib/Target/PowerPC/PPCTargetMachine.cpp
@@ -23,10 +23,12 @@
 #include <iostream>
 using namespace llvm;
 
-namespace {
-  // Register the target.
-  RegisterTarget<PowerPCTargetMachine> X("powerpc", "  PowerPC (experimental)");
-}
+PowerPCTargetMachine::PowerPCTargetMachine(const std::string &name,
+                                           IntrinsicLowering *IL,
+                                           const TargetData &TD,
+                                           const TargetFrameInfo &TFI,
+                                           const PowerPCJITInfo &TJI) 
+  : TargetMachine(name, IL, TD), FrameInfo(TFI), JITInfo(TJI) {}
 
 unsigned PowerPCTargetMachine::getJITMatchQuality() {
 #if defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)
@@ -35,86 +37,17 @@
   return 0;
 #endif
 }
-  
-unsigned PowerPCTargetMachine::getModuleMatchQuality(const Module &M) {
-  if (M.getEndianness()  == Module::BigEndian &&
-      M.getPointerSize() == Module::Pointer32)
-    return 10;                                   // Direct match
-  else if (M.getEndianness() != Module::AnyEndianness ||
-           M.getPointerSize() != Module::AnyPointerSize)
-    return 0;                                    // Match for some other target
 
-  return getJITMatchQuality()/2;
-}
-
-
-/// PowerPCTargetMachine ctor - Create an ILP32 architecture model
-///
-PowerPCTargetMachine::PowerPCTargetMachine(const Module &M,
-                                           IntrinsicLowering *IL)
-  : TargetMachine("PowerPC", IL, false, 4, 4, 4, 4, 4, 4, 2, 1, 4),
-    FrameInfo(TargetFrameInfo::StackGrowsDown, 16, -4), JITInfo(*this) {
-}
-
-/// addPassesToEmitAssembly - Add passes to the specified pass manager
-/// to implement a static compiler for this target.
-///
-bool PowerPCTargetMachine::addPassesToEmitAssembly(PassManager &PM,
-                                                   std::ostream &Out) {
-  // FIXME: Implement efficient support for garbage collection intrinsics.
-  PM.add(createLowerGCPass());
-
-  // FIXME: Implement the invoke/unwind instructions!
-  PM.add(createLowerInvokePass());
-
-  // FIXME: Implement the switch instruction in the instruction selector!
-  PM.add(createLowerSwitchPass());
-
-  PM.add(createLowerConstantExpressionsPass());
-
-  // Make sure that no unreachable blocks are instruction selected.
-  PM.add(createUnreachableBlockEliminationPass());
-
-  PM.add(createPPCSimpleInstructionSelector(*this));
-
-  if (PrintMachineCode)
-    PM.add(createMachineFunctionPrinterPass(&std::cerr));
-
-  PM.add(createRegisterAllocator());
-
-  if (PrintMachineCode)
-    PM.add(createMachineFunctionPrinterPass(&std::cerr));
-
-  // I want a PowerPC specific prolog/epilog code inserter so I can put the 
-  // fills/spills in the right spots.
-  PM.add(createPowerPCPEI());
-  
-  // Must run branch selection immediately preceding the printer
-  PM.add(createPPCBranchSelectionPass());
-  PM.add(createPPCAsmPrinterPass(Out, *this));
-  PM.add(createMachineCodeDeleter());
-  return false;
-}
-
-/// addPassesToJITCompile - Add passes to the specified pass manager to
-/// implement a fast dynamic compiler for this target.
-///
 void PowerPCJITInfo::addPassesToJITCompile(FunctionPassManager &PM) {
-  // FIXME: Implement efficient support for garbage collection intrinsics.
-  PM.add(createLowerGCPass());
+  assert(0 && "Cannot execute PowerPCJITInfo::addPassesToJITCompile()");
+}
 
-  // FIXME: Implement the invoke/unwind instructions!
-  PM.add(createLowerInvokePass());
+void PowerPCJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
+  assert(0 && "Cannot execute PowerPCJITInfo::replaceMachineCodeForFunction()");
+}
 
-  // FIXME: Implement the switch instruction in the instruction selector!
-  PM.add(createLowerSwitchPass());
-
-  PM.add(createLowerConstantExpressionsPass());
-
-  // Make sure that no unreachable blocks are instruction selected.
-  PM.add(createUnreachableBlockEliminationPass());
-
-  PM.add(createPPCSimpleInstructionSelector(TM));
-  PM.add(createRegisterAllocator());
-  PM.add(createPrologEpilogCodeInserter());
+void *PowerPCJITInfo::getJITStubForFunction(Function *F, 
+                                            MachineCodeEmitter &MCE) {
+  assert(0 && "Cannot execute PowerPCJITInfo::getJITStubForFunction()");
+  return 0;
 }
diff --git a/lib/Target/PowerPC/PowerPCAsmPrinter.cpp b/lib/Target/PowerPC/PowerPCAsmPrinter.cpp
deleted file mode 100644
index b52f055..0000000
--- a/lib/Target/PowerPC/PowerPCAsmPrinter.cpp
+++ /dev/null
@@ -1,735 +0,0 @@
-//===-- PowerPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly --===//
-// 
-//                     The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-// 
-//===----------------------------------------------------------------------===//
-//
-// This file contains a printer that converts from our internal representation
-// of machine-dependent LLVM code to PowerPC assembly language. This printer is
-// the output mechanism used by `llc'.
-//
-// Documentation at http://developer.apple.com/documentation/DeveloperTools/
-// Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "asmprinter"
-#include "PowerPC.h"
-#include "PowerPCInstrInfo.h"
-#include "PowerPCTargetMachine.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/Assembly/Writer.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Support/Mangler.h"
-#include "Support/CommandLine.h"
-#include "Support/Debug.h"
-#include "Support/Statistic.h"
-#include "Support/StringExtras.h"
-#include <set>
-
-namespace llvm {
-
-namespace {
-  Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
-
-  struct Printer : public MachineFunctionPass {
-    /// Output stream on which we're printing assembly code.
-    ///
-    std::ostream &O;
-
-    /// Target machine description which we query for reg. names, data
-    /// layout, etc.
-    ///
-    PowerPCTargetMachine &TM;
-
-    /// Name-mangler for global names.
-    ///
-    Mangler *Mang;
-    std::set<std::string> FnStubs, GVStubs, LinkOnceStubs;
-    std::set<std::string> Strings;
-
-    Printer(std::ostream &o, TargetMachine &tm) : O(o),
-      TM(reinterpret_cast<PowerPCTargetMachine&>(tm)), LabelNumber(0) {}
-
-    /// Cache of mangled name for current function. This is
-    /// recalculated at the beginning of each call to
-    /// runOnMachineFunction().
-    ///
-    std::string CurrentFnName;
-
-    /// Unique incrementer for label values for referencing Global values.
-    ///
-    unsigned LabelNumber;
-  
-    virtual const char *getPassName() const {
-      return "PowerPC Assembly Printer";
-    }
-
-    void printMachineInstruction(const MachineInstr *MI);
-    void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false);
-    void printImmOp(const MachineOperand &MO, unsigned ArgType);
-    void printConstantPool(MachineConstantPool *MCP);
-    bool runOnMachineFunction(MachineFunction &F);    
-    bool doInitialization(Module &M);
-    bool doFinalization(Module &M);
-    void emitGlobalConstant(const Constant* CV);
-    void emitConstantValueOnly(const Constant *CV);
-  };
-} // end of anonymous namespace
-
-/// createPPCAsmPrinterPass - Returns a pass that prints the PPC
-/// assembly code for a MachineFunction to the given output stream,
-/// using the given target machine description.  This should work
-/// regardless of whether the function is in SSA form or not.
-///
-FunctionPass *createPPCAsmPrinterPass(std::ostream &o,TargetMachine &tm) {
-  return new Printer(o, tm);
-}
-
-/// isStringCompatible - Can we treat the specified array as a string?
-/// Only if it is an array of ubytes or non-negative sbytes.
-///
-static bool isStringCompatible(const ConstantArray *CVA) {
-  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
-  if (ETy == Type::UByteTy) return true;
-  if (ETy != Type::SByteTy) return false;
-
-  for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
-    if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
-      return false;
-
-  return true;
-}
-
-/// toOctal - Convert the low order bits of X into an octal digit.
-///
-static inline char toOctal(int X) {
-  return (X&7)+'0';
-}
-
-/// getAsCString - Return the specified array as a C compatible
-/// string, only if the predicate isStringCompatible is true.
-///
-static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
-  assert(isStringCompatible(CVA) && "Array is not string compatible!");
-
-  O << "\"";
-  for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
-    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
-
-    if (C == '"') {
-      O << "\\\"";
-    } else if (C == '\\') {
-      O << "\\\\";
-    } else if (isprint(C)) {
-      O << C;
-    } else {
-      switch (C) {
-      case '\b': O << "\\b"; break;
-      case '\f': O << "\\f"; break;
-      case '\n': O << "\\n"; break;
-      case '\r': O << "\\r"; break;
-      case '\t': O << "\\t"; break;
-      default:
-        O << '\\';
-        O << toOctal(C >> 6);
-        O << toOctal(C >> 3);
-        O << toOctal(C >> 0);
-        break;
-      }
-    }
-  }
-  O << "\"";
-}
-
-// Print out the specified constant, without a storage class.  Only the
-// constants valid in constant expressions can occur here.
-void Printer::emitConstantValueOnly(const Constant *CV) {
-  if (CV->isNullValue())
-    O << "0";
-  else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
-    assert(CB == ConstantBool::True);
-    O << "1";
-  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
-    O << CI->getValue();
-  else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
-    O << CI->getValue();
-  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
-    // This is a constant address for a global variable or function.  Use the
-    // name of the variable or function as the address value.
-    O << Mang->getValueName(GV);
-  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
-    const TargetData &TD = TM.getTargetData();
-    switch (CE->getOpcode()) {
-    case Instruction::GetElementPtr: {
-      // generate a symbolic expression for the byte address
-      const Constant *ptrVal = CE->getOperand(0);
-      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
-      if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
-        O << "(";
-        emitConstantValueOnly(ptrVal);
-        O << ") + " << Offset;
-      } else {
-        emitConstantValueOnly(ptrVal);
-      }
-      break;
-    }
-    case Instruction::Cast: {
-      // Support only non-converting or widening casts for now, that is, ones
-      // that do not involve a change in value.  This assertion is really gross,
-      // and may not even be a complete check.
-      Constant *Op = CE->getOperand(0);
-      const Type *OpTy = Op->getType(), *Ty = CE->getType();
-
-      // Remember, kids, pointers on x86 can be losslessly converted back and
-      // forth into 32-bit or wider integers, regardless of signedness. :-P
-      assert(((isa<PointerType>(OpTy)
-               && (Ty == Type::LongTy || Ty == Type::ULongTy
-                   || Ty == Type::IntTy || Ty == Type::UIntTy))
-              || (isa<PointerType>(Ty)
-                  && (OpTy == Type::LongTy || OpTy == Type::ULongTy
-                      || OpTy == Type::IntTy || OpTy == Type::UIntTy))
-              || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
-                   && OpTy->isLosslesslyConvertibleTo(Ty))))
-             && "FIXME: Don't yet support this kind of constant cast expr");
-      O << "(";
-      emitConstantValueOnly(Op);
-      O << ")";
-      break;
-    }
-    case Instruction::Add:
-      O << "(";
-      emitConstantValueOnly(CE->getOperand(0));
-      O << ") + (";
-      emitConstantValueOnly(CE->getOperand(1));
-      O << ")";
-      break;
-    default:
-      assert(0 && "Unsupported operator!");
-    }
-  } else {
-    assert(0 && "Unknown constant value!");
-  }
-}
-
-// Print a constant value or values, with the appropriate storage class as a
-// prefix.
-void Printer::emitGlobalConstant(const Constant *CV) {  
-  const TargetData &TD = TM.getTargetData();
-
-  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
-    if (isStringCompatible(CVA)) {
-      O << "\t.ascii ";
-      printAsCString(O, CVA);
-      O << "\n";
-    } else { // Not a string.  Print the values in successive locations
-      for (unsigned i=0, e = CVA->getNumOperands(); i != e; i++)
-        emitGlobalConstant(CVA->getOperand(i));
-    }
-    return;
-  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
-    // Print the fields in successive locations. Pad to align if needed!
-    const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
-    unsigned sizeSoFar = 0;
-    for (unsigned i = 0, e = CVS->getNumOperands(); i != e; i++) {
-      const Constant* field = CVS->getOperand(i);
-
-      // Check if padding is needed and insert one or more 0s.
-      unsigned fieldSize = TD.getTypeSize(field->getType());
-      unsigned padSize = ((i == e-1? cvsLayout->StructSize
-                           : cvsLayout->MemberOffsets[i+1])
-                          - cvsLayout->MemberOffsets[i]) - fieldSize;
-      sizeSoFar += fieldSize + padSize;
-
-      // Now print the actual field value
-      emitGlobalConstant(field);
-
-      // Insert the field padding unless it's zero bytes...
-      if (padSize)
-        O << "\t.space\t " << padSize << "\n";      
-    }
-    assert(sizeSoFar == cvsLayout->StructSize &&
-           "Layout of constant struct may be incorrect!");
-    return;
-  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
-    // FP Constants are printed as integer constants to avoid losing
-    // precision...
-    double Val = CFP->getValue();
-    switch (CFP->getType()->getTypeID()) {
-    default: assert(0 && "Unknown floating point type!");
-    case Type::FloatTyID: {
-      union FU {                            // Abide by C TBAA rules
-        float FVal;
-        unsigned UVal;
-      } U;
-      U.FVal = Val;
-      O << ".long\t" << U.UVal << "\t; float " << Val << "\n";
-      return;
-    }
-    case Type::DoubleTyID: {
-      union DU {                            // Abide by C TBAA rules
-        double FVal;
-        uint64_t UVal;
-        struct {
-          uint32_t MSWord;
-          uint32_t LSWord;
-        } T;
-      } U;
-      U.FVal = Val;
-      
-      O << ".long\t" << U.T.MSWord << "\t; double most significant word " 
-        << Val << "\n";
-      O << ".long\t" << U.T.LSWord << "\t; double least significant word " 
-        << Val << "\n";
-      return;
-    }
-    }
-  } else if (CV->getType() == Type::ULongTy || CV->getType() == Type::LongTy) {
-    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
-      union DU {                            // Abide by C TBAA rules
-        int64_t UVal;
-        struct {
-          uint32_t MSWord;
-          uint32_t LSWord;
-        } T;
-      } U;
-      U.UVal = CI->getRawValue();
-        
-      O << ".long\t" << U.T.MSWord << "\t; Double-word most significant word " 
-        << U.UVal << "\n";
-      O << ".long\t" << U.T.LSWord << "\t; Double-word least significant word " 
-        << U.UVal << "\n";
-      return;
-    }
-  }
-
-  const Type *type = CV->getType();
-  O << "\t";
-  switch (type->getTypeID()) {
-  case Type::UByteTyID: case Type::SByteTyID:
-    O << ".byte";
-    break;
-  case Type::UShortTyID: case Type::ShortTyID:
-    O << ".short";
-    break;
-  case Type::BoolTyID: 
-  case Type::PointerTyID:
-  case Type::UIntTyID: case Type::IntTyID:
-    O << ".long";
-    break;
-  case Type::ULongTyID: case Type::LongTyID:    
-    assert (0 && "Should have already output double-word constant.");
-  case Type::FloatTyID: case Type::DoubleTyID:
-    assert (0 && "Should have already output floating point constant.");
-  default:
-    if (CV == Constant::getNullValue(type)) {  // Zero initializer?
-      O << ".space\t" << TD.getTypeSize(type) << "\n";      
-      return;
-    }
-    std::cerr << "Can't handle printing: " << *CV;
-    abort();
-    break;
-  }
-  O << "\t";
-  emitConstantValueOnly(CV);
-  O << "\n";
-}
-
-/// printConstantPool - Print to the current output stream assembly
-/// representations of the constants in the constant pool MCP. This is
-/// used to print out constants which have been "spilled to memory" by
-/// the code generator.
-///
-void Printer::printConstantPool(MachineConstantPool *MCP) {
-  const std::vector<Constant*> &CP = MCP->getConstants();
-  const TargetData &TD = TM.getTargetData();
- 
-  if (CP.empty()) return;
-
-  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
-    O << "\t.const\n";
-    O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
-      << "\n";
-    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t;"
-      << *CP[i] << "\n";
-    emitGlobalConstant(CP[i]);
-  }
-}
-
-/// runOnMachineFunction - This uses the printMachineInstruction()
-/// method to print assembly for each instruction.
-///
-bool Printer::runOnMachineFunction(MachineFunction &MF) {
-  O << "\n\n";
-  // What's my mangled name?
-  CurrentFnName = Mang->getValueName(MF.getFunction());
-
-  // Print out constants referenced by the function
-  printConstantPool(MF.getConstantPool());
-
-  // Print out labels for the function.
-  O << "\t.text\n"; 
-  O << "\t.globl\t" << CurrentFnName << "\n";
-  O << "\t.align 2\n";
-  O << CurrentFnName << ":\n";
-
-  // Print out code for the function.
-  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
-       I != E; ++I) {
-    // Print a label for the basic block.
-    O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t; "
-      << I->getBasicBlock()->getName() << "\n";
-    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
-      II != E; ++II) {
-      // Print the assembly for the instruction.
-      O << "\t";
-      printMachineInstruction(II);
-    }
-  }
-  ++LabelNumber;
-
-  // We didn't modify anything.
-  return false;
-}
-
-void Printer::printOp(const MachineOperand &MO,
-                      bool elideOffsetKeyword /* = false */) {
-  const MRegisterInfo &RI = *TM.getRegisterInfo();
-  int new_symbol;
-  
-  switch (MO.getType()) {
-  case MachineOperand::MO_VirtualRegister:
-    if (Value *V = MO.getVRegValueOrNull()) {
-      O << "<" << V->getName() << ">";
-      return;
-    }
-    // FALLTHROUGH
-  case MachineOperand::MO_MachineRegister:
-  case MachineOperand::MO_CCRegister:
-    O << LowercaseString(RI.get(MO.getReg()).Name);
-    return;
-
-  case MachineOperand::MO_SignExtendedImmed:
-  case MachineOperand::MO_UnextendedImmed:
-    std::cerr << "printOp() does not handle immediate values\n";
-    abort();
-    return;
-
-  case MachineOperand::MO_PCRelativeDisp:
-    std::cerr << "Shouldn't use addPCDisp() when building PPC MachineInstrs";
-    abort();
-    return;
-    
-  case MachineOperand::MO_MachineBasicBlock: {
-    MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
-    O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
-      << "_" << MBBOp->getNumber() << "\t; "
-      << MBBOp->getBasicBlock()->getName();
-    return;
-  }
-
-  case MachineOperand::MO_ConstantPoolIndex:
-    O << ".CPI" << CurrentFnName << "_" << MO.getConstantPoolIndex();
-    return;
-
-  case MachineOperand::MO_ExternalSymbol:
-    O << MO.getSymbolName();
-    return;
-
-  case MachineOperand::MO_GlobalAddress:
-    if (!elideOffsetKeyword) {
-      GlobalValue *GV = MO.getGlobal();
-      std::string Name = Mang->getValueName(GV);
-
-      // Dynamically-resolved functions need a stub for the function
-      Function *F = dyn_cast<Function>(GV);
-      if (F && F->isExternal() &&
-          TM.CalledFunctions.find(F) != TM.CalledFunctions.end()) {
-        FnStubs.insert(Name);
-        O << "L" << Name << "$stub";
-        return;
-      }
-            
-      // External global variables need a non-lazily-resolved stub
-      if (!GV->hasInternalLinkage() &&
-          TM.AddressTaken.find(GV) != TM.AddressTaken.end()) {
-        GVStubs.insert(Name);
-        O << "L" << Name << "$non_lazy_ptr";
-        return;
-      }
-            
-      O << Mang->getValueName(GV);
-    }
-    return;
-    
-  default:
-    O << "<unknown operand type: " << MO.getType() << ">";
-    return;
-  }
-}
-
-void Printer::printImmOp(const MachineOperand &MO, unsigned ArgType) {
-  int Imm = MO.getImmedValue();
-  if (ArgType == PPCII::Simm16 || ArgType == PPCII::Disimm16) {
-    O << (short)Imm;
-  } else if (ArgType == PPCII::Zimm16) {
-    O << (unsigned short)Imm;
-  } else {
-    O << Imm;
-  }
-}
-
-/// printMachineInstruction -- Print out a single PPC LLVM instruction
-/// MI in Darwin syntax to the current output stream.
-///
-void Printer::printMachineInstruction(const MachineInstr *MI) {
-  unsigned Opcode = MI->getOpcode();
-  const TargetInstrInfo &TII = *TM.getInstrInfo();
-  const TargetInstrDescriptor &Desc = TII.get(Opcode);
-  unsigned i;
-
-  unsigned ArgCount = MI->getNumOperands();
-  unsigned ArgType[] = {
-    (Desc.TSFlags >> PPCII::Arg0TypeShift) & PPCII::ArgTypeMask,
-    (Desc.TSFlags >> PPCII::Arg1TypeShift) & PPCII::ArgTypeMask,
-    (Desc.TSFlags >> PPCII::Arg2TypeShift) & PPCII::ArgTypeMask,
-    (Desc.TSFlags >> PPCII::Arg3TypeShift) & PPCII::ArgTypeMask,
-    (Desc.TSFlags >> PPCII::Arg4TypeShift) & PPCII::ArgTypeMask
-  };
-  assert(((Desc.TSFlags & PPCII::VMX) == 0) &&
-         "Instruction requires VMX support");
-  assert(((Desc.TSFlags & PPCII::PPC64) == 0) &&
-         "Instruction requires 64 bit support");
-  ++EmittedInsts;
-
-  // CALLpcrel and CALLindirect are handled specially here to print only the
-  // appropriate number of args that the assembler expects.  This is because
-  // may have many arguments appended to record the uses of registers that are
-  // holding arguments to the called function.
-  if (Opcode == PPC::COND_BRANCH) {
-    std::cerr << "Error: untranslated conditional branch psuedo instruction!\n";
-    abort();
-  } else if (Opcode == PPC::IMPLICIT_DEF) {
-    O << "; IMPLICIT DEF ";
-    printOp(MI->getOperand(0));
-    O << "\n";
-    return;
-  } else if (Opcode == PPC::CALLpcrel) {
-    O << TII.getName(Opcode) << " ";
-    printOp(MI->getOperand(0));
-    O << "\n";
-    return;
-  } else if (Opcode == PPC::CALLindirect) {
-    O << TII.getName(Opcode) << " ";
-    printImmOp(MI->getOperand(0), ArgType[0]);
-    O << ", ";
-    printImmOp(MI->getOperand(1), ArgType[0]);
-    O << "\n";
-    return;
-  } else if (Opcode == PPC::MovePCtoLR) {
-    // FIXME: should probably be converted to cout.width and cout.fill
-    O << "bl \"L0000" << LabelNumber << "$pb\"\n";
-    O << "\"L0000" << LabelNumber << "$pb\":\n";
-    O << "\tmflr ";
-    printOp(MI->getOperand(0));
-    O << "\n";
-    return;
-  }
-
-  O << TII.getName(Opcode) << " ";
-  if (Opcode == PPC::LOADLoDirect || Opcode == PPC::LOADLoIndirect) {
-    printOp(MI->getOperand(0));
-    O << ", lo16(";
-    printOp(MI->getOperand(2));
-    O << "-\"L0000" << LabelNumber << "$pb\")";
-    O << "(";
-    if (MI->getOperand(1).getReg() == PPC::R0)
-      O << "0";
-    else
-      printOp(MI->getOperand(1));
-    O << ")\n";
-  } else if (Opcode == PPC::LOADHiAddr) {
-    printOp(MI->getOperand(0));
-    O << ", ";
-    if (MI->getOperand(1).getReg() == PPC::R0)
-      O << "0";
-    else
-      printOp(MI->getOperand(1));
-    O << ", ha16(" ;
-    printOp(MI->getOperand(2));
-     O << "-\"L0000" << LabelNumber << "$pb\")\n";
-  } else if (ArgCount == 3 && ArgType[1] == PPCII::Disimm16) {
-    printOp(MI->getOperand(0));
-    O << ", ";
-    printImmOp(MI->getOperand(1), ArgType[1]);
-    O << "(";
-    if (MI->getOperand(2).hasAllocatedReg() &&
-        MI->getOperand(2).getReg() == PPC::R0)
-      O << "0";
-    else
-      printOp(MI->getOperand(2));
-    O << ")\n";
-  } else {
-    for (i = 0; i < ArgCount; ++i) {
-      // addi and friends
-      if (i == 1 && ArgCount == 3 && ArgType[2] == PPCII::Simm16 &&
-          MI->getOperand(1).hasAllocatedReg() && 
-          MI->getOperand(1).getReg() == PPC::R0) {
-        O << "0";
-      // for long branch support, bc $+8
-      } else if (i == 1 && ArgCount == 2 && MI->getOperand(1).isImmediate() &&
-                 TII.isBranch(MI->getOpcode())) {
-        O << "$+8";
-        assert(8 == MI->getOperand(i).getImmedValue()
-          && "branch off PC not to pc+8?");
-        //printOp(MI->getOperand(i));
-      } else if (MI->getOperand(i).isImmediate()) {
-        printImmOp(MI->getOperand(i), ArgType[i]);
-      } else {
-        printOp(MI->getOperand(i));
-      }
-      if (ArgCount - 1 == i)
-        O << "\n";
-      else
-        O << ", ";
-    }
-  }
-}
-
-bool Printer::doInitialization(Module &M) {
-  Mang = new Mangler(M, true);
-  return false; // success
-}
-
-// SwitchSection - Switch to the specified section of the executable if we are
-// not already in it!
-//
-static void SwitchSection(std::ostream &OS, std::string &CurSection,
-                          const char *NewSection) {
-  if (CurSection != NewSection) {
-    CurSection = NewSection;
-    if (!CurSection.empty())
-      OS << "\t" << NewSection << "\n";
-  }
-}
-
-bool Printer::doFinalization(Module &M) {
-  const TargetData &TD = TM.getTargetData();
-  std::string CurSection;
-
-  // Print out module-level global variables here.
-  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
-    if (I->hasInitializer()) {   // External global require no code
-      O << "\n\n";
-      std::string name = Mang->getValueName(I);
-      Constant *C = I->getInitializer();
-      unsigned Size = TD.getTypeSize(C->getType());
-      unsigned Align = TD.getTypeAlignment(C->getType());
-
-      if (C->isNullValue() && /* FIXME: Verify correct */
-          (I->hasInternalLinkage() || I->hasWeakLinkage())) {
-        SwitchSection(O, CurSection, ".data");
-        if (I->hasInternalLinkage())
-          O << ".lcomm " << name << "," << TD.getTypeSize(C->getType())
-            << "," << (unsigned)TD.getTypeAlignment(C->getType());
-        else 
-          O << ".comm " << name << "," << TD.getTypeSize(C->getType());
-        O << "\t\t; ";
-        WriteAsOperand(O, I, true, true, &M);
-        O << "\n";
-      } else {
-        switch (I->getLinkage()) {
-        case GlobalValue::LinkOnceLinkage:
-          O << ".section __TEXT,__textcoal_nt,coalesced,no_toc\n"
-            << ".weak_definition " << name << '\n'
-            << ".private_extern " << name << '\n'
-            << ".section __DATA,__datacoal_nt,coalesced,no_toc\n";
-          LinkOnceStubs.insert(name);
-          break;  
-        case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak.
-          // Nonnull linkonce -> weak
-          O << "\t.weak " << name << "\n";
-          SwitchSection(O, CurSection, "");
-          O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
-          break;
-        case GlobalValue::AppendingLinkage:
-          // FIXME: appending linkage variables should go into a section of
-          // their name or something.  For now, just emit them as external.
-        case GlobalValue::ExternalLinkage:
-          // If external or appending, declare as a global symbol
-          O << "\t.globl " << name << "\n";
-          // FALL THROUGH
-        case GlobalValue::InternalLinkage:
-          SwitchSection(O, CurSection, ".data");
-          break;
-        }
-
-        O << "\t.align " << Align << "\n";
-        O << name << ":\t\t\t\t; ";
-        WriteAsOperand(O, I, true, true, &M);
-        O << " = ";
-        WriteAsOperand(O, C, false, false, &M);
-        O << "\n";
-        emitGlobalConstant(C);
-      }
-    }
-
-  // Output stubs for link-once variables
-  if (LinkOnceStubs.begin() != LinkOnceStubs.end())
-    O << ".data\n.align 2\n";
-  for (std::set<std::string>::iterator i = LinkOnceStubs.begin(), 
-         e = LinkOnceStubs.end(); i != e; ++i) {
-    O << *i << "$non_lazy_ptr:\n"
-      << "\t.long\t" << *i << '\n';
-  }
-  
-  // Output stubs for dynamically-linked functions
-  for (std::set<std::string>::iterator i = FnStubs.begin(), e = FnStubs.end(); 
-       i != e; ++i)
-  {
-    O << ".data\n";
-    O << ".section __TEXT,__picsymbolstub1,symbol_stubs,pure_instructions,32\n";
-    O << "\t.align 2\n";
-    O << "L" << *i << "$stub:\n";
-    O << "\t.indirect_symbol " << *i << "\n";
-    O << "\tmflr r0\n";
-    O << "\tbcl 20,31,L0$" << *i << "\n";
-    O << "L0$" << *i << ":\n";
-    O << "\tmflr r11\n";
-    O << "\taddis r11,r11,ha16(L" << *i << "$lazy_ptr-L0$" << *i << ")\n";
-    O << "\tmtlr r0\n";
-    O << "\tlwzu r12,lo16(L" << *i << "$lazy_ptr-L0$" << *i << ")(r11)\n";
-    O << "\tmtctr r12\n";
-    O << "\tbctr\n";
-    O << ".data\n";
-    O << ".lazy_symbol_pointer\n";
-    O << "L" << *i << "$lazy_ptr:\n";
-    O << "\t.indirect_symbol " << *i << "\n";
-    O << "\t.long dyld_stub_binding_helper\n";
-  }
-
-  O << "\n";
-
-  // Output stubs for external global variables
-  if (GVStubs.begin() != GVStubs.end())
-    O << ".data\n.non_lazy_symbol_pointer\n";
-  for (std::set<std::string>::iterator i = GVStubs.begin(), e = GVStubs.end(); 
-       i != e; ++i) {
-    O << "L" << *i << "$non_lazy_ptr:\n";
-    O << "\t.indirect_symbol " << *i << "\n";
-    O << "\t.long\t0\n";
-  }
-  
-  delete Mang;
-  return false; // success
-}
-
-} // End llvm namespace
diff --git a/lib/Target/PowerPC/PowerPCCodeEmitter.cpp b/lib/Target/PowerPC/PowerPCCodeEmitter.cpp
deleted file mode 100644
index e7a3600..0000000
--- a/lib/Target/PowerPC/PowerPCCodeEmitter.cpp
+++ /dev/null
@@ -1,100 +0,0 @@
-//===-- PowerPCCodeEmitter.cpp - JIT Code Emitter for PowerPC -----*- C++ -*-=//
-// 
-//                     The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-// 
-//===----------------------------------------------------------------------===//
-// 
-//
-//===----------------------------------------------------------------------===//
-
-#include "PowerPCTargetMachine.h"
-#include "llvm/CodeGen/MachineCodeEmitter.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/Passes.h"
-#include "Support/Debug.h"
-
-namespace llvm {
-
-namespace {
-  class PowerPCCodeEmitter : public MachineFunctionPass {
-    TargetMachine &TM;
-    MachineCodeEmitter &MCE;
-
-  public:
-    PowerPCCodeEmitter(TargetMachine &T, MachineCodeEmitter &M) 
-      : TM(T), MCE(M) {}
-
-    const char *getPassName() const { return "PowerPC Machine Code Emitter"; }
-
-    /// runOnMachineFunction - emits the given MachineFunction to memory
-    ///
-    bool runOnMachineFunction(MachineFunction &MF);
-
-    /// emitBasicBlock - emits the given MachineBasicBlock to memory
-    ///
-    void emitBasicBlock(MachineBasicBlock &MBB);
-
-    /// emitWord - write a 32-bit word to memory at the current PC
-    ///
-    void emitWord(unsigned w) { MCE.emitWord(w); }
-
-    unsigned getValueBit(int64_t Val, unsigned bit);
-
-    /// getBinaryCodeForInstr - returns the assembled code for an instruction
-    ///
-    unsigned getBinaryCodeForInstr(MachineInstr &MI) { return 0; }
-  };
-}
-
-/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
-/// machine code emitted.  This uses a MachineCodeEmitter object to handle
-/// actually outputting the machine code and resolving things like the address
-/// of functions.  This method should returns true if machine code emission is
-/// not supported.
-///
-bool PowerPCTargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
-                                                      MachineCodeEmitter &MCE) {
-  // Machine code emitter pass for PowerPC
-  PM.add(new PowerPCCodeEmitter(*this, MCE)); 
-  // Delete machine code for this function after emitting it:
-  PM.add(createMachineCodeDeleter());
-  // We don't yet support machine code emission
-  return true;
-}
-
-bool PowerPCCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
-  MCE.startFunction(MF);
-  MCE.emitConstantPool(MF.getConstantPool());
-  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
-    emitBasicBlock(*I);
-  MCE.finishFunction(MF);
-  return false;
-}
-
-void PowerPCCodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
-  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
-    emitWord(getBinaryCodeForInstr(*I));
-}
-
-unsigned PowerPCCodeEmitter::getValueBit(int64_t Val, unsigned bit) {
-  Val >>= bit;
-  return (Val & 1);
-}
-
-void *PowerPCJITInfo::getJITStubForFunction(Function *F,
-                                            MachineCodeEmitter &MCE) {
-  assert (0 && "PowerPCJITInfo::getJITStubForFunction not implemented");
-  return 0;
-}
-
-void PowerPCJITInfo::replaceMachineCodeForFunction (void *Old, void *New) {
-  assert (0 && "PowerPCJITInfo::replaceMachineCodeForFunction not implemented");
-}
-
-//#include "PowerPCGenCodeEmitter.inc"
-
-} // end llvm namespace
-
diff --git a/lib/Target/PowerPC/PowerPCISelSimple.cpp b/lib/Target/PowerPC/PowerPCISelSimple.cpp
deleted file mode 100644
index 5d438e7..0000000
--- a/lib/Target/PowerPC/PowerPCISelSimple.cpp
+++ /dev/null
@@ -1,3399 +0,0 @@
-//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
-// 
-//                     The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-// 
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "isel"
-#include "PowerPC.h"
-#include "PowerPCInstrBuilder.h"
-#include "PowerPCInstrInfo.h"
-#include "PowerPCTargetMachine.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/CodeGen/IntrinsicLowering.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/SSARegMap.h"
-#include "llvm/Target/MRegisterInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/InstVisitor.h"
-#include "Support/Debug.h"
-#include "Support/Statistic.h"
-#include <vector>
-using namespace llvm;
-
-namespace {
-  Statistic<> GEPFolds("ppc-codegen", "Number of GEPs folded");
-
-  /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
-  /// PPC Representation.
-  ///
-  enum TypeClass {
-    cByte, cShort, cInt, cFP32, cFP64, cLong
-  };
-}
-
-/// getClass - Turn a primitive type into a "class" number which is based on the
-/// size of the type, and whether or not it is floating point.
-///
-static inline TypeClass getClass(const Type *Ty) {
-  switch (Ty->getTypeID()) {
-  case Type::SByteTyID:
-  case Type::UByteTyID:   return cByte;      // Byte operands are class #0
-  case Type::ShortTyID:
-  case Type::UShortTyID:  return cShort;     // Short operands are class #1
-  case Type::IntTyID:
-  case Type::UIntTyID:
-  case Type::PointerTyID: return cInt;       // Ints and pointers are class #2
-
-  case Type::FloatTyID:   return cFP32;      // Single float is #3
-  case Type::DoubleTyID:  return cFP64;      // Double Point is #4
-
-  case Type::LongTyID:
-  case Type::ULongTyID:   return cLong;      // Longs are class #5
-  default:
-    assert(0 && "Invalid type to getClass!");
-    return cByte;  // not reached
-  }
-}
-
-// getClassB - Just like getClass, but treat boolean values as ints.
-static inline TypeClass getClassB(const Type *Ty) {
-  if (Ty == Type::BoolTy) return cInt;
-  return getClass(Ty);
-}
-
-namespace {
-  struct ISel : public FunctionPass, InstVisitor<ISel> {
-    PowerPCTargetMachine &TM;
-    MachineFunction *F;                 // The function we are compiling into
-    MachineBasicBlock *BB;              // The current MBB we are compiling
-    int VarArgsFrameIndex;              // FrameIndex for start of varargs area
-    
-    std::map<Value*, unsigned> RegMap;  // Mapping between Values and SSA Regs
-
-    // External functions used in the Module
-    Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn, 
-      *__umoddi3Fn,  *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn,
-      *__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn;
-
-    // MBBMap - Mapping between LLVM BB -> Machine BB
-    std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
-
-    // AllocaMap - Mapping from fixed sized alloca instructions to the
-    // FrameIndex for the alloca.
-    std::map<AllocaInst*, unsigned> AllocaMap;
-
-    // A Reg to hold the base address used for global loads and stores, and a
-    // flag to set whether or not we need to emit it for this function.
-    unsigned GlobalBaseReg;
-    bool GlobalBaseInitialized;
-    
-    ISel(TargetMachine &tm) : TM(reinterpret_cast<PowerPCTargetMachine&>(tm)), 
-      F(0), BB(0) {}
-
-    bool doInitialization(Module &M) {
-      // Add external functions that we may call
-      Type *i = Type::IntTy;
-      Type *d = Type::DoubleTy;
-      Type *f = Type::FloatTy;
-      Type *l = Type::LongTy;
-      Type *ul = Type::ULongTy;
-      Type *voidPtr = PointerType::get(Type::SByteTy);
-      // float fmodf(float, float);
-      fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
-      // double fmod(double, double);
-      fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
-      // int __cmpdi2(long, long);
-      __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
-      // long __moddi3(long, long);
-      __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
-      // long __divdi3(long, long);
-      __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
-      // unsigned long __umoddi3(unsigned long, unsigned long);
-      __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
-      // unsigned long __udivdi3(unsigned long, unsigned long);
-      __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
-      // long __fixsfdi(float)
-      __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
-      // long __fixdfdi(double)
-      __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
-      // unsigned long __fixunssfdi(float)
-      __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
-      // unsigned long __fixunsdfdi(double)
-      __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
-      // float __floatdisf(long)
-      __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
-      // double __floatdidf(long)
-      __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
-      // void* malloc(size_t)
-      mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
-      // void free(void*)
-      freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
-      return false;
-    }
-
-    /// runOnFunction - Top level implementation of instruction selection for
-    /// the entire function.
-    ///
-    bool runOnFunction(Function &Fn) {
-      // First pass over the function, lower any unknown intrinsic functions
-      // with the IntrinsicLowering class.
-      LowerUnknownIntrinsicFunctionCalls(Fn);
-
-      F = &MachineFunction::construct(&Fn, TM);
-
-      // Create all of the machine basic blocks for the function...
-      for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
-        F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
-
-      BB = &F->front();
-
-      // Make sure we re-emit a set of the global base reg if necessary
-      GlobalBaseInitialized = false;
-
-      // Copy incoming arguments off of the stack...
-      LoadArgumentsToVirtualRegs(Fn);
-
-      // Instruction select everything except PHI nodes
-      visit(Fn);
-
-      // Select the PHI nodes
-      SelectPHINodes();
-
-      RegMap.clear();
-      MBBMap.clear();
-      AllocaMap.clear();
-      F = 0;
-      // We always build a machine code representation for the function
-      return true;
-    }
-
-    virtual const char *getPassName() const {
-      return "PowerPC Simple Instruction Selection";
-    }
-
-    /// visitBasicBlock - This method is called when we are visiting a new basic
-    /// block.  This simply creates a new MachineBasicBlock to emit code into
-    /// and adds it to the current MachineFunction.  Subsequent visit* for
-    /// instructions will be invoked for all instructions in the basic block.
-    ///
-    void visitBasicBlock(BasicBlock &LLVM_BB) {
-      BB = MBBMap[&LLVM_BB];
-    }
-
-    /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
-    /// function, lowering any calls to unknown intrinsic functions into the
-    /// equivalent LLVM code.
-    ///
-    void LowerUnknownIntrinsicFunctionCalls(Function &F);
-
-    /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
-    /// from the stack into virtual registers.
-    ///
-    void LoadArgumentsToVirtualRegs(Function &F);
-
-    /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
-    /// because we have to generate our sources into the source basic blocks,
-    /// not the current one.
-    ///
-    void SelectPHINodes();
-
-    // Visitation methods for various instructions.  These methods simply emit
-    // fixed PowerPC code for each instruction.
-
-    // Control flow operators
-    void visitReturnInst(ReturnInst &RI);
-    void visitBranchInst(BranchInst &BI);
-
-    struct ValueRecord {
-      Value *Val;
-      unsigned Reg;
-      const Type *Ty;
-      ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
-      ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
-    };
-    
-    // This struct is for recording the necessary operations to emit the GEP
-    struct CollapsedGepOp {
-      bool isMul;
-      Value *index;
-      ConstantSInt *size;
-      CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
-        isMul(mul), index(i), size(s) {}
-    };
-
-    void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
-                const std::vector<ValueRecord> &Args, bool isVarArg);
-    void visitCallInst(CallInst &I);
-    void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
-
-    // Arithmetic operators
-    void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
-    void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
-    void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
-    void visitMul(BinaryOperator &B);
-
-    void visitDiv(BinaryOperator &B) { visitDivRem(B); }
-    void visitRem(BinaryOperator &B) { visitDivRem(B); }
-    void visitDivRem(BinaryOperator &B);
-
-    // Bitwise operators
-    void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
-    void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
-    void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
-
-    // Comparison operators...
-    void visitSetCondInst(SetCondInst &I);
-    unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
-                            MachineBasicBlock *MBB,
-                            MachineBasicBlock::iterator MBBI);
-    void visitSelectInst(SelectInst &SI);
-    
-    
-    // Memory Instructions
-    void visitLoadInst(LoadInst &I);
-    void visitStoreInst(StoreInst &I);
-    void visitGetElementPtrInst(GetElementPtrInst &I);
-    void visitAllocaInst(AllocaInst &I);
-    void visitMallocInst(MallocInst &I);
-    void visitFreeInst(FreeInst &I);
-    
-    // Other operators
-    void visitShiftInst(ShiftInst &I);
-    void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass
-    void visitCastInst(CastInst &I);
-    void visitVANextInst(VANextInst &I);
-    void visitVAArgInst(VAArgInst &I);
-
-    void visitInstruction(Instruction &I) {
-      std::cerr << "Cannot instruction select: " << I;
-      abort();
-    }
-
-    /// promote32 - Make a value 32-bits wide, and put it somewhere.
-    ///
-    void promote32(unsigned targetReg, const ValueRecord &VR);
-
-    /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
-    /// constant expression GEP support.
-    ///
-    void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
-                          Value *Src, User::op_iterator IdxBegin,
-                          User::op_iterator IdxEnd, unsigned TargetReg,
-                          bool CollapseRemainder, ConstantSInt **Remainder,
-                          unsigned *PendingAddReg);
-
-    /// emitCastOperation - Common code shared between visitCastInst and
-    /// constant expression cast support.
-    ///
-    void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
-                           Value *Src, const Type *DestTy, unsigned TargetReg);
-
-    /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
-    /// and constant expression support.
-    ///
-    void emitSimpleBinaryOperation(MachineBasicBlock *BB,
-                                   MachineBasicBlock::iterator IP,
-                                   Value *Op0, Value *Op1,
-                                   unsigned OperatorClass, unsigned TargetReg);
-
-    /// emitBinaryFPOperation - This method handles emission of floating point
-    /// Add (0), Sub (1), Mul (2), and Div (3) operations.
-    void emitBinaryFPOperation(MachineBasicBlock *BB,
-                               MachineBasicBlock::iterator IP,
-                               Value *Op0, Value *Op1,
-                               unsigned OperatorClass, unsigned TargetReg);
-
-    void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
-                      Value *Op0, Value *Op1, unsigned TargetReg);
-
-    void doMultiply(MachineBasicBlock *MBB,
-                    MachineBasicBlock::iterator IP,
-                    unsigned DestReg, Value *Op0, Value *Op1);
-  
-    /// doMultiplyConst - This method will multiply the value in Op0Reg by the
-    /// value of the ContantInt *CI
-    void doMultiplyConst(MachineBasicBlock *MBB, 
-                         MachineBasicBlock::iterator IP,
-                         unsigned DestReg, Value *Op0, ConstantInt *CI);
-
-    void emitDivRemOperation(MachineBasicBlock *BB,
-                             MachineBasicBlock::iterator IP,
-                             Value *Op0, Value *Op1, bool isDiv,
-                             unsigned TargetReg);
-
-    /// emitSetCCOperation - Common code shared between visitSetCondInst and
-    /// constant expression support.
-    ///
-    void emitSetCCOperation(MachineBasicBlock *BB,
-                            MachineBasicBlock::iterator IP,
-                            Value *Op0, Value *Op1, unsigned Opcode,
-                            unsigned TargetReg);
-
-    /// emitShiftOperation - Common code shared between visitShiftInst and
-    /// constant expression support.
-    ///
-    void emitShiftOperation(MachineBasicBlock *MBB,
-                            MachineBasicBlock::iterator IP,
-                            Value *Op, Value *ShiftAmount, bool isLeftShift,
-                            const Type *ResultTy, unsigned DestReg);
-      
-    /// emitSelectOperation - Common code shared between visitSelectInst and the
-    /// constant expression support.
-    ///
-    void emitSelectOperation(MachineBasicBlock *MBB,
-                             MachineBasicBlock::iterator IP,
-                             Value *Cond, Value *TrueVal, Value *FalseVal,
-                             unsigned DestReg);
-
-    /// copyGlobalBaseToRegister - Output the instructions required to put the
-    /// base address to use for accessing globals into a register.
-    ///
-    void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
-                                        MachineBasicBlock::iterator IP,
-                                        unsigned R);
-
-    /// copyConstantToRegister - Output the instructions required to put the
-    /// specified constant into the specified register.
-    ///
-    void copyConstantToRegister(MachineBasicBlock *MBB,
-                                MachineBasicBlock::iterator MBBI,
-                                Constant *C, unsigned Reg);
-
-    void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
-                   unsigned LHS, unsigned RHS);
-
-    /// makeAnotherReg - This method returns the next register number we haven't
-    /// yet used.
-    ///
-    /// Long values are handled somewhat specially.  They are always allocated
-    /// as pairs of 32 bit integer values.  The register number returned is the
-    /// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
-    ///
-    unsigned makeAnotherReg(const Type *Ty) {
-      assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
-             "Current target doesn't have PPC reg info??");
-      const PowerPCRegisterInfo *PPCRI =
-        static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
-      if (Ty == Type::LongTy || Ty == Type::ULongTy) {
-        const TargetRegisterClass *RC = PPCRI->getRegClassForType(Type::IntTy);
-        // Create the upper part
-        F->getSSARegMap()->createVirtualRegister(RC);
-        // Create the lower part.
-        return F->getSSARegMap()->createVirtualRegister(RC)-1;
-      }
-
-      // Add the mapping of regnumber => reg class to MachineFunction
-      const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
-      return F->getSSARegMap()->createVirtualRegister(RC);
-    }
-
-    /// getReg - This method turns an LLVM value into a register number.
-    ///
-    unsigned getReg(Value &V) { return getReg(&V); }  // Allow references
-    unsigned getReg(Value *V) {
-      // Just append to the end of the current bb.
-      MachineBasicBlock::iterator It = BB->end();
-      return getReg(V, BB, It);
-    }
-    unsigned getReg(Value *V, MachineBasicBlock *MBB,
-                    MachineBasicBlock::iterator IPt);
-    
-    /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
-    /// is okay to use as an immediate argument to a certain binary operation
-    bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
-
-    /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
-    /// that is to be statically allocated with the initial stack frame
-    /// adjustment.
-    unsigned getFixedSizedAllocaFI(AllocaInst *AI);
-  };
-}
-
-/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
-/// instruction in the entry block, return it.  Otherwise, return a null
-/// pointer.
-static AllocaInst *dyn_castFixedAlloca(Value *V) {
-  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
-    BasicBlock *BB = AI->getParent();
-    if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
-      return AI;
-  }
-  return 0;
-}
-
-/// getReg - This method turns an LLVM value into a register number.
-///
-unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
-                      MachineBasicBlock::iterator IPt) {
-  if (Constant *C = dyn_cast<Constant>(V)) {
-    unsigned Reg = makeAnotherReg(V->getType());
-    copyConstantToRegister(MBB, IPt, C, Reg);
-    return Reg;
-  } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
-    unsigned Reg = makeAnotherReg(V->getType());
-    unsigned FI = getFixedSizedAllocaFI(AI);
-    addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false);
-    return Reg;
-  }
-
-  unsigned &Reg = RegMap[V];
-  if (Reg == 0) {
-    Reg = makeAnotherReg(V->getType());
-    RegMap[V] = Reg;
-  }
-
-  return Reg;
-}
-
-/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
-/// is okay to use as an immediate argument to a certain binary operator.
-///
-/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
-bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
-  ConstantSInt *Op1Cs;
-  ConstantUInt *Op1Cu;
-      
-  // ADDI, Compare, and non-indexed Load take SIMM
-  bool cond1 = (Operator == 0) 
-    && (Op1Cs = dyn_cast<ConstantSInt>(CI))
-    && (Op1Cs->getValue() <= 32767)
-    && (Op1Cs->getValue() >= -32768);
-
-  // SUBI takes -SIMM since it is a mnemonic for ADDI
-  bool cond2 = (Operator == 1)
-    && (Op1Cs = dyn_cast<ConstantSInt>(CI)) 
-    && (Op1Cs->getValue() <= 32768)
-    && (Op1Cs->getValue() >= -32767);
-      
-  // ANDIo, ORI, and XORI take unsigned values
-  bool cond3 = (Operator >= 2)
-    && (Op1Cs = dyn_cast<ConstantSInt>(CI))
-    && (Op1Cs->getValue() >= 0)
-    && (Op1Cs->getValue() <= 32767);
-
-  // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
-  bool cond4 = (Operator < 2)
-    && (Op1Cu = dyn_cast<ConstantUInt>(CI)) 
-    && (Op1Cu->getValue() <= 32767);
-
-  // ANDIo, ORI, and XORI take UIMMs, so they can be larger
-  bool cond5 = (Operator >= 2)
-    && (Op1Cu = dyn_cast<ConstantUInt>(CI))
-    && (Op1Cu->getValue() <= 65535);
-
-  if (cond1 || cond2 || cond3 || cond4 || cond5)
-    return true;
-
-  return false;
-}
-
-/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
-/// that is to be statically allocated with the initial stack frame
-/// adjustment.
-unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
-  // Already computed this?
-  std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
-  if (I != AllocaMap.end() && I->first == AI) return I->second;
-
-  const Type *Ty = AI->getAllocatedType();
-  ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
-  unsigned TySize = TM.getTargetData().getTypeSize(Ty);
-  TySize *= CUI->getValue();   // Get total allocated size...
-  unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
-      
-  // Create a new stack object using the frame manager...
-  int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
-  AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
-  return FrameIdx;
-}
-
-
-/// copyGlobalBaseToRegister - Output the instructions required to put the
-/// base address to use for accessing globals into a register.
-///
-void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
-                                    MachineBasicBlock::iterator IP,
-                                    unsigned R) {
-  if (!GlobalBaseInitialized) {
-    // Insert the set of GlobalBaseReg into the first MBB of the function
-    MachineBasicBlock &FirstMBB = F->front();
-    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
-    GlobalBaseReg = makeAnotherReg(Type::IntTy);
-    BuildMI(FirstMBB, MBBI, PPC::IMPLICIT_DEF, 0, PPC::LR);
-    BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, GlobalBaseReg);
-    GlobalBaseInitialized = true;
-  }
-  // Emit our copy of GlobalBaseReg to the destination register in the
-  // current MBB
-  BuildMI(*MBB, IP, PPC::OR, 2, R).addReg(GlobalBaseReg)
-    .addReg(GlobalBaseReg);
-}
-
-/// copyConstantToRegister - Output the instructions required to put the
-/// specified constant into the specified register.
-///
-void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
-                                  MachineBasicBlock::iterator IP,
-                                  Constant *C, unsigned R) {
-  if (C->getType()->isIntegral()) {
-    unsigned Class = getClassB(C->getType());
-
-    if (Class == cLong) {
-      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
-        uint64_t uval = CUI->getValue();
-        unsigned hiUVal = uval >> 32;
-        unsigned loUVal = uval;
-        ConstantUInt *CUHi = ConstantUInt::get(Type::UIntTy, hiUVal);
-        ConstantUInt *CULo = ConstantUInt::get(Type::UIntTy, loUVal);
-        copyConstantToRegister(MBB, IP, CUHi, R);
-        copyConstantToRegister(MBB, IP, CULo, R+1);
-        return;
-      } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
-        int64_t sval = CSI->getValue();
-        int hiSVal = sval >> 32;
-        int loSVal = sval;
-        ConstantSInt *CSHi = ConstantSInt::get(Type::IntTy, hiSVal);
-        ConstantSInt *CSLo = ConstantSInt::get(Type::IntTy, loSVal);
-        copyConstantToRegister(MBB, IP, CSHi, R);
-        copyConstantToRegister(MBB, IP, CSLo, R+1);
-        return;
-      } else {
-        std::cerr << "Unhandled long constant type!\n";
-        abort();
-      }
-    }
-    
-    assert(Class <= cInt && "Type not handled yet!");
-
-    // Handle bool
-    if (C->getType() == Type::BoolTy) {
-      BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True);
-      return;
-    }
-    
-    // Handle int
-    if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
-      unsigned uval = CUI->getValue();
-      if (uval < 32768) {
-        BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval);
-      } else {
-        unsigned Temp = makeAnotherReg(Type::IntTy);
-        BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16);
-        BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval);
-      }
-      return;
-    } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
-      int sval = CSI->getValue();
-      if (sval < 32768 && sval >= -32768) {
-        BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval);
-      } else {
-        unsigned Temp = makeAnotherReg(Type::IntTy);
-        BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16);
-        BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval);
-      }
-      return;
-    }
-    
-    std::cerr << "Unhandled integer constant!\n";
-    abort();
-  } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
-    // We need to spill the constant to memory...
-    MachineConstantPool *CP = F->getConstantPool();
-    unsigned CPI = CP->getConstantPoolIndex(CFP);
-    const Type *Ty = CFP->getType();
-
-    assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
-
-    // Load addr of constant to reg; constant is located at base + distance
-    unsigned GlobalBase = makeAnotherReg(Type::IntTy);
-    unsigned Reg1 = makeAnotherReg(Type::IntTy);
-    unsigned Reg2 = makeAnotherReg(Type::IntTy);
-    // Move value at base + distance into return reg
-    copyGlobalBaseToRegister(MBB, IP, GlobalBase);
-    BuildMI(*MBB, IP, PPC::LOADHiAddr, 2, Reg1).addReg(GlobalBase)
-      .addConstantPoolIndex(CPI);
-    BuildMI(*MBB, IP, PPC::LOADLoDirect, 2, Reg2).addReg(Reg1)
-      .addConstantPoolIndex(CPI);
-
-    unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD;
-    BuildMI(*MBB, IP, LoadOpcode, 2, R).addSImm(0).addReg(Reg2);
-  } else if (isa<ConstantPointerNull>(C)) {
-    // Copy zero (null pointer) to the register.
-    BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
-  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
-    // GV is located at base + distance
-    unsigned GlobalBase = makeAnotherReg(Type::IntTy);
-    unsigned TmpReg = makeAnotherReg(GV->getType());
-    unsigned Opcode = (GV->hasWeakLinkage() || GV->isExternal()) ? 
-      PPC::LOADLoIndirect : PPC::LOADLoDirect;
-    
-    // Move value at base + distance into return reg
-    copyGlobalBaseToRegister(MBB, IP, GlobalBase);
-    BuildMI(*MBB, IP, PPC::LOADHiAddr, 2, TmpReg).addReg(GlobalBase)
-      .addGlobalAddress(GV);
-    BuildMI(*MBB, IP, Opcode, 2, R).addReg(TmpReg).addGlobalAddress(GV);
-  
-    // Add the GV to the list of things whose addresses have been taken.
-    TM.AddressTaken.insert(GV);
-  } else {
-    std::cerr << "Offending constant: " << *C << "\n";
-    assert(0 && "Type not handled yet!");
-  }
-}
-
-/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
-/// the stack into virtual registers.
-void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
-  unsigned ArgOffset = 24;
-  unsigned GPR_remaining = 8;
-  unsigned FPR_remaining = 13;
-  unsigned GPR_idx = 0, FPR_idx = 0;
-  static const unsigned GPR[] = { 
-    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
-    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
-  };
-  static const unsigned FPR[] = {
-    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
-    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
-  };
-    
-  MachineFrameInfo *MFI = F->getFrameInfo();
- 
-  for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
-    bool ArgLive = !I->use_empty();
-    unsigned Reg = ArgLive ? getReg(*I) : 0;
-    int FI;          // Frame object index
-
-    switch (getClassB(I->getType())) {
-    case cByte:
-      if (ArgLive) {
-        FI = MFI->CreateFixedObject(4, ArgOffset);
-        if (GPR_remaining > 0) {
-          BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
-          BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
-            .addReg(GPR[GPR_idx]);
-        } else {
-          addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI);
-        }
-      }
-      break;
-    case cShort:
-      if (ArgLive) {
-        FI = MFI->CreateFixedObject(4, ArgOffset);
-        if (GPR_remaining > 0) {
-          BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
-          BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
-            .addReg(GPR[GPR_idx]);
-        } else {
-          addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI);
-        }
-      }
-      break;
-    case cInt:
-      if (ArgLive) {
-        FI = MFI->CreateFixedObject(4, ArgOffset);
-        if (GPR_remaining > 0) {
-          BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
-          BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
-            .addReg(GPR[GPR_idx]);
-        } else {
-          addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
-        }
-      }
-      break;
-    case cLong:
-      if (ArgLive) {
-        FI = MFI->CreateFixedObject(8, ArgOffset);
-        if (GPR_remaining > 1) {
-          BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
-          BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
-          BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
-            .addReg(GPR[GPR_idx]);
-          BuildMI(BB, PPC::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
-            .addReg(GPR[GPR_idx+1]);
-        } else {
-          addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
-          addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg+1), FI, 4);
-        }
-      }
-      // longs require 4 additional bytes and use 2 GPRs
-      ArgOffset += 4;
-      if (GPR_remaining > 1) {
-        GPR_remaining--;
-        GPR_idx++;
-      }
-      break;
-    case cFP32:
-     if (ArgLive) {
-        FI = MFI->CreateFixedObject(4, ArgOffset);
-
-        if (FPR_remaining > 0) {
-          BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
-          BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
-          FPR_remaining--;
-          FPR_idx++;
-        } else {
-          addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI);
-        }
-      }
-      break;
-    case cFP64:
-      if (ArgLive) {
-        FI = MFI->CreateFixedObject(8, ArgOffset);
-
-        if (FPR_remaining > 0) {
-          BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
-          BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
-          FPR_remaining--;
-          FPR_idx++;
-        } else {
-          addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI);
-        }
-      }
-
-      // doubles require 4 additional bytes and use 2 GPRs of param space
-      ArgOffset += 4;   
-      if (GPR_remaining > 0) {
-        GPR_remaining--;
-        GPR_idx++;
-      }
-      break;
-    default:
-      assert(0 && "Unhandled argument type!");
-    }
-    ArgOffset += 4;  // Each argument takes at least 4 bytes on the stack...
-    if (GPR_remaining > 0) {
-      GPR_remaining--;    // uses up 2 GPRs
-      GPR_idx++;
-    }
-  }
-
-  // If the function takes variable number of arguments, add a frame offset for
-  // the start of the first vararg value... this is used to expand
-  // llvm.va_start.
-  if (Fn.getFunctionType()->isVarArg())
-    VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
-}
-
-
-/// SelectPHINodes - Insert machine code to generate phis.  This is tricky
-/// because we have to generate our sources into the source basic blocks, not
-/// the current one.
-///
-void ISel::SelectPHINodes() {
-  const TargetInstrInfo &TII = *TM.getInstrInfo();
-  const Function &LF = *F->getFunction();  // The LLVM function...
-  for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
-    const BasicBlock *BB = I;
-    MachineBasicBlock &MBB = *MBBMap[I];
-
-    // Loop over all of the PHI nodes in the LLVM basic block...
-    MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
-    for (BasicBlock::const_iterator I = BB->begin();
-         PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
-
-      // Create a new machine instr PHI node, and insert it.
-      unsigned PHIReg = getReg(*PN);
-      MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
-                                    PPC::PHI, PN->getNumOperands(), PHIReg);
-
-      MachineInstr *LongPhiMI = 0;
-      if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
-        LongPhiMI = BuildMI(MBB, PHIInsertPoint,
-                            PPC::PHI, PN->getNumOperands(), PHIReg+1);
-
-      // PHIValues - Map of blocks to incoming virtual registers.  We use this
-      // so that we only initialize one incoming value for a particular block,
-      // even if the block has multiple entries in the PHI node.
-      //
-      std::map<MachineBasicBlock*, unsigned> PHIValues;
-
-      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
-        MachineBasicBlock *PredMBB = 0;
-        for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
-             PE = MBB.pred_end (); PI != PE; ++PI)
-          if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
-            PredMBB = *PI;
-            break;
-          }
-        assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
-
-        unsigned ValReg;
-        std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
-          PHIValues.lower_bound(PredMBB);
-
-        if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
-          // We already inserted an initialization of the register for this
-          // predecessor.  Recycle it.
-          ValReg = EntryIt->second;
-        } else {
-          // Get the incoming value into a virtual register.
-          //
-          Value *Val = PN->getIncomingValue(i);
-
-          // If this is a constant or GlobalValue, we may have to insert code
-          // into the basic block to compute it into a virtual register.
-          if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
-              isa<GlobalValue>(Val)) {
-            // Simple constants get emitted at the end of the basic block,
-            // before any terminator instructions.  We "know" that the code to
-            // move a constant into a register will never clobber any flags.
-            ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
-          } else {
-            // Because we don't want to clobber any values which might be in
-            // physical registers with the computation of this constant (which
-            // might be arbitrarily complex if it is a constant expression),
-            // just insert the computation at the top of the basic block.
-            MachineBasicBlock::iterator PI = PredMBB->begin();
-
-            // Skip over any PHI nodes though!
-            while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI)
-              ++PI;
-
-            ValReg = getReg(Val, PredMBB, PI);
-          }
-
-          // Remember that we inserted a value for this PHI for this predecessor
-          PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
-        }
-
-        PhiMI->addRegOperand(ValReg);
-        PhiMI->addMachineBasicBlockOperand(PredMBB);
-        if (LongPhiMI) {
-          LongPhiMI->addRegOperand(ValReg+1);
-          LongPhiMI->addMachineBasicBlockOperand(PredMBB);
-        }
-      }
-
-      // Now that we emitted all of the incoming values for the PHI node, make
-      // sure to reposition the InsertPoint after the PHI that we just added.
-      // This is needed because we might have inserted a constant into this
-      // block, right after the PHI's which is before the old insert point!
-      PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
-      ++PHIInsertPoint;
-    }
-  }
-}
-
-
-// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
-// it into the conditional branch or select instruction which is the only user
-// of the cc instruction.  This is the case if the conditional branch is the
-// only user of the setcc, and if the setcc is in the same basic block as the
-// conditional branch.
-//
-static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
-  if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
-    if (SCI->hasOneUse()) {
-      Instruction *User = cast<Instruction>(SCI->use_back());
-      if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
-          SCI->getParent() == User->getParent())
-        return SCI;
-    }
-  return 0;
-}
-
-
-// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
-// the load or store instruction that is the only user of the GEP.
-//
-static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
-  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
-    if (GEPI->hasOneUse()) {
-      Instruction *User = cast<Instruction>(GEPI->use_back());
-      if (isa<StoreInst>(User) &&
-          GEPI->getParent() == User->getParent() &&
-          User->getOperand(0) != GEPI &&
-          User->getOperand(1) == GEPI) {
-        ++GEPFolds;
-        return GEPI;
-      }
-      if (isa<LoadInst>(User) &&
-          GEPI->getParent() == User->getParent() &&
-          User->getOperand(0) == GEPI) {
-        ++GEPFolds;
-        return GEPI;
-      }
-    }
-  return 0;
-}
-
-
-// Return a fixed numbering for setcc instructions which does not depend on the
-// order of the opcodes.
-//
-static unsigned getSetCCNumber(unsigned Opcode) {
-  switch (Opcode) {
-  default: assert(0 && "Unknown setcc instruction!");
-  case Instruction::SetEQ: return 0;
-  case Instruction::SetNE: return 1;
-  case Instruction::SetLT: return 2;
-  case Instruction::SetGE: return 3;
-  case Instruction::SetGT: return 4;
-  case Instruction::SetLE: return 5;
-  }
-}
-
-static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
-  switch (Opcode) {
-  default: assert(0 && "Unknown setcc instruction!");
-  case Instruction::SetEQ: return PPC::BEQ;
-  case Instruction::SetNE: return PPC::BNE;
-  case Instruction::SetLT: return PPC::BLT;
-  case Instruction::SetGE: return PPC::BGE;
-  case Instruction::SetGT: return PPC::BGT;
-  case Instruction::SetLE: return PPC::BLE;
-  }
-}
-
-/// emitUCOM - emits an unordered FP compare.
-void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
-                     unsigned LHS, unsigned RHS) {
-    BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS);
-}
-
-/// EmitComparison - emits a comparison of the two operands, returning the
-/// extended setcc code to use.  The result is in CR0.
-///
-unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
-                              MachineBasicBlock *MBB,
-                              MachineBasicBlock::iterator IP) {
-  // The arguments are already supposed to be of the same type.
-  const Type *CompTy = Op0->getType();
-  unsigned Class = getClassB(CompTy);
-  unsigned Op0r = getReg(Op0, MBB, IP);
-
-  // Before we do a comparison, we have to make sure that we're truncating our
-  // registers appropriately.
-  if (Class == cByte) {
-    unsigned TmpReg = makeAnotherReg(CompTy);
-    if (CompTy->isSigned())
-      BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Op0r);
-    else
-      BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
-        .addImm(24).addImm(31);
-    Op0r = TmpReg;
-  } else if (Class == cShort) {
-    unsigned TmpReg = makeAnotherReg(CompTy);
-    if (CompTy->isSigned())
-      BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Op0r);
-    else
-      BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
-        .addImm(16).addImm(31);
-    Op0r = TmpReg;
-  }
-  
-  // Use crand for lt, gt and crandc for le, ge
-  unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC;
-  // ? cr1[lt] : cr1[gt]
-  unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 4 : 5;
-  // ? cr0[lt] : cr0[gt]
-  unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
-  unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW;
-  unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI;
-
-  // Special case handling of: cmp R, i
-  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
-    if (Class == cByte || Class == cShort || Class == cInt) {
-      unsigned Op1v = CI->getRawValue() & 0xFFFF;
-
-      // Treat compare like ADDI for the purposes of immediate suitability
-      if (canUseAsImmediateForOpcode(CI, 0)) {
-        BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v);
-      } else {
-        unsigned Op1r = getReg(Op1, MBB, IP);
-        BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
-      }
-      return OpNum;
-    } else {
-      assert(Class == cLong && "Unknown integer class!");
-      unsigned LowCst = CI->getRawValue();
-      unsigned HiCst = CI->getRawValue() >> 32;
-      if (OpNum < 2) {    // seteq, setne
-        unsigned LoLow = makeAnotherReg(Type::IntTy);
-        unsigned LoTmp = makeAnotherReg(Type::IntTy);
-        unsigned HiLow = makeAnotherReg(Type::IntTy);
-        unsigned HiTmp = makeAnotherReg(Type::IntTy);
-        unsigned FinalTmp = makeAnotherReg(Type::IntTy);
-
-        BuildMI(*MBB, IP, PPC::XORI, 2, LoLow).addReg(Op0r+1)
-          .addImm(LowCst & 0xFFFF);
-        BuildMI(*MBB, IP, PPC::XORIS, 2, LoTmp).addReg(LoLow)
-          .addImm(LowCst >> 16);
-        BuildMI(*MBB, IP, PPC::XORI, 2, HiLow).addReg(Op0r)
-          .addImm(HiCst & 0xFFFF);
-        BuildMI(*MBB, IP, PPC::XORIS, 2, HiTmp).addReg(HiLow)
-          .addImm(HiCst >> 16);
-        BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
-        return OpNum;
-      } else {
-        unsigned ConstReg = makeAnotherReg(CompTy);
-        copyConstantToRegister(MBB, IP, CI, ConstReg);
-
-        // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
-        BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r)
-          .addReg(ConstReg);
-        BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1)
-          .addReg(ConstReg+1);
-        BuildMI(*MBB, IP, PPC::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
-        BuildMI(*MBB, IP, PPC::CROR, 3).addImm(CR0field).addImm(CR0field)
-          .addImm(2);
-        return OpNum;
-      }
-    }
-  }
-
-  unsigned Op1r = getReg(Op1, MBB, IP);
-
-  switch (Class) {
-  default: assert(0 && "Unknown type class!");
-  case cByte:
-  case cShort:
-  case cInt:
-    BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
-    break;
-
-  case cFP32:
-  case cFP64:
-    emitUCOM(MBB, IP, Op0r, Op1r);
-    break;
-
-  case cLong:
-    if (OpNum < 2) {    // seteq, setne
-      unsigned LoTmp = makeAnotherReg(Type::IntTy);
-      unsigned HiTmp = makeAnotherReg(Type::IntTy);
-      unsigned FinalTmp = makeAnotherReg(Type::IntTy);
-      BuildMI(*MBB, IP, PPC::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
-      BuildMI(*MBB, IP, PPC::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
-      BuildMI(*MBB, IP, PPC::ORo,  2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
-      break;  // Allow the sete or setne to be generated from flags set by OR
-    } else {
-      unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
-      unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
-
-      // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
-      BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
-      BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1).addReg(Op1r+1);
-      BuildMI(*MBB, IP, PPC::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
-      BuildMI(*MBB, IP, PPC::CROR, 3).addImm(CR0field).addImm(CR0field)
-        .addImm(2);
-      return OpNum;
-    }
-  }
-  return OpNum;
-}
-
-/// visitSetCondInst - emit code to calculate the condition via
-/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
-///
-void ISel::visitSetCondInst(SetCondInst &I) {
-  if (canFoldSetCCIntoBranchOrSelect(&I))
-    return;
-
-  unsigned DestReg = getReg(I);
-  unsigned OpNum = I.getOpcode();
-  const Type *Ty = I.getOperand (0)->getType();
-
-  EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
-  
-  unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
-  MachineBasicBlock *thisMBB = BB;
-  const BasicBlock *LLVM_BB = BB->getBasicBlock();
-  ilist<MachineBasicBlock>::iterator It = BB;
-  ++It;
-  
-  //  thisMBB:
-  //  ...
-  //   cmpTY cr0, r1, r2
-  //   bCC copy1MBB
-  //   b copy0MBB
-
-  // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
-  // if we could insert other, non-terminator instructions after the
-  // bCC. But MBB->getFirstTerminator() can't understand this.
-  MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
-  F->getBasicBlockList().insert(It, copy1MBB);
-  BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
-  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
-  F->getBasicBlockList().insert(It, copy0MBB);
-  BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
-  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
-  F->getBasicBlockList().insert(It, sinkMBB);
-  // Update machine-CFG edges
-  BB->addSuccessor(copy1MBB);
-  BB->addSuccessor(copy0MBB);
-
-  //  copy1MBB:
-  //   %TrueValue = li 1
-  //   b sinkMBB
-  BB = copy1MBB;
-  unsigned TrueValue = makeAnotherReg(I.getType());
-  BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
-  BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
-  // Update machine-CFG edges
-  BB->addSuccessor(sinkMBB);
-
-  //  copy0MBB:
-  //   %FalseValue = li 0
-  //   fallthrough
-  BB = copy0MBB;
-  unsigned FalseValue = makeAnotherReg(I.getType());
-  BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
-  // Update machine-CFG edges
-  BB->addSuccessor(sinkMBB);
-
-  //  sinkMBB:
-  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
-  //  ...
-  BB = sinkMBB;
-  BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
-    .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
-}
-
-void ISel::visitSelectInst(SelectInst &SI) {
-  unsigned DestReg = getReg(SI);
-  MachineBasicBlock::iterator MII = BB->end();
-  emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
-                      SI.getFalseValue(), DestReg);
-}
- 
-/// emitSelect - Common code shared between visitSelectInst and the constant
-/// expression support.
-/// FIXME: this is most likely broken in one or more ways.  Namely, PowerPC has
-/// no select instruction.  FSEL only works for comparisons against zero.
-void ISel::emitSelectOperation(MachineBasicBlock *MBB,
-                               MachineBasicBlock::iterator IP,
-                               Value *Cond, Value *TrueVal, Value *FalseVal,
-                               unsigned DestReg) {
-  unsigned SelectClass = getClassB(TrueVal->getType());
-  unsigned Opcode;
-
-  // See if we can fold the setcc into the select instruction, or if we have
-  // to get the register of the Cond value
-  if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
-    // We successfully folded the setcc into the select instruction.
-    unsigned OpNum = getSetCCNumber(SCI->getOpcode());
-    OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
-    Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
-  } else {
-    unsigned CondReg = getReg(Cond, MBB, IP);
-    BuildMI(*MBB, IP, PPC::CMPI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
-    Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
-  }
-
-  //  thisMBB:
-  //  ...
-  //   cmpTY cr0, r1, r2
-  //   bCC copy1MBB
-  //   b copy0MBB
-
-  MachineBasicBlock *thisMBB = BB;
-  const BasicBlock *LLVM_BB = BB->getBasicBlock();
-  ilist<MachineBasicBlock>::iterator It = BB;
-  ++It;
-
-  // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
-  // if we could insert other, non-terminator instructions after the
-  // bCC. But MBB->getFirstTerminator() can't understand this.
-  MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
-  F->getBasicBlockList().insert(It, copy1MBB);
-  BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
-  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
-  F->getBasicBlockList().insert(It, copy0MBB);
-  BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
-  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
-  F->getBasicBlockList().insert(It, sinkMBB);
-  // Update machine-CFG edges
-  BB->addSuccessor(copy1MBB);
-  BB->addSuccessor(copy0MBB);
-
-  //  copy1MBB:
-  //   %TrueValue = ...
-  //   b sinkMBB
-  BB = copy1MBB;
-  unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
-  BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
-  // Update machine-CFG edges
-  BB->addSuccessor(sinkMBB);
-
-  //  copy0MBB:
-  //   %FalseValue = ...
-  //   fallthrough
-  BB = copy0MBB;
-  unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
-  // Update machine-CFG edges
-  BB->addSuccessor(sinkMBB);
-
-  //  sinkMBB:
-  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
-  //  ...
-  BB = sinkMBB;
-  BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
-    .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
-  // For a register pair representing a long value, define the second reg
-  if (getClass(TrueVal->getType()) == cLong)
-    BuildMI(BB, PPC::LI, 1, DestReg+1).addImm(0);
-  return;
-}
-
-
-
-/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
-/// operand, in the specified target register.
-///
-void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
-  bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
-
-  Value *Val = VR.Val;
-  const Type *Ty = VR.Ty;
-  if (Val) {
-    if (Constant *C = dyn_cast<Constant>(Val)) {
-      Val = ConstantExpr::getCast(C, Type::IntTy);
-      Ty = Type::IntTy;
-    }
-
-    // If this is a simple constant, just emit a load directly to avoid the copy
-    if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
-      int TheVal = CI->getRawValue() & 0xFFFFFFFF;
-
-      if (TheVal < 32768 && TheVal >= -32768) {
-        BuildMI(BB, PPC::LI, 1, targetReg).addSImm(TheVal);
-      } else {
-        unsigned TmpReg = makeAnotherReg(Type::IntTy);
-        BuildMI(BB, PPC::LIS, 1, TmpReg).addSImm(TheVal >> 16);
-        BuildMI(BB, PPC::ORI, 2, targetReg).addReg(TmpReg)
-          .addImm(TheVal & 0xFFFF);
-      }
-      return;
-    }
-  }
-
-  // Make sure we have the register number for this value...
-  unsigned Reg = Val ? getReg(Val) : VR.Reg;
-  switch (getClassB(Ty)) {
-  case cByte:
-    // Extend value into target register (8->32)
-    if (isUnsigned)
-      BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
-        .addZImm(24).addZImm(31);
-    else
-      BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg);
-    break;
-  case cShort:
-    // Extend value into target register (16->32)
-    if (isUnsigned)
-      BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
-        .addZImm(16).addZImm(31);
-    else
-      BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg);
-    break;
-  case cInt:
-    // Move value into target register (32->32)
-    BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
-    break;
-  default:
-    assert(0 && "Unpromotable operand class in promote32");
-  }
-}
-
-/// visitReturnInst - implemented with BLR
-///
-void ISel::visitReturnInst(ReturnInst &I) {
-  // Only do the processing if this is a non-void return
-  if (I.getNumOperands() > 0) {
-    Value *RetVal = I.getOperand(0);
-    switch (getClassB(RetVal->getType())) {
-    case cByte:   // integral return values: extend or move into r3 and return
-    case cShort:
-    case cInt:
-      promote32(PPC::R3, ValueRecord(RetVal));
-      break;
-    case cFP32:
-    case cFP64: {   // Floats & Doubles: Return in f1
-      unsigned RetReg = getReg(RetVal);
-      BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg);
-      break;
-    }
-    case cLong: {
-      unsigned RetReg = getReg(RetVal);
-      BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(RetReg).addReg(RetReg);
-      BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(RetReg+1).addReg(RetReg+1);
-      break;
-    }
-    default:
-      visitInstruction(I);
-    }
-  }
-  BuildMI(BB, PPC::BLR, 1).addImm(0);
-}
-
-// getBlockAfter - Return the basic block which occurs lexically after the
-// specified one.
-static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
-  Function::iterator I = BB; ++I;  // Get iterator to next block
-  return I != BB->getParent()->end() ? &*I : 0;
-}
-
-/// visitBranchInst - Handle conditional and unconditional branches here.  Note
-/// that since code layout is frozen at this point, that if we are trying to
-/// jump to a block that is the immediate successor of the current block, we can
-/// just make a fall-through (but we don't currently).
-///
-void ISel::visitBranchInst(BranchInst &BI) {
-  // Update machine-CFG edges
-  BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
-  if (BI.isConditional())
-    BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
-  
-  BasicBlock *NextBB = getBlockAfter(BI.getParent());  // BB after current one
-
-  if (!BI.isConditional()) {  // Unconditional branch?
-    if (BI.getSuccessor(0) != NextBB) 
-      BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
-    return;
-  }
-  
-  // See if we can fold the setcc into the branch itself...
-  SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
-  if (SCI == 0) {
-    // Nope, cannot fold setcc into this branch.  Emit a branch on a condition
-    // computed some other way...
-    unsigned condReg = getReg(BI.getCondition());
-    BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg)
-      .addImm(0);
-    if (BI.getSuccessor(1) == NextBB) {
-      if (BI.getSuccessor(0) != NextBB)
-        BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BNE)
-          .addMBB(MBBMap[BI.getSuccessor(0)])
-          .addMBB(MBBMap[BI.getSuccessor(1)]);
-    } else {
-      BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BEQ)
-        .addMBB(MBBMap[BI.getSuccessor(1)])
-        .addMBB(MBBMap[BI.getSuccessor(0)]);
-      if (BI.getSuccessor(0) != NextBB)
-        BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
-    }
-    return;
-  }
-
-  unsigned OpNum = getSetCCNumber(SCI->getOpcode());
-  unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
-  MachineBasicBlock::iterator MII = BB->end();
-  OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
-  
-  if (BI.getSuccessor(0) != NextBB) {
-    BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
-      .addMBB(MBBMap[BI.getSuccessor(0)])
-      .addMBB(MBBMap[BI.getSuccessor(1)]);
-    if (BI.getSuccessor(1) != NextBB)
-      BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
-  } else {
-    // Change to the inverse condition...
-    if (BI.getSuccessor(1) != NextBB) {
-      Opcode = PowerPCInstrInfo::invertPPCBranchOpcode(Opcode);
-      BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
-        .addMBB(MBBMap[BI.getSuccessor(1)])
-        .addMBB(MBBMap[BI.getSuccessor(0)]);
-    }
-  }
-}
-
-/// doCall - This emits an abstract call instruction, setting up the arguments
-/// and the return value as appropriate.  For the actual function call itself,
-/// it inserts the specified CallMI instruction into the stream.
-///
-/// FIXME: See Documentation at the following URL for "correct" behavior
-/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
-void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
-                  const std::vector<ValueRecord> &Args, bool isVarArg) {
-  // Count how many bytes are to be pushed on the stack, including the linkage
-  // area, and parameter passing area.
-  unsigned NumBytes = 24;
-  unsigned ArgOffset = 24;
-
-  if (!Args.empty()) {
-    for (unsigned i = 0, e = Args.size(); i != e; ++i)
-      switch (getClassB(Args[i].Ty)) {
-      case cByte: case cShort: case cInt:
-        NumBytes += 4; break;
-      case cLong:
-        NumBytes += 8; break;
-      case cFP32:
-        NumBytes += 4; break;
-      case cFP64:
-        NumBytes += 8; break;
-        break;
-      default: assert(0 && "Unknown class!");
-      }
-
-    // Just to be safe, we'll always reserve the full 32 bytes worth of
-    // argument passing space in case any called code gets funky on us.
-    if (NumBytes < 24 + 32) NumBytes = 24 + 32;
-
-    // Adjust the stack pointer for the new arguments...
-    // These functions are automatically eliminated by the prolog/epilog pass
-    BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
-
-    // Arguments go on the stack in reverse order, as specified by the ABI.
-    // Offset to the paramater area on the stack is 24.
-    int GPR_remaining = 8, FPR_remaining = 13;
-    unsigned GPR_idx = 0, FPR_idx = 0;
-    static const unsigned GPR[] = { 
-      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
-      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
-    };
-    static const unsigned FPR[] = {
-      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, 
-      PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, 
-      PPC::F13
-    };
-    
-    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
-      unsigned ArgReg;
-      switch (getClassB(Args[i].Ty)) {
-      case cByte:
-      case cShort:
-        // Promote arg to 32 bits wide into a temporary register...
-        ArgReg = makeAnotherReg(Type::UIntTy);
-        promote32(ArgReg, Args[i]);
-          
-        // Reg or stack?
-        if (GPR_remaining > 0) {
-          BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
-            .addReg(ArgReg);
-          CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
-        }
-        if (GPR_remaining <= 0 || isVarArg) {
-          BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
-            .addReg(PPC::R1);
-        }
-        break;
-      case cInt:
-        ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
-
-        // Reg or stack?
-        if (GPR_remaining > 0) {
-          BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
-            .addReg(ArgReg);
-          CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
-        }
-        if (GPR_remaining <= 0 || isVarArg) {
-          BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
-            .addReg(PPC::R1);
-        }
-        break;
-      case cLong:
-        ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
-
-        // Reg or stack?  Note that PPC calling conventions state that long args
-        // are passed rN = hi, rN+1 = lo, opposite of LLVM.
-        if (GPR_remaining > 1) {
-          BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
-            .addReg(ArgReg);
-          BuildMI(BB, PPC::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
-            .addReg(ArgReg+1);
-          CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
-          CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
-        }
-        if (GPR_remaining <= 1 || isVarArg) {
-          BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
-            .addReg(PPC::R1);
-          BuildMI(BB, PPC::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
-            .addReg(PPC::R1);
-        }
-
-        ArgOffset += 4;        // 8 byte entry, not 4.
-        GPR_remaining -= 1;    // uses up 2 GPRs
-        GPR_idx += 1;
-        break;
-      case cFP32:
-        ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
-        // Reg or stack?
-        if (FPR_remaining > 0) {
-          BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
-          CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
-          FPR_remaining--;
-          FPR_idx++;
-          
-          // If this is a vararg function, and there are GPRs left, also
-          // pass the float in an int.  Otherwise, put it on the stack.
-          if (isVarArg) {
-            BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
-            .addReg(PPC::R1);
-            if (GPR_remaining > 0) {
-              BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx])
-              .addSImm(ArgOffset).addReg(ArgReg);
-              CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
-            }
-          }
-        } else {
-          BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
-          .addReg(PPC::R1);
-        }
-        break;
-      case cFP64:
-        ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
-        // Reg or stack?
-        if (FPR_remaining > 0) {
-          BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
-          CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
-          FPR_remaining--;
-          FPR_idx++;
-          // For vararg functions, must pass doubles via int regs as well
-          if (isVarArg) {
-            BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
-            .addReg(PPC::R1);
-            
-            // Doubles can be split across reg + stack for varargs
-            if (GPR_remaining > 0) {
-              BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
-              .addReg(PPC::R1);
-              CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
-            }
-            if (GPR_remaining > 1) {
-              BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx+1])
-                .addSImm(ArgOffset+4).addReg(PPC::R1);
-              CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
-            }
-          }
-        } else {
-          BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
-          .addReg(PPC::R1);
-        }
-        // Doubles use 8 bytes, and 2 GPRs worth of param space
-        ArgOffset += 4;
-        GPR_remaining--;
-        GPR_idx++;
-        break;
-        
-      default: assert(0 && "Unknown class!");
-      }
-      ArgOffset += 4;
-      GPR_remaining--;
-      GPR_idx++;
-    }
-  } else {
-    BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(0);
-  }
-
-  BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR);
-  BB->push_back(CallMI);
-  
-  // These functions are automatically eliminated by the prolog/epilog pass
-  BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes);
-
-  // If there is a return value, scavenge the result from the location the call
-  // leaves it in...
-  //
-  if (Ret.Ty != Type::VoidTy) {
-    unsigned DestClass = getClassB(Ret.Ty);
-    switch (DestClass) {
-    case cByte:
-    case cShort:
-    case cInt:
-      // Integral results are in r3
-      BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
-      break;
-    case cFP32:   // Floating-point return values live in f1
-    case cFP64:
-      BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1);
-      break;
-    case cLong:   // Long values are in r3:r4
-      BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
-      BuildMI(BB, PPC::OR, 2, Ret.Reg+1).addReg(PPC::R4).addReg(PPC::R4);
-      break;
-    default: assert(0 && "Unknown class!");
-    }
-  }
-}
-
-
-/// visitCallInst - Push args on stack and do a procedure call instruction.
-void ISel::visitCallInst(CallInst &CI) {
-  MachineInstr *TheCall;
-  Function *F = CI.getCalledFunction();
-  if (F) {
-    // Is it an intrinsic function call?
-    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
-      visitIntrinsicCall(ID, CI);   // Special intrinsics are not handled here
-      return;
-    }
-    // Emit a CALL instruction with PC-relative displacement.
-    TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true);
-    // Add it to the set of functions called to be used by the Printer
-    TM.CalledFunctions.insert(F);
-  } else {  // Emit an indirect call through the CTR
-    unsigned Reg = getReg(CI.getCalledValue());
-    BuildMI(BB, PPC::MTCTR, 1).addReg(Reg);
-    TheCall = BuildMI(PPC::CALLindirect, 2).addZImm(20).addZImm(0);
-  }
-
-  std::vector<ValueRecord> Args;
-  for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
-    Args.push_back(ValueRecord(CI.getOperand(i)));
-
-  unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
-  bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
-  doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
-}         
-
-
-/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
-///
-static Value *dyncastIsNan(Value *V) {
-  if (CallInst *CI = dyn_cast<CallInst>(V))
-    if (Function *F = CI->getCalledFunction())
-      if (F->getIntrinsicID() == Intrinsic::isunordered)
-        return CI->getOperand(1);
-  return 0;
-}
-
-/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
-/// or's whos operands are all calls to the isnan predicate.
-static bool isOnlyUsedByUnorderedComparisons(Value *V) {
-  assert(dyncastIsNan(V) && "The value isn't an isnan call!");
-
-  // Check all uses, which will be or's of isnans if this predicate is true.
-  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
-    Instruction *I = cast<Instruction>(*UI);
-    if (I->getOpcode() != Instruction::Or) return false;
-    if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
-    if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
-  }
-
-  return true;
-}
-
-/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
-/// function, lowering any calls to unknown intrinsic functions into the
-/// equivalent LLVM code.
-///
-void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
-  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
-    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
-      if (CallInst *CI = dyn_cast<CallInst>(I++))
-        if (Function *F = CI->getCalledFunction())
-          switch (F->getIntrinsicID()) {
-          case Intrinsic::not_intrinsic:
-          case Intrinsic::vastart:
-          case Intrinsic::vacopy:
-          case Intrinsic::vaend:
-          case Intrinsic::returnaddress:
-          case Intrinsic::frameaddress:
-            // FIXME: should lower these ourselves
-            // case Intrinsic::isunordered:
-            // case Intrinsic::memcpy: -> doCall().  system memcpy almost
-            // guaranteed to be faster than anything we generate ourselves
-            // We directly implement these intrinsics
-            break;
-          case Intrinsic::readio: {
-            // On PPC, memory operations are in-order.  Lower this intrinsic
-            // into a volatile load.
-            Instruction *Before = CI->getPrev();
-            LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
-            CI->replaceAllUsesWith(LI);
-            BB->getInstList().erase(CI);
-            break;
-          }
-          case Intrinsic::writeio: {
-            // On PPC, memory operations are in-order.  Lower this intrinsic
-            // into a volatile store.
-            Instruction *Before = CI->getPrev();
-            StoreInst *SI = new StoreInst(CI->getOperand(1),
-                                          CI->getOperand(2), true, CI);
-            CI->replaceAllUsesWith(SI);
-            BB->getInstList().erase(CI);
-            break;
-          }
-          default:
-            // All other intrinsic calls we must lower.
-            Instruction *Before = CI->getPrev();
-            TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
-            if (Before) {        // Move iterator to instruction after call
-              I = Before; ++I;
-            } else {
-              I = BB->begin();
-            }
-          }
-}
-
-void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
-  unsigned TmpReg1, TmpReg2, TmpReg3;
-  switch (ID) {
-  case Intrinsic::vastart:
-    // Get the address of the first vararg value...
-    TmpReg1 = getReg(CI);
-    addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex, 
-                      0, false);
-    return;
-
-  case Intrinsic::vacopy:
-    TmpReg1 = getReg(CI);
-    TmpReg2 = getReg(CI.getOperand(1));
-    BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
-    return;
-  case Intrinsic::vaend: return;
-
-  case Intrinsic::returnaddress:
-    TmpReg1 = getReg(CI);
-    if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
-      MachineFrameInfo *MFI = F->getFrameInfo();
-      unsigned NumBytes = MFI->getStackSize();
-      
-      BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
-        .addReg(PPC::R1);
-    } else {
-      // Values other than zero are not implemented yet.
-      BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
-    }
-    return;
-
-  case Intrinsic::frameaddress:
-    TmpReg1 = getReg(CI);
-    if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
-      BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1);
-    } else {
-      // Values other than zero are not implemented yet.
-      BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
-    }
-    return;
-    
-#if 0
-    // This may be useful for supporting isunordered
-  case Intrinsic::isnan:
-    // If this is only used by 'isunordered' style comparisons, don't emit it.
-    if (isOnlyUsedByUnorderedComparisons(&CI)) return;
-    TmpReg1 = getReg(CI.getOperand(1));
-    emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
-    TmpReg2 = makeAnotherReg(Type::IntTy);
-    BuildMI(BB, PPC::MFCR, TmpReg2);
-    TmpReg3 = getReg(CI);
-    BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
-    return;
-#endif
-    
-  default: assert(0 && "Error: unknown intrinsics should have been lowered!");
-  }
-}
-
-/// visitSimpleBinary - Implement simple binary operators for integral types...
-/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
-/// Xor.
-///
-void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
-  unsigned DestReg = getReg(B);
-  MachineBasicBlock::iterator MI = BB->end();
-  Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
-  unsigned Class = getClassB(B.getType());
-
-  emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
-}
-
-/// emitBinaryFPOperation - This method handles emission of floating point
-/// Add (0), Sub (1), Mul (2), and Div (3) operations.
-void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
-                                 MachineBasicBlock::iterator IP,
-                                 Value *Op0, Value *Op1,
-                                 unsigned OperatorClass, unsigned DestReg) {
-
-  // Special case: op Reg, <const fp>
-  if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
-    // Create a constant pool entry for this constant.
-    MachineConstantPool *CP = F->getConstantPool();
-    unsigned CPI = CP->getConstantPoolIndex(Op1C);
-    const Type *Ty = Op1->getType();
-    assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
-
-    static const unsigned OpcodeTab[][4] = {
-      { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS },  // Float
-      { PPC::FADD,  PPC::FSUB,  PPC::FMUL,  PPC::FDIV },   // Double
-    };
-
-    unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
-    unsigned Op1Reg = getReg(Op1C, BB, IP);
-    unsigned Op0r = getReg(Op0, BB, IP);
-    BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
-    return;
-  }
-  
-  // Special case: R1 = op <const fp>, R2
-  if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
-    if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
-      // -0.0 - X === -X
-      unsigned op1Reg = getReg(Op1, BB, IP);
-      BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg);
-      return;
-    } else {
-      // R1 = op CST, R2  -->  R1 = opr R2, CST
-
-      // Create a constant pool entry for this constant.
-      MachineConstantPool *CP = F->getConstantPool();
-      unsigned CPI = CP->getConstantPoolIndex(Op0C);
-      const Type *Ty = Op0C->getType();
-      assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
-
-      static const unsigned OpcodeTab[][4] = {
-        { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS },  // Float
-        { PPC::FADD,  PPC::FSUB,  PPC::FMUL,  PPC::FDIV },   // Double
-      };
-
-      unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
-      unsigned Op0Reg = getReg(Op0C, BB, IP);
-      unsigned Op1Reg = getReg(Op1, BB, IP);
-      BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
-      return;
-    }
-
-  // General case.
-  static const unsigned OpcodeTab[] = {
-    PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV
-  };
-
-  unsigned Opcode = OpcodeTab[OperatorClass];
-  unsigned Op0r = getReg(Op0, BB, IP);
-  unsigned Op1r = getReg(Op1, BB, IP);
-  BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
-}
-
-/// emitSimpleBinaryOperation - Implement simple binary operators for integral
-/// types...  OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
-/// Or, 4 for Xor.
-///
-/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
-/// and constant expression support.
-///
-void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
-                                     MachineBasicBlock::iterator IP,
-                                     Value *Op0, Value *Op1,
-                                     unsigned OperatorClass, unsigned DestReg) {
-  unsigned Class = getClassB(Op0->getType());
-
-  // Arithmetic and Bitwise operators
-  static const unsigned OpcodeTab[] = {
-    PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR
-  };
-  static const unsigned ImmOpcodeTab[] = {
-    PPC::ADDI, PPC::SUBI, PPC::ANDIo, PPC::ORI, PPC::XORI
-  };
-  static const unsigned RImmOpcodeTab[] = {
-    PPC::ADDI, PPC::SUBFIC, PPC::ANDIo, PPC::ORI, PPC::XORI
-  };
-
-  // Otherwise, code generate the full operation with a constant.
-  static const unsigned BottomTab[] = {
-    PPC::ADDC, PPC::SUBC, PPC::AND, PPC::OR, PPC::XOR
-  };
-  static const unsigned TopTab[] = {
-    PPC::ADDE, PPC::SUBFE, PPC::AND, PPC::OR, PPC::XOR
-  };
-  
-  if (Class == cFP32 || Class == cFP64) {
-    assert(OperatorClass < 2 && "No logical ops for FP!");
-    emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
-    return;
-  }
-
-  if (Op0->getType() == Type::BoolTy) {
-    if (OperatorClass == 3)
-      // If this is an or of two isnan's, emit an FP comparison directly instead
-      // of or'ing two isnan's together.
-      if (Value *LHS = dyncastIsNan(Op0))
-        if (Value *RHS = dyncastIsNan(Op1)) {
-          unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
-          unsigned TmpReg = makeAnotherReg(Type::IntTy);
-          emitUCOM(MBB, IP, Op0Reg, Op1Reg);
-          BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
-          BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
-            .addImm(31).addImm(31);
-          return;
-        }
-  }
-
-  // Special case: op <const int>, Reg
-  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
-    // sub 0, X -> subfic
-    if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
-      unsigned Op1r = getReg(Op1, MBB, IP);
-      int imm = CI->getRawValue() & 0xFFFF;
-
-      if (Class == cLong) {
-        BuildMI(*MBB, IP, PPC::SUBFIC, 2, DestReg+1).addReg(Op1r+1)
-          .addSImm(imm);
-        BuildMI(*MBB, IP, PPC::SUBFZE, 1, DestReg).addReg(Op1r);
-      } else {
-        BuildMI(*MBB, IP, PPC::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
-      }
-      return;
-    }
-    
-    // If it is easy to do, swap the operands and emit an immediate op
-    if (Class != cLong && OperatorClass != 1 && 
-        canUseAsImmediateForOpcode(CI, OperatorClass)) {
-      unsigned Op1r = getReg(Op1, MBB, IP);
-      int imm = CI->getRawValue() & 0xFFFF;
-    
-      if (OperatorClass < 2)
-        BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
-          .addSImm(imm);
-      else
-        BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
-          .addZImm(imm);
-      return;
-    }
-  }
-
-  // Special case: op Reg, <const int>
-  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
-    unsigned Op0r = getReg(Op0, MBB, IP);
-
-    // xor X, -1 -> not X
-    if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
-      BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
-      if (Class == cLong)  // Invert the low part too
-        BuildMI(*MBB, IP, PPC::NOR, 2, DestReg+1).addReg(Op0r+1)
-          .addReg(Op0r+1);
-      return;
-    }
-    
-    if (Class != cLong) {
-      if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
-        int immediate = Op1C->getRawValue() & 0xFFFF;
-        
-        if (OperatorClass < 2)
-          BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
-            .addSImm(immediate);
-        else
-          BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
-            .addZImm(immediate);
-      } else {
-        unsigned Op1r = getReg(Op1, MBB, IP);
-        BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
-          .addReg(Op1r);
-      }
-      return;
-    }
-
-    unsigned Op1r = getReg(Op1, MBB, IP);
-
-    BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
-      .addReg(Op1r+1);
-    BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
-      .addReg(Op1r);
-    return;
-  }
-  
-  // We couldn't generate an immediate variant of the op, load both halves into
-  // registers and emit the appropriate opcode.
-  unsigned Op0r = getReg(Op0, MBB, IP);
-  unsigned Op1r = getReg(Op1, MBB, IP);
-
-  if (Class != cLong) {
-    unsigned Opcode = OpcodeTab[OperatorClass];
-    BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
-  } else {
-    BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
-      .addReg(Op1r+1);
-    BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
-      .addReg(Op1r);
-  }
-  return;
-}
-
-// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It
-// returns zero when the input is not exactly a power of two.
-static unsigned ExactLog2(unsigned Val) {
-  if (Val == 0 || (Val & (Val-1))) return 0;
-  unsigned Count = 0;
-  while (Val != 1) {
-    Val >>= 1;
-    ++Count;
-  }
-  return Count;
-}
-
-/// doMultiply - Emit appropriate instructions to multiply together the
-/// Values Op0 and Op1, and put the result in DestReg.
-///
-void ISel::doMultiply(MachineBasicBlock *MBB,
-                      MachineBasicBlock::iterator IP,
-                      unsigned DestReg, Value *Op0, Value *Op1) {
-  unsigned Class0 = getClass(Op0->getType());
-  unsigned Class1 = getClass(Op1->getType());
-  
-  unsigned Op0r = getReg(Op0, MBB, IP);
-  unsigned Op1r = getReg(Op1, MBB, IP);
-  
-  // 64 x 64 -> 64
-  if (Class0 == cLong && Class1 == cLong) {
-    unsigned Tmp1 = makeAnotherReg(Type::IntTy);
-    unsigned Tmp2 = makeAnotherReg(Type::IntTy);
-    unsigned Tmp3 = makeAnotherReg(Type::IntTy);
-    unsigned Tmp4 = makeAnotherReg(Type::IntTy);
-    BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
-    BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
-    BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
-    BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
-    BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
-    BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
-    return;
-  }
-  
-  // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
-  if (Class0 == cLong && Class1 <= cInt) {
-    unsigned Tmp0 = makeAnotherReg(Type::IntTy);
-    unsigned Tmp1 = makeAnotherReg(Type::IntTy);
-    unsigned Tmp2 = makeAnotherReg(Type::IntTy);
-    unsigned Tmp3 = makeAnotherReg(Type::IntTy);
-    unsigned Tmp4 = makeAnotherReg(Type::IntTy);
-    if (Op1->getType()->isSigned())
-      BuildMI(*MBB, IP, PPC::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
-    else
-      BuildMI(*MBB, IP, PPC::LI, 2, Tmp0).addSImm(0);
-    BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
-    BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
-    BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
-    BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
-    BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
-    BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
-    return;
-  }
-  
-  // 32 x 32 -> 32
-  if (Class0 <= cInt && Class1 <= cInt) {
-    BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
-    return;
-  }
-  
-  assert(0 && "doMultiply cannot operate on unknown type!");
-}
-
-/// doMultiplyConst - This method will multiply the value in Op0 by the
-/// value of the ContantInt *CI
-void ISel::doMultiplyConst(MachineBasicBlock *MBB,
-                           MachineBasicBlock::iterator IP,
-                           unsigned DestReg, Value *Op0, ConstantInt *CI) {
-  unsigned Class = getClass(Op0->getType());
-
-  // Mul op0, 0 ==> 0
-  if (CI->isNullValue()) {
-    BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
-    if (Class == cLong)
-      BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0);
-    return;
-  }
-  
-  // Mul op0, 1 ==> op0
-  if (CI->equalsInt(1)) {
-    unsigned Op0r = getReg(Op0, MBB, IP);
-    BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
-    if (Class == cLong)
-      BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
-    return;
-  }
-
-  // If the element size is exactly a power of 2, use a shift to get it.
-  if (unsigned Shift = ExactLog2(CI->getRawValue())) {
-    ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
-    emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
-    return;
-  }
-  
-  // If 32 bits or less and immediate is in right range, emit mul by immediate
-  if (Class == cByte || Class == cShort || Class == cInt) {
-    if (canUseAsImmediateForOpcode(CI, 0)) {
-      unsigned Op0r = getReg(Op0, MBB, IP);
-      unsigned imm = CI->getRawValue() & 0xFFFF;
-      BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
-      return;
-    }
-  }
-  
-  doMultiply(MBB, IP, DestReg, Op0, CI);
-}
-
-void ISel::visitMul(BinaryOperator &I) {
-  unsigned ResultReg = getReg(I);
-
-  Value *Op0 = I.getOperand(0);
-  Value *Op1 = I.getOperand(1);
-
-  MachineBasicBlock::iterator IP = BB->end();
-  emitMultiply(BB, IP, Op0, Op1, ResultReg);
-}
-
-void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
-                        Value *Op0, Value *Op1, unsigned DestReg) {
-  TypeClass Class = getClass(Op0->getType());
-
-  switch (Class) {
-  case cByte:
-  case cShort:
-  case cInt:
-  case cLong:
-    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
-      doMultiplyConst(MBB, IP, DestReg, Op0, CI);
-    } else {
-      doMultiply(MBB, IP, DestReg, Op0, Op1);
-    }
-    return;
-  case cFP32:
-  case cFP64:
-    emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
-    return;
-    break;
-  }
-}
-
-
-/// visitDivRem - Handle division and remainder instructions... these
-/// instruction both require the same instructions to be generated, they just
-/// select the result from a different register.  Note that both of these
-/// instructions work differently for signed and unsigned operands.
-///
-void ISel::visitDivRem(BinaryOperator &I) {
-  unsigned ResultReg = getReg(I);
-  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
-  MachineBasicBlock::iterator IP = BB->end();
-  emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
-                      ResultReg);
-}
-
-void ISel::emitDivRemOperation(MachineBasicBlock *BB,
-                               MachineBasicBlock::iterator IP,
-                               Value *Op0, Value *Op1, bool isDiv,
-                               unsigned ResultReg) {
-  const Type *Ty = Op0->getType();
-  unsigned Class = getClass(Ty);
-  switch (Class) {
-  case cFP32:
-    if (isDiv) {
-      // Floating point divide...
-      emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
-      return;
-    } else {
-      // Floating point remainder via fmodf(float x, float y);
-      unsigned Op0Reg = getReg(Op0, BB, IP);
-      unsigned Op1Reg = getReg(Op1, BB, IP);
-      MachineInstr *TheCall =
-        BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
-      std::vector<ValueRecord> Args;
-      Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
-      Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
-      doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
-      TM.CalledFunctions.insert(fmodfFn);
-    }
-    return;
-  case cFP64:
-    if (isDiv) {
-      // Floating point divide...
-      emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
-      return;
-    } else {               
-      // Floating point remainder via fmod(double x, double y);
-      unsigned Op0Reg = getReg(Op0, BB, IP);
-      unsigned Op1Reg = getReg(Op1, BB, IP);
-      MachineInstr *TheCall =
-        BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
-      std::vector<ValueRecord> Args;
-      Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
-      Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
-      doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
-      TM.CalledFunctions.insert(fmodFn);
-    }
-    return;
-  case cLong: {
-    static Function* const Funcs[] =
-      { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
-    unsigned Op0Reg = getReg(Op0, BB, IP);
-    unsigned Op1Reg = getReg(Op1, BB, IP);
-    unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
-    MachineInstr *TheCall =
-      BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
-
-    std::vector<ValueRecord> Args;
-    Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
-    Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
-    doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
-    TM.CalledFunctions.insert(Funcs[NameIdx]);
-    return;
-  }
-  case cByte: case cShort: case cInt:
-    break;          // Small integrals, handled below...
-  default: assert(0 && "Unknown class!");
-  }
-
-  // Special case signed division by power of 2.
-  if (isDiv)
-    if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
-      assert(Class != cLong && "This doesn't handle 64-bit divides!");
-      int V = CI->getValue();
-
-      if (V == 1) {       // X /s 1 => X
-        unsigned Op0Reg = getReg(Op0, BB, IP);
-        BuildMI(*BB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
-        return;
-      }
-
-      if (V == -1) {      // X /s -1 => -X
-        unsigned Op0Reg = getReg(Op0, BB, IP);
-        BuildMI(*BB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg);
-        return;
-      }
-
-      unsigned log2V = ExactLog2(V);
-      if (log2V != 0 && Ty->isSigned()) {
-        unsigned Op0Reg = getReg(Op0, BB, IP);
-        unsigned TmpReg = makeAnotherReg(Op0->getType());
-        
-        BuildMI(*BB, IP, PPC::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
-        BuildMI(*BB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg);
-        return;
-      }
-    }
-
-  unsigned Op0Reg = getReg(Op0, BB, IP);
-  unsigned Op1Reg = getReg(Op1, BB, IP);
-  unsigned Opcode = Ty->isSigned() ? PPC::DIVW : PPC::DIVWU;
-  
-  if (isDiv) {
-    BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
-  } else { // Remainder
-    unsigned TmpReg1 = makeAnotherReg(Op0->getType());
-    unsigned TmpReg2 = makeAnotherReg(Op0->getType());
-    
-    BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
-    BuildMI(*BB, IP, PPC::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
-    BuildMI(*BB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
-  }
-}
-
-
-/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
-/// for constant immediate shift values, and for constant immediate
-/// shift values equal to 1. Even the general case is sort of special,
-/// because the shift amount has to be in CL, not just any old register.
-///
-void ISel::visitShiftInst(ShiftInst &I) {
-  MachineBasicBlock::iterator IP = BB->end();
-  emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
-                     I.getOpcode() == Instruction::Shl, I.getType(),
-                     getReg(I));
-}
-
-/// emitShiftOperation - Common code shared between visitShiftInst and
-/// constant expression support.
-///
-void ISel::emitShiftOperation(MachineBasicBlock *MBB,
-                              MachineBasicBlock::iterator IP,
-                              Value *Op, Value *ShiftAmount, bool isLeftShift,
-                              const Type *ResultTy, unsigned DestReg) {
-  unsigned SrcReg = getReg (Op, MBB, IP);
-  bool isSigned = ResultTy->isSigned ();
-  unsigned Class = getClass (ResultTy);
-  
-  // Longs, as usual, are handled specially...
-  if (Class == cLong) {
-    // If we have a constant shift, we can generate much more efficient code
-    // than otherwise...
-    //
-    if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
-      unsigned Amount = CUI->getValue();
-      if (Amount < 32) {
-        if (isLeftShift) {
-          // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
-          BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
-            .addImm(Amount).addImm(0).addImm(31-Amount);
-          BuildMI(*MBB, IP, PPC::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
-            .addImm(Amount).addImm(32-Amount).addImm(31);
-          BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
-            .addImm(Amount).addImm(0).addImm(31-Amount);
-        } else {
-          // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
-          BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
-            .addImm(32-Amount).addImm(Amount).addImm(31);
-          BuildMI(*MBB, IP, PPC::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
-            .addImm(32-Amount).addImm(0).addImm(Amount-1);
-          BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
-            .addImm(32-Amount).addImm(Amount).addImm(31);
-        }
-      } else {                 // Shifting more than 32 bits
-        Amount -= 32;
-        if (isLeftShift) {
-          if (Amount != 0) {
-            BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg+1)
-              .addImm(Amount).addImm(0).addImm(31-Amount);
-          } else {
-            BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg+1)
-              .addReg(SrcReg+1);
-          }
-          BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0);
-        } else {
-          if (Amount != 0) {
-            if (isSigned)
-              BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg+1).addReg(SrcReg)
-                .addImm(Amount);
-            else
-              BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg)
-                .addImm(32-Amount).addImm(Amount).addImm(31);
-          } else {
-            BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
-              .addReg(SrcReg);
-          }
-          BuildMI(*MBB, IP,PPC::LI, 1, DestReg).addSImm(0);
-        }
-      }
-    } else {
-      unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
-      unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
-      unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
-      unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
-      unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
-      unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
-      unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
-      
-      if (isLeftShift) {
-        BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
-          .addSImm(32);
-        BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg2).addReg(SrcReg)
-          .addReg(ShiftAmountReg);
-        BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg3).addReg(SrcReg+1)
-          .addReg(TmpReg1);
-        BuildMI(*MBB, IP, PPC::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
-        BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
-          .addSImm(-32);
-        BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg6).addReg(SrcReg+1)
-          .addReg(TmpReg5);
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(TmpReg4)
-          .addReg(TmpReg6);
-        BuildMI(*MBB, IP, PPC::SLW, 2, DestReg+1).addReg(SrcReg+1)
-          .addReg(ShiftAmountReg);
-      } else {
-        if (isSigned) {
-          // FIXME: Unimplemented
-          // Page C-3 of the PowerPC 32bit Programming Environments Manual
-          std::cerr << "ERROR: Unimplemented: signed right shift of long\n";
-          abort();
-        } else {
-          BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
-            .addSImm(32);
-          BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1)
-            .addReg(ShiftAmountReg);
-          BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg)
-            .addReg(TmpReg1);
-          BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2)
-            .addReg(TmpReg3);
-          BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
-            .addSImm(-32);
-          BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg6).addReg(SrcReg)
-            .addReg(TmpReg5);
-          BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(TmpReg4)
-            .addReg(TmpReg6);
-          BuildMI(*MBB, IP, PPC::SRW, 2, DestReg).addReg(SrcReg)
-            .addReg(ShiftAmountReg);
-        }
-      }
-    }
-    return;
-  }
-
-  if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
-    // The shift amount is constant, guaranteed to be a ubyte. Get its value.
-    assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
-    unsigned Amount = CUI->getValue();
-
-    if (isLeftShift) {
-      BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
-        .addImm(Amount).addImm(0).addImm(31-Amount);
-    } else {
-      if (isSigned) {
-        BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
-      } else {
-        BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
-          .addImm(32-Amount).addImm(Amount).addImm(31);
-      }
-    }
-  } else {                  // The shift amount is non-constant.
-    unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
-
-    if (isLeftShift) {
-      BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg)
-        .addReg(ShiftAmountReg);
-    } else {
-      BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg)
-        .addReg(SrcReg).addReg(ShiftAmountReg);
-    }
-  }
-}
-
-
-/// visitLoadInst - Implement LLVM load instructions.  Pretty straightforward
-/// mapping of LLVM classes to PPC load instructions, with the exception of
-/// signed byte loads, which need a sign extension following them.
-///
-void ISel::visitLoadInst(LoadInst &I) {
-  // Immediate opcodes, for reg+imm addressing
-  static const unsigned ImmOpcodes[] = { 
-    PPC::LBZ, PPC::LHZ, PPC::LWZ, 
-    PPC::LFS, PPC::LFD, PPC::LWZ
-  };
-  // Indexed opcodes, for reg+reg addressing
-  static const unsigned IdxOpcodes[] = {
-    PPC::LBZX, PPC::LHZX, PPC::LWZX,
-    PPC::LFSX, PPC::LFDX, PPC::LWZX
-  };
-
-  unsigned Class     = getClassB(I.getType());
-  unsigned ImmOpcode = ImmOpcodes[Class];
-  unsigned IdxOpcode = IdxOpcodes[Class];
-  unsigned DestReg   = getReg(I);
-  Value *SourceAddr  = I.getOperand(0);
-  
-  if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA;
-  if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX;
-
-  if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
-    unsigned FI = getFixedSizedAllocaFI(AI);
-    if (Class == cLong) {
-      addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
-      addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4);
-    } else if (Class == cByte && I.getType()->isSigned()) {
-      unsigned TmpReg = makeAnotherReg(I.getType());
-      addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
-      BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
-    } else {
-      addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
-    }
-    return;
-  }
-  
-  // If this load is the only use of the GEP instruction that is its address,
-  // then we can fold the GEP directly into the load instruction.
-  // emitGEPOperation with a second to last arg of 'true' will place the
-  // base register for the GEP into baseReg, and the constant offset from that
-  // into offset.  If the offset fits in 16 bits, we can emit a reg+imm store
-  // otherwise, we copy the offset into another reg, and use reg+reg addressing.
-  if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
-    unsigned baseReg = getReg(GEPI);
-    unsigned pendingAdd;
-    ConstantSInt *offset;
-    
-    emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1, 
-                     GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
-
-    if (pendingAdd == 0 && Class != cLong && 
-        canUseAsImmediateForOpcode(offset, 0)) {
-      if (Class == cByte && I.getType()->isSigned()) {
-        unsigned TmpReg = makeAnotherReg(I.getType());
-        BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
-          .addReg(baseReg);
-        BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
-      } else {
-        BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
-          .addReg(baseReg);
-      }
-      return;
-    }
-    
-    unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
-
-    if (Class == cLong) {
-      unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
-      BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
-      BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
-      BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg);
-    } else if (Class == cByte && I.getType()->isSigned()) {
-      unsigned TmpReg = makeAnotherReg(I.getType());
-      BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg);
-      BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
-    } else {
-      BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
-    }
-    return;
-  }
-  
-  // The fallback case, where the load was from a source that could not be
-  // folded into the load instruction. 
-  unsigned SrcAddrReg = getReg(SourceAddr);
-    
-  if (Class == cLong) {
-    BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
-    BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
-  } else if (Class == cByte && I.getType()->isSigned()) {
-    unsigned TmpReg = makeAnotherReg(I.getType());
-    BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
-    BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
-  } else {
-    BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
-  }
-}
-
-/// visitStoreInst - Implement LLVM store instructions
-///
-void ISel::visitStoreInst(StoreInst &I) {
-  // Immediate opcodes, for reg+imm addressing
-  static const unsigned ImmOpcodes[] = {
-    PPC::STB, PPC::STH, PPC::STW, 
-    PPC::STFS, PPC::STFD, PPC::STW
-  };
-  // Indexed opcodes, for reg+reg addressing
-  static const unsigned IdxOpcodes[] = {
-    PPC::STBX, PPC::STHX, PPC::STWX, 
-    PPC::STFSX, PPC::STFDX, PPC::STWX
-  };
-  
-  Value *SourceAddr  = I.getOperand(1);
-  const Type *ValTy  = I.getOperand(0)->getType();
-  unsigned Class     = getClassB(ValTy);
-  unsigned ImmOpcode = ImmOpcodes[Class];
-  unsigned IdxOpcode = IdxOpcodes[Class];
-  unsigned ValReg    = getReg(I.getOperand(0));
-
-  // If this store is the only use of the GEP instruction that is its address,
-  // then we can fold the GEP directly into the store instruction.
-  // emitGEPOperation with a second to last arg of 'true' will place the
-  // base register for the GEP into baseReg, and the constant offset from that
-  // into offset.  If the offset fits in 16 bits, we can emit a reg+imm store
-  // otherwise, we copy the offset into another reg, and use reg+reg addressing.
-  if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
-    unsigned baseReg = getReg(GEPI);
-    unsigned pendingAdd;
-    ConstantSInt *offset;
-    
-    emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1, 
-                     GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
-
-    if (0 == pendingAdd && Class != cLong && 
-        canUseAsImmediateForOpcode(offset, 0)) {
-      BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
-        .addReg(baseReg);
-      return;
-    }
-    
-    unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
-
-    if (Class == cLong) {
-      unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
-      BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
-      BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
-      BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4)
-        .addReg(baseReg);
-      return;
-    }
-    BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
-    return;
-  }
-  
-  // If the store address wasn't the only use of a GEP, we fall back to the
-  // standard path: store the ValReg at the value in AddressReg.
-  unsigned AddressReg  = getReg(I.getOperand(1));
-  if (Class == cLong) {
-    BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
-    BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
-    return;
-  }
-  BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
-}
-
-
-/// visitCastInst - Here we have various kinds of copying with or without sign
-/// extension going on.
-///
-void ISel::visitCastInst(CastInst &CI) {
-  Value *Op = CI.getOperand(0);
-
-  unsigned SrcClass = getClassB(Op->getType());
-  unsigned DestClass = getClassB(CI.getType());
-
-  // If this is a cast from a 32-bit integer to a Long type, and the only uses
-  // of the case are GEP instructions, then the cast does not need to be
-  // generated explicitly, it will be folded into the GEP.
-  if (DestClass == cLong && SrcClass == cInt) {
-    bool AllUsesAreGEPs = true;
-    for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
-      if (!isa<GetElementPtrInst>(*I)) {
-        AllUsesAreGEPs = false;
-        break;
-      }        
-
-    // No need to codegen this cast if all users are getelementptr instrs...
-    if (AllUsesAreGEPs) return;
-  }
-
-  unsigned DestReg = getReg(CI);
-  MachineBasicBlock::iterator MI = BB->end();
-  emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
-}
-
-/// emitCastOperation - Common code shared between visitCastInst and constant
-/// expression cast support.
-///
-void ISel::emitCastOperation(MachineBasicBlock *MBB,
-                             MachineBasicBlock::iterator IP,
-                             Value *Src, const Type *DestTy,
-                             unsigned DestReg) {
-  const Type *SrcTy = Src->getType();
-  unsigned SrcClass = getClassB(SrcTy);
-  unsigned DestClass = getClassB(DestTy);
-  unsigned SrcReg = getReg(Src, MBB, IP);
-
-  // Implement casts to bool by using compare on the operand followed by set if
-  // not zero on the result.
-  if (DestTy == Type::BoolTy) {
-    switch (SrcClass) {
-    case cByte:
-    case cShort:
-    case cInt: {
-      unsigned TmpReg = makeAnotherReg(Type::IntTy);
-      BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
-      BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
-      break;
-    }
-    case cLong: {
-      unsigned TmpReg = makeAnotherReg(Type::IntTy);
-      unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
-      BuildMI(*MBB, IP, PPC::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
-      BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
-      BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg)
-        .addReg(SrcReg2);
-      break;
-    }
-    case cFP32:
-    case cFP64:
-      // FSEL perhaps?
-      std::cerr << "ERROR: Cast fp-to-bool not implemented!\n";
-      abort();
-    }
-    return;
-  }
-
-  // Handle cast of Float -> Double
-  if (SrcClass == cFP32 && DestClass == cFP64) {
-    BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg);
-    return;
-  }
-  
-  // Handle cast of Double -> Float
-  if (SrcClass == cFP64 && DestClass == cFP32) {
-    BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg);
-    return;
-  }
-  
-  // Handle casts from integer to floating point now...
-  if (DestClass == cFP32 || DestClass == cFP64) {
-
-    // Emit a library call for long to float conversion
-    if (SrcClass == cLong) {
-      std::vector<ValueRecord> Args;
-      Args.push_back(ValueRecord(SrcReg, SrcTy));
-      Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
-      MachineInstr *TheCall =
-        BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
-      doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
-      TM.CalledFunctions.insert(floatFn);
-      return;
-    }
-    
-    // Make sure we're dealing with a full 32 bits
-    unsigned TmpReg = makeAnotherReg(Type::IntTy);
-    promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
-
-    SrcReg = TmpReg;
-    
-    // Spill the integer to memory and reload it from there.
-    // Also spill room for a special conversion constant
-    int ConstantFrameIndex = 
-      F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
-    int ValueFrameIdx =
-      F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
-
-    unsigned constantHi = makeAnotherReg(Type::IntTy);
-    unsigned constantLo = makeAnotherReg(Type::IntTy);
-    unsigned ConstF = makeAnotherReg(Type::DoubleTy);
-    unsigned TempF = makeAnotherReg(Type::DoubleTy);
-    
-    if (!SrcTy->isSigned()) {
-      BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
-      BuildMI(*BB, IP, PPC::LI, 1, constantLo).addSImm(0);
-      addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), 
-                        ConstantFrameIndex);
-      addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo), 
-                        ConstantFrameIndex, 4);
-      addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), 
-                        ValueFrameIdx);
-      addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(SrcReg), 
-                        ValueFrameIdx, 4);
-      addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF), 
-                        ConstantFrameIndex);
-      addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
-      BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
-    } else {
-      unsigned TempLo = makeAnotherReg(Type::IntTy);
-      BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
-      BuildMI(*BB, IP, PPC::LIS, 1, constantLo).addSImm(0x8000);
-      addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), 
-                        ConstantFrameIndex);
-      addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo), 
-                        ConstantFrameIndex, 4);
-      addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), 
-                        ValueFrameIdx);
-      BuildMI(*BB, IP, PPC::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
-      addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(TempLo), 
-                        ValueFrameIdx, 4);
-      addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF), 
-                        ConstantFrameIndex);
-      addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
-      BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
-    }
-    return;
-  }
-
-  // Handle casts from floating point to integer now...
-  if (SrcClass == cFP32 || SrcClass == cFP64) {
-    static Function* const Funcs[] =
-      { __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn };
-    // emit library call
-    if (DestClass == cLong) {
-      bool isDouble = SrcClass == cFP64;
-      unsigned nameIndex = 2 * DestTy->isSigned() + isDouble;
-      std::vector<ValueRecord> Args;
-      Args.push_back(ValueRecord(SrcReg, SrcTy));
-      Function *floatFn = Funcs[nameIndex];
-      MachineInstr *TheCall =
-        BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
-      doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
-      TM.CalledFunctions.insert(floatFn);
-      return;
-    }
-
-    int ValueFrameIdx =
-      F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
-
-    if (DestTy->isSigned()) {
-      unsigned TempReg = makeAnotherReg(Type::DoubleTy);
-      
-      // Convert to integer in the FP reg and store it to a stack slot
-      BuildMI(*BB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg);
-      addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3)
-                          .addReg(TempReg), ValueFrameIdx);
-
-      // There is no load signed byte opcode, so we must emit a sign extend for
-      // that particular size.  Make sure to source the new integer from the 
-      // correct offset.
-      if (DestClass == cByte) {
-        unsigned TempReg2 = makeAnotherReg(DestTy);
-        addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, TempReg2), 
-                          ValueFrameIdx, 7);
-        BuildMI(*MBB, IP, PPC::EXTSB, DestReg).addReg(TempReg2);
-      } else {
-        int offset = (DestClass == cShort) ? 6 : 4;
-        unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ;
-        addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg), 
-                          ValueFrameIdx, offset);
-      }
-    } else {
-      unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
-      double maxInt = (1LL << 32) - 1;
-      unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
-      double border = 1LL << 31;
-      unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
-      unsigned UseZero = makeAnotherReg(Type::DoubleTy);
-      unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
-      unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
-      unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
-      unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
-      unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
-      unsigned IntTmp = makeAnotherReg(Type::IntTy);
-      unsigned XorReg = makeAnotherReg(Type::IntTy);
-      int FrameIdx = 
-        F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
-      // Update machine-CFG edges
-      MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
-      MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
-      MachineBasicBlock *OldMBB = BB;
-      ilist<MachineBasicBlock>::iterator It = BB; ++It;
-      F->getBasicBlockList().insert(It, XorMBB);
-      F->getBasicBlockList().insert(It, PhiMBB);
-      BB->addSuccessor(XorMBB);
-      BB->addSuccessor(PhiMBB);
-
-      // Convert from floating point to unsigned 32-bit value
-      // Use 0 if incoming value is < 0.0
-      BuildMI(*BB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
-        .addReg(Zero);
-      // Use 2**32 - 1 if incoming value is >= 2**32
-      BuildMI(*BB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
-      BuildMI(*BB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt)
-        .addReg(UseZero).addReg(MaxInt);
-      // Subtract 2**31
-      BuildMI(*BB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
-      // Use difference if >= 2**31
-      BuildMI(*BB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice)
-        .addReg(Border);
-      BuildMI(*BB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
-        .addReg(UseChoice);
-      // Convert to integer
-      BuildMI(*BB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
-      addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3).addReg(ConvReg),
-                        FrameIdx);
-      if (DestClass == cByte) {
-        addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, DestReg),
-                          FrameIdx, 7);
-      } else if (DestClass == cShort) {
-        addFrameReference(BuildMI(*BB, IP, PPC::LHZ, 2, DestReg),
-                          FrameIdx, 6);
-      } if (DestClass == cInt) {
-        addFrameReference(BuildMI(*BB, IP, PPC::LWZ, 2, IntTmp),
-                          FrameIdx, 4);
-        BuildMI(*BB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
-        BuildMI(*BB, IP, PPC::B, 1).addMBB(XorMBB);
-
-        // XorMBB:
-        //   add 2**31 if input was >= 2**31
-        BB = XorMBB;
-        BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
-        XorMBB->addSuccessor(PhiMBB);
-
-        // PhiMBB:
-        //   DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
-        BB = PhiMBB;
-        BuildMI(BB, PPC::PHI, 2, DestReg).addReg(IntTmp).addMBB(OldMBB)
-          .addReg(XorReg).addMBB(XorMBB);
-      }
-    }
-    return;
-  }
-
-  // Check our invariants
-  assert((SrcClass <= cInt || SrcClass == cLong) && 
-         "Unhandled source class for cast operation!");
-  assert((DestClass <= cInt || DestClass == cLong) && 
-         "Unhandled destination class for cast operation!");
-
-  bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
-  bool destUnsigned = DestTy->isUnsigned();
-
-  // Unsigned -> Unsigned, clear if larger, 
-  if (sourceUnsigned && destUnsigned) {
-    // handle long dest class now to keep switch clean
-    if (DestClass == cLong) {
-      if (SrcClass == cLong) {
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1)
-          .addReg(SrcReg+1);
-      } else {
-        BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
-          .addReg(SrcReg);
-      }
-      return;
-    }
-
-    // handle u{ byte, short, int } x u{ byte, short, int }
-    unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
-    switch (SrcClass) {
-    case cByte:
-    case cShort:
-      if (SrcClass == DestClass)
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
-      else
-        BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
-          .addImm(0).addImm(clearBits).addImm(31);
-      break;
-    case cLong:
-      ++SrcReg;
-      // Fall through
-    case cInt:
-      if (DestClass == cInt)
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
-      else
-        BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
-          .addImm(0).addImm(clearBits).addImm(31);
-      break;
-    }
-    return;
-  }
-
-  // Signed -> Signed
-  if (!sourceUnsigned && !destUnsigned) {
-    // handle long dest class now to keep switch clean
-    if (DestClass == cLong) {
-      if (SrcClass == cLong) {
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1)
-          .addReg(SrcReg+1);
-      } else {
-        BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
-          .addReg(SrcReg);
-      }
-      return;
-    }
-
-    // handle { byte, short, int } x { byte, short, int }
-    switch (SrcClass) {
-    case cByte:
-      if (DestClass == cByte)
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
-      else
-        BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
-      break;
-    case cShort:
-      if (DestClass == cByte)
-        BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
-      else if (DestClass == cShort)
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
-      else
-        BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
-      break;
-    case cLong:
-      ++SrcReg;
-      // Fall through
-    case cInt:
-      if (DestClass == cByte)
-        BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
-      else if (DestClass == cShort)
-        BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
-      else
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
-      break;
-    }
-    return;
-  }
-
-  // Unsigned -> Signed
-  if (sourceUnsigned && !destUnsigned) {
-    // handle long dest class now to keep switch clean
-    if (DestClass == cLong) {
-      if (SrcClass == cLong) {
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1).
-          addReg(SrcReg+1);
-      } else {
-        BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
-          .addReg(SrcReg);
-      }
-      return;
-    }
-
-    // handle u{ byte, short, int } -> { byte, short, int }
-    switch (SrcClass) {
-    case cByte:
-      if (DestClass == cByte)
-        // uByte 255 -> signed byte == -1
-        BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
-      else
-        // uByte 255 -> signed short/int == 255
-        BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
-          .addImm(24).addImm(31);
-      break;
-    case cShort:
-      if (DestClass == cByte)
-        BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
-      else if (DestClass == cShort)
-        BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
-      else
-        BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
-          .addImm(16).addImm(31);
-      break;
-    case cLong:
-      ++SrcReg;
-      // Fall through
-    case cInt:
-      if (DestClass == cByte)
-        BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
-      else if (DestClass == cShort)
-        BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
-      else
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
-      break;
-    }
-    return;
-  }
-
-  // Signed -> Unsigned
-  if (!sourceUnsigned && destUnsigned) {
-    // handle long dest class now to keep switch clean
-    if (DestClass == cLong) {
-      if (SrcClass == cLong) {
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1)
-          .addReg(SrcReg+1);
-      } else {
-        BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
-          .addReg(SrcReg);
-      }
-      return;
-    }
-
-    // handle { byte, short, int } -> u{ byte, short, int }
-    unsigned clearBits = (DestClass == cByte) ? 24 : 16;
-    switch (SrcClass) {
-    case cByte:
-    case cShort:
-      if (DestClass == cByte || DestClass == cShort)
-        // sbyte -1 -> ubyte 0x000000FF
-        BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
-          .addImm(0).addImm(clearBits).addImm(31);
-      else
-        // sbyte -1 -> ubyte 0xFFFFFFFF
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
-      break;
-    case cLong:
-      ++SrcReg;
-      // Fall through
-    case cInt:
-      if (DestClass == cInt)
-        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
-      else
-        BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
-          .addImm(0).addImm(clearBits).addImm(31);
-      break;
-    }
-    return;
-  }
-
-  // Anything we haven't handled already, we can't (yet) handle at all.
-  std::cerr << "Unhandled cast from " << SrcTy->getDescription()
-            << "to " << DestTy->getDescription() << '\n';
-  abort();
-}
-
-/// visitVANextInst - Implement the va_next instruction...
-///
-void ISel::visitVANextInst(VANextInst &I) {
-  unsigned VAList = getReg(I.getOperand(0));
-  unsigned DestReg = getReg(I);
-
-  unsigned Size;
-  switch (I.getArgType()->getTypeID()) {
-  default:
-    std::cerr << I;
-    assert(0 && "Error: bad type for va_next instruction!");
-    return;
-  case Type::PointerTyID:
-  case Type::UIntTyID:
-  case Type::IntTyID:
-    Size = 4;
-    break;
-  case Type::ULongTyID:
-  case Type::LongTyID:
-  case Type::DoubleTyID:
-    Size = 8;
-    break;
-  }
-
-  // Increment the VAList pointer...
-  BuildMI(BB, PPC::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
-}
-
-void ISel::visitVAArgInst(VAArgInst &I) {
-  unsigned VAList = getReg(I.getOperand(0));
-  unsigned DestReg = getReg(I);
-
-  switch (I.getType()->getTypeID()) {
-  default:
-    std::cerr << I;
-    assert(0 && "Error: bad type for va_next instruction!");
-    return;
-  case Type::PointerTyID:
-  case Type::UIntTyID:
-  case Type::IntTyID:
-    BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
-    break;
-  case Type::ULongTyID:
-  case Type::LongTyID:
-    BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
-    BuildMI(BB, PPC::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
-    break;
-  case Type::FloatTyID:
-    BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList);
-    break;
-  case Type::DoubleTyID:
-    BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList);
-    break;
-  }
-}
-
-/// visitGetElementPtrInst - instruction-select GEP instructions
-///
-void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
-  if (canFoldGEPIntoLoadOrStore(&I))
-    return;
-
-  unsigned outputReg = getReg(I);
-  emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(), 
-                   outputReg, false, 0, 0);
-}
-
-/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
-/// constant expression GEP support.
-///
-void ISel::emitGEPOperation(MachineBasicBlock *MBB,
-                            MachineBasicBlock::iterator IP,
-                            Value *Src, User::op_iterator IdxBegin,
-                            User::op_iterator IdxEnd, unsigned TargetReg,
-                            bool GEPIsFolded, ConstantSInt **RemainderPtr,
-                            unsigned *PendingAddReg) {
-  const TargetData &TD = TM.getTargetData();
-  const Type *Ty = Src->getType();
-  unsigned basePtrReg = getReg(Src, MBB, IP);
-  int64_t constValue = 0;
-  
-  // Record the operations to emit the GEP in a vector so that we can emit them
-  // after having analyzed the entire instruction.
-  std::vector<CollapsedGepOp> ops;
-  
-  // GEPs have zero or more indices; we must perform a struct access
-  // or array access for each one.
-  for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
-       ++oi) {
-    Value *idx = *oi;
-    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
-      // It's a struct access.  idx is the index into the structure,
-      // which names the field. Use the TargetData structure to
-      // pick out what the layout of the structure is in memory.
-      // Use the (constant) structure index's value to find the
-      // right byte offset from the StructLayout class's list of
-      // structure member offsets.
-      unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
-      unsigned memberOffset =
-        TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
-
-      // StructType member offsets are always constant values.  Add it to the
-      // running total.
-      constValue += memberOffset;
-
-      // The next type is the member of the structure selected by the
-      // index.
-      Ty = StTy->getElementType (fieldIndex);
-    } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
-      // Many GEP instructions use a [cast (int/uint) to LongTy] as their
-      // operand.  Handle this case directly now...
-      if (CastInst *CI = dyn_cast<CastInst>(idx))
-        if (CI->getOperand(0)->getType() == Type::IntTy ||
-            CI->getOperand(0)->getType() == Type::UIntTy)
-          idx = CI->getOperand(0);
-
-      // It's an array or pointer access: [ArraySize x ElementType].
-      // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
-      // must find the size of the pointed-to type (Not coincidentally, the next
-      // type is the type of the elements in the array).
-      Ty = SqTy->getElementType();
-      unsigned elementSize = TD.getTypeSize(Ty);
-      
-      if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
-        if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
-          constValue += CS->getValue() * elementSize;
-        else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
-          constValue += CU->getValue() * elementSize;
-        else
-          assert(0 && "Invalid ConstantInt GEP index type!");
-      } else {
-        // Push current gep state to this point as an add
-        ops.push_back(CollapsedGepOp(false, 0, 
-          ConstantSInt::get(Type::IntTy,constValue)));
-        
-        // Push multiply gep op and reset constant value
-        ops.push_back(CollapsedGepOp(true, idx, 
-          ConstantSInt::get(Type::IntTy, elementSize)));
-        
-        constValue = 0;
-      }
-    }
-  }
-  // Emit instructions for all the collapsed ops
-  bool pendingAdd = false;
-  unsigned pendingAddReg = 0;
-  
-  for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
-      cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
-    CollapsedGepOp& cgo = *cgo_i;
-    unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
-  
-    // If we didn't emit an add last time through the loop, we need to now so
-    // that the base reg is updated appropriately.
-    if (pendingAdd) {
-      assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
-      BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
-        .addReg(pendingAddReg);
-      basePtrReg = nextBasePtrReg;
-      nextBasePtrReg = makeAnotherReg(Type::IntTy);
-      pendingAddReg = 0;
-      pendingAdd = false;
-    }
-
-    if (cgo.isMul) {
-      // We know the elementSize is a constant, so we can emit a constant mul
-      unsigned TmpReg = makeAnotherReg(Type::IntTy);
-      doMultiplyConst(MBB, IP, nextBasePtrReg, cgo.index, cgo.size);
-      pendingAddReg = basePtrReg;
-      pendingAdd = true;
-    } else {
-      // Try and generate an immediate addition if possible
-      if (cgo.size->isNullValue()) {
-        BuildMI(*MBB, IP, PPC::OR, 2, nextBasePtrReg).addReg(basePtrReg)
-          .addReg(basePtrReg);
-      } else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
-        BuildMI(*MBB, IP, PPC::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
-          .addSImm(cgo.size->getValue());
-      } else {
-        unsigned Op1r = getReg(cgo.size, MBB, IP);
-        BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
-          .addReg(Op1r);
-      }
-    }
-
-    basePtrReg = nextBasePtrReg;
-  }
-  // Add the current base register plus any accumulated constant value
-  ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
-  
-  // If we are emitting this during a fold, copy the current base register to
-  // the target, and save the current constant offset so the folding load or
-  // store can try and use it as an immediate.
-  if (GEPIsFolded) {
-    // If this is a folded GEP and the last element was an index, then we need
-    // to do some extra work to turn a shift/add/stw into a shift/stwx
-    if (pendingAdd && 0 == remainder->getValue()) {
-      assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
-      *PendingAddReg = pendingAddReg;
-    } else {
-      *PendingAddReg = 0;
-      if (pendingAdd) {
-        unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
-        assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
-        BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
-          .addReg(pendingAddReg);
-        basePtrReg = nextBasePtrReg;
-      }
-    }
-    BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
-      .addReg(basePtrReg);
-    *RemainderPtr = remainder;
-    return;
-  }
-
-  // If we still have a pending add at this point, emit it now
-  if (pendingAdd) {
-    unsigned TmpReg = makeAnotherReg(Type::IntTy);
-    BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg).addReg(pendingAddReg)
-      .addReg(basePtrReg);
-    basePtrReg = TmpReg;
-  }
-  
-  // After we have processed all the indices, the result is left in
-  // basePtrReg.  Move it to the register where we were expected to
-  // put the answer.
-  if (remainder->isNullValue()) {
-    BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
-      .addReg(basePtrReg);
-  } else if (canUseAsImmediateForOpcode(remainder, 0)) {
-    BuildMI(*MBB, IP, PPC::ADDI, 2, TargetReg).addReg(basePtrReg)
-      .addSImm(remainder->getValue());
-  } else {
-    unsigned Op1r = getReg(remainder, MBB, IP);
-    BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
-  }
-}
-
-/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
-/// frame manager, otherwise do it the hard way.
-///
-void ISel::visitAllocaInst(AllocaInst &I) {
-  // If this is a fixed size alloca in the entry block for the function, we
-  // statically stack allocate the space, so we don't need to do anything here.
-  //
-  if (dyn_castFixedAlloca(&I)) return;
-  
-  // Find the data size of the alloca inst's getAllocatedType.
-  const Type *Ty = I.getAllocatedType();
-  unsigned TySize = TM.getTargetData().getTypeSize(Ty);
-
-  // Create a register to hold the temporary result of multiplying the type size
-  // constant by the variable amount.
-  unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
-  
-  // TotalSizeReg = mul <numelements>, <TypeSize>
-  MachineBasicBlock::iterator MBBI = BB->end();
-  ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
-  doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
-
-  // AddedSize = add <TotalSizeReg>, 15
-  unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
-  BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
-
-  // AlignedSize = and <AddedSize>, ~15
-  unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
-  BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
-    .addImm(0).addImm(27);
-  
-  // Subtract size from stack pointer, thereby allocating some space.
-  BuildMI(BB, PPC::SUB, 2, PPC::R1).addReg(PPC::R1).addReg(AlignedSize);
-
-  // Put a pointer to the space into the result register, by copying
-  // the stack pointer.
-  BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1);
-
-  // Inform the Frame Information that we have just allocated a variable-sized
-  // object.
-  F->getFrameInfo()->CreateVariableSizedObject();
-}
-
-/// visitMallocInst - Malloc instructions are code generated into direct calls
-/// to the library malloc.
-///
-void ISel::visitMallocInst(MallocInst &I) {
-  unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
-  unsigned Arg;
-
-  if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
-    Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
-  } else {
-    Arg = makeAnotherReg(Type::UIntTy);
-    MachineBasicBlock::iterator MBBI = BB->end();
-    ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
-    doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
-  }
-
-  std::vector<ValueRecord> Args;
-  Args.push_back(ValueRecord(Arg, Type::UIntTy));
-  MachineInstr *TheCall = 
-    BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
-  doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
-  TM.CalledFunctions.insert(mallocFn);
-}
-
-
-/// visitFreeInst - Free instructions are code gen'd to call the free libc
-/// function.
-///
-void ISel::visitFreeInst(FreeInst &I) {
-  std::vector<ValueRecord> Args;
-  Args.push_back(ValueRecord(I.getOperand(0)));
-  MachineInstr *TheCall = 
-    BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true);
-  doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
-  TM.CalledFunctions.insert(freeFn);
-}
-   
-/// createPPCSimpleInstructionSelector - This pass converts an LLVM function
-/// into a machine code representation is a very simple peep-hole fashion.  The
-/// generated code sucks but the implementation is nice and simple.
-///
-FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
-  return new ISel(TM);
-}
diff --git a/lib/Target/PowerPC/PowerPCInstrInfo.h b/lib/Target/PowerPC/PowerPCInstrInfo.h
index 797f302..e975caf 100644
--- a/lib/Target/PowerPC/PowerPCInstrInfo.h
+++ b/lib/Target/PowerPC/PowerPCInstrInfo.h
@@ -11,8 +11,8 @@
 //
 //===----------------------------------------------------------------------===//
 
-#ifndef POWERPCINSTRUCTIONINFO_H
-#define POWERPCINSTRUCTIONINFO_H
+#ifndef POWERPC_INSTRUCTIONINFO_H
+#define POWERPC_INSTRUCTIONINFO_H
 
 #include "PowerPC.h"
 #include "PowerPCRegisterInfo.h"
diff --git a/lib/Target/PowerPC/PowerPCTargetMachine.h b/lib/Target/PowerPC/PowerPCTargetMachine.h
index aa6698e..cf78943 100644
--- a/lib/Target/PowerPC/PowerPCTargetMachine.h
+++ b/lib/Target/PowerPC/PowerPCTargetMachine.h
@@ -11,8 +11,8 @@
 //
 //===----------------------------------------------------------------------===//
 
-#ifndef POWERPCTARGETMACHINE_H
-#define POWERPCTARGETMACHINE_H
+#ifndef POWERPC_TARGETMACHINE_H
+#define POWERPC_TARGETMACHINE_H
 
 #include "llvm/Target/TargetMachine.h"
 #include "llvm/Target/TargetFrameInfo.h"
@@ -31,9 +31,11 @@
   TargetFrameInfo FrameInfo;
   PowerPCJITInfo JITInfo;
 
+protected:
+  PowerPCTargetMachine(const std::string &name, IntrinsicLowering *IL,
+                       const TargetData &TD, const TargetFrameInfo &TFI,
+                       const PowerPCJITInfo &TJI);
 public:
-  PowerPCTargetMachine(const Module &M, IntrinsicLowering *IL);
-
   virtual const PowerPCInstrInfo *getInstrInfo() const { return &InstrInfo; }
   virtual const TargetFrameInfo  *getFrameInfo() const { return &FrameInfo; }
   virtual const MRegisterInfo *getRegisterInfo() const {
@@ -43,24 +45,7 @@
     return &JITInfo;
   }
 
-  /// addPassesToEmitMachineCode - Add passes to the specified pass manager to
-  /// get machine code emitted.  This uses a MachineCodeEmitter object to handle
-  /// actually outputting the machine code and resolving things like the address
-  /// of functions.  This method should returns true if machine code emission is
-  /// not supported.
-  ///
-  virtual bool addPassesToEmitMachineCode(FunctionPassManager &PM,
-                                          MachineCodeEmitter &MCE);
-  
-  virtual bool addPassesToEmitAssembly(PassManager &PM, std::ostream &Out);
-
-  static unsigned getModuleMatchQuality(const Module &M);
   static unsigned getJITMatchQuality();
-
-  // Two shared sets between the instruction selector and the printer allow for
-  // correct linkage on Darwin
-  std::set<GlobalValue*> CalledFunctions;
-  std::set<GlobalValue*> AddressTaken;
 };
 
 } // end namespace llvm