| //===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "isel" |
| #include "PowerPC.h" |
| #include "PowerPCInstrBuilder.h" |
| #include "PowerPCInstrInfo.h" |
| #include "PowerPCTargetMachine.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Pass.h" |
| #include "llvm/CodeGen/IntrinsicLowering.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "Support/Debug.h" |
| #include "Support/Statistic.h" |
| #include <vector> |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> GEPFolds("ppc-codegen", "Number of GEPs folded"); |
| |
| /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic |
| /// PPC Representation. |
| /// |
| enum TypeClass { |
| cByte, cShort, cInt, cFP32, cFP64, cLong |
| }; |
| } |
| |
| /// getClass - Turn a primitive type into a "class" number which is based on the |
| /// size of the type, and whether or not it is floating point. |
| /// |
| static inline TypeClass getClass(const Type *Ty) { |
| switch (Ty->getTypeID()) { |
| case Type::SByteTyID: |
| case Type::UByteTyID: return cByte; // Byte operands are class #0 |
| case Type::ShortTyID: |
| case Type::UShortTyID: return cShort; // Short operands are class #1 |
| case Type::IntTyID: |
| case Type::UIntTyID: |
| case Type::PointerTyID: return cInt; // Ints and pointers are class #2 |
| |
| case Type::FloatTyID: return cFP32; // Single float is #3 |
| case Type::DoubleTyID: return cFP64; // Double Point is #4 |
| |
| case Type::LongTyID: |
| case Type::ULongTyID: return cLong; // Longs are class #5 |
| default: |
| assert(0 && "Invalid type to getClass!"); |
| return cByte; // not reached |
| } |
| } |
| |
| // getClassB - Just like getClass, but treat boolean values as ints. |
| static inline TypeClass getClassB(const Type *Ty) { |
| if (Ty == Type::BoolTy) return cInt; |
| return getClass(Ty); |
| } |
| |
| namespace { |
| struct ISel : public FunctionPass, InstVisitor<ISel> { |
| PowerPCTargetMachine &TM; |
| MachineFunction *F; // The function we are compiling into |
| MachineBasicBlock *BB; // The current MBB we are compiling |
| int VarArgsFrameIndex; // FrameIndex for start of varargs area |
| |
| std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs |
| |
| // External functions used in the Module |
| Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn, |
| *__umoddi3Fn, *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn, |
| *__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn; |
| |
| // MBBMap - Mapping between LLVM BB -> Machine BB |
| std::map<const BasicBlock*, MachineBasicBlock*> MBBMap; |
| |
| // AllocaMap - Mapping from fixed sized alloca instructions to the |
| // FrameIndex for the alloca. |
| std::map<AllocaInst*, unsigned> AllocaMap; |
| |
| // A Reg to hold the base address used for global loads and stores, and a |
| // flag to set whether or not we need to emit it for this function. |
| unsigned GlobalBaseReg; |
| bool GlobalBaseInitialized; |
| |
| ISel(TargetMachine &tm) : TM(reinterpret_cast<PowerPCTargetMachine&>(tm)), |
| F(0), BB(0) {} |
| |
| bool doInitialization(Module &M) { |
| // Add external functions that we may call |
| Type *i = Type::IntTy; |
| Type *d = Type::DoubleTy; |
| Type *f = Type::FloatTy; |
| Type *l = Type::LongTy; |
| Type *ul = Type::ULongTy; |
| Type *voidPtr = PointerType::get(Type::SByteTy); |
| // float fmodf(float, float); |
| fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0); |
| // double fmod(double, double); |
| fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0); |
| // int __cmpdi2(long, long); |
| __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0); |
| // long __moddi3(long, long); |
| __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0); |
| // long __divdi3(long, long); |
| __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0); |
| // unsigned long __umoddi3(unsigned long, unsigned long); |
| __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0); |
| // unsigned long __udivdi3(unsigned long, unsigned long); |
| __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0); |
| // long __fixsfdi(float) |
| __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0); |
| // long __fixdfdi(double) |
| __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0); |
| // unsigned long __fixunssfdi(float) |
| __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0); |
| // unsigned long __fixunsdfdi(double) |
| __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0); |
| // float __floatdisf(long) |
| __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0); |
| // double __floatdidf(long) |
| __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0); |
| // void* malloc(size_t) |
| mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0); |
| // void free(void*) |
| freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0); |
| return false; |
| } |
| |
| /// runOnFunction - Top level implementation of instruction selection for |
| /// the entire function. |
| /// |
| bool runOnFunction(Function &Fn) { |
| // First pass over the function, lower any unknown intrinsic functions |
| // with the IntrinsicLowering class. |
| LowerUnknownIntrinsicFunctionCalls(Fn); |
| |
| F = &MachineFunction::construct(&Fn, TM); |
| |
| // Create all of the machine basic blocks for the function... |
| for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) |
| F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); |
| |
| BB = &F->front(); |
| |
| // Make sure we re-emit a set of the global base reg if necessary |
| GlobalBaseInitialized = false; |
| |
| // Copy incoming arguments off of the stack... |
| LoadArgumentsToVirtualRegs(Fn); |
| |
| // Instruction select everything except PHI nodes |
| visit(Fn); |
| |
| // Select the PHI nodes |
| SelectPHINodes(); |
| |
| RegMap.clear(); |
| MBBMap.clear(); |
| AllocaMap.clear(); |
| F = 0; |
| // We always build a machine code representation for the function |
| return true; |
| } |
| |
| virtual const char *getPassName() const { |
| return "PowerPC Simple Instruction Selection"; |
| } |
| |
| /// visitBasicBlock - This method is called when we are visiting a new basic |
| /// block. This simply creates a new MachineBasicBlock to emit code into |
| /// and adds it to the current MachineFunction. Subsequent visit* for |
| /// instructions will be invoked for all instructions in the basic block. |
| /// |
| void visitBasicBlock(BasicBlock &LLVM_BB) { |
| BB = MBBMap[&LLVM_BB]; |
| } |
| |
| /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the |
| /// function, lowering any calls to unknown intrinsic functions into the |
| /// equivalent LLVM code. |
| /// |
| void LowerUnknownIntrinsicFunctionCalls(Function &F); |
| |
| /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function |
| /// from the stack into virtual registers. |
| /// |
| void LoadArgumentsToVirtualRegs(Function &F); |
| |
| /// SelectPHINodes - Insert machine code to generate phis. This is tricky |
| /// because we have to generate our sources into the source basic blocks, |
| /// not the current one. |
| /// |
| void SelectPHINodes(); |
| |
| // Visitation methods for various instructions. These methods simply emit |
| // fixed PowerPC code for each instruction. |
| |
| // Control flow operators |
| void visitReturnInst(ReturnInst &RI); |
| void visitBranchInst(BranchInst &BI); |
| |
| struct ValueRecord { |
| Value *Val; |
| unsigned Reg; |
| const Type *Ty; |
| ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {} |
| ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {} |
| }; |
| |
| // This struct is for recording the necessary operations to emit the GEP |
| struct CollapsedGepOp { |
| bool isMul; |
| Value *index; |
| ConstantSInt *size; |
| CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) : |
| isMul(mul), index(i), size(s) {} |
| }; |
| |
| void doCall(const ValueRecord &Ret, MachineInstr *CallMI, |
| const std::vector<ValueRecord> &Args, bool isVarArg); |
| void visitCallInst(CallInst &I); |
| void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I); |
| |
| // Arithmetic operators |
| void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); |
| void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); } |
| void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); } |
| void visitMul(BinaryOperator &B); |
| |
| void visitDiv(BinaryOperator &B) { visitDivRem(B); } |
| void visitRem(BinaryOperator &B) { visitDivRem(B); } |
| void visitDivRem(BinaryOperator &B); |
| |
| // Bitwise operators |
| void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); } |
| void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); } |
| void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); } |
| |
| // Comparison operators... |
| void visitSetCondInst(SetCondInst &I); |
| unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, |
| MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator MBBI); |
| void visitSelectInst(SelectInst &SI); |
| |
| |
| // Memory Instructions |
| void visitLoadInst(LoadInst &I); |
| void visitStoreInst(StoreInst &I); |
| void visitGetElementPtrInst(GetElementPtrInst &I); |
| void visitAllocaInst(AllocaInst &I); |
| void visitMallocInst(MallocInst &I); |
| void visitFreeInst(FreeInst &I); |
| |
| // Other operators |
| void visitShiftInst(ShiftInst &I); |
| void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass |
| void visitCastInst(CastInst &I); |
| void visitVANextInst(VANextInst &I); |
| void visitVAArgInst(VAArgInst &I); |
| |
| void visitInstruction(Instruction &I) { |
| std::cerr << "Cannot instruction select: " << I; |
| abort(); |
| } |
| |
| /// promote32 - Make a value 32-bits wide, and put it somewhere. |
| /// |
| void promote32(unsigned targetReg, const ValueRecord &VR); |
| |
| /// emitGEPOperation - Common code shared between visitGetElementPtrInst and |
| /// constant expression GEP support. |
| /// |
| void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, |
| Value *Src, User::op_iterator IdxBegin, |
| User::op_iterator IdxEnd, unsigned TargetReg, |
| bool CollapseRemainder, ConstantSInt **Remainder, |
| unsigned *PendingAddReg); |
| |
| /// emitCastOperation - Common code shared between visitCastInst and |
| /// constant expression cast support. |
| /// |
| void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, |
| Value *Src, const Type *DestTy, unsigned TargetReg); |
| |
| /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary |
| /// and constant expression support. |
| /// |
| void emitSimpleBinaryOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, |
| unsigned OperatorClass, unsigned TargetReg); |
| |
| /// emitBinaryFPOperation - This method handles emission of floating point |
| /// Add (0), Sub (1), Mul (2), and Div (3) operations. |
| void emitBinaryFPOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, |
| unsigned OperatorClass, unsigned TargetReg); |
| |
| void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, unsigned TargetReg); |
| |
| void doMultiply(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| unsigned DestReg, Value *Op0, Value *Op1); |
| |
| /// doMultiplyConst - This method will multiply the value in Op0Reg by the |
| /// value of the ContantInt *CI |
| void doMultiplyConst(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| unsigned DestReg, Value *Op0, ConstantInt *CI); |
| |
| void emitDivRemOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, bool isDiv, |
| unsigned TargetReg); |
| |
| /// emitSetCCOperation - Common code shared between visitSetCondInst and |
| /// constant expression support. |
| /// |
| void emitSetCCOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, unsigned Opcode, |
| unsigned TargetReg); |
| |
| /// emitShiftOperation - Common code shared between visitShiftInst and |
| /// constant expression support. |
| /// |
| void emitShiftOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Op, Value *ShiftAmount, bool isLeftShift, |
| const Type *ResultTy, unsigned DestReg); |
| |
| /// emitSelectOperation - Common code shared between visitSelectInst and the |
| /// constant expression support. |
| /// |
| void emitSelectOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Cond, Value *TrueVal, Value *FalseVal, |
| unsigned DestReg); |
| |
| /// copyGlobalBaseToRegister - Output the instructions required to put the |
| /// base address to use for accessing globals into a register. |
| /// |
| void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| unsigned R); |
| |
| /// copyConstantToRegister - Output the instructions required to put the |
| /// specified constant into the specified register. |
| /// |
| void copyConstantToRegister(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator MBBI, |
| Constant *C, unsigned Reg); |
| |
| void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, |
| unsigned LHS, unsigned RHS); |
| |
| /// makeAnotherReg - This method returns the next register number we haven't |
| /// yet used. |
| /// |
| /// Long values are handled somewhat specially. They are always allocated |
| /// as pairs of 32 bit integer values. The register number returned is the |
| /// high 32 bits of the long value, and the regNum+1 is the low 32 bits. |
| /// |
| unsigned makeAnotherReg(const Type *Ty) { |
| assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) && |
| "Current target doesn't have PPC reg info??"); |
| const PowerPCRegisterInfo *PPCRI = |
| static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()); |
| if (Ty == Type::LongTy || Ty == Type::ULongTy) { |
| const TargetRegisterClass *RC = PPCRI->getRegClassForType(Type::IntTy); |
| // Create the upper part |
| F->getSSARegMap()->createVirtualRegister(RC); |
| // Create the lower part. |
| return F->getSSARegMap()->createVirtualRegister(RC)-1; |
| } |
| |
| // Add the mapping of regnumber => reg class to MachineFunction |
| const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty); |
| return F->getSSARegMap()->createVirtualRegister(RC); |
| } |
| |
| /// getReg - This method turns an LLVM value into a register number. |
| /// |
| unsigned getReg(Value &V) { return getReg(&V); } // Allow references |
| unsigned getReg(Value *V) { |
| // Just append to the end of the current bb. |
| MachineBasicBlock::iterator It = BB->end(); |
| return getReg(V, BB, It); |
| } |
| unsigned getReg(Value *V, MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IPt); |
| |
| /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt |
| /// is okay to use as an immediate argument to a certain binary operation |
| bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode); |
| |
| /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca |
| /// that is to be statically allocated with the initial stack frame |
| /// adjustment. |
| unsigned getFixedSizedAllocaFI(AllocaInst *AI); |
| }; |
| } |
| |
| /// dyn_castFixedAlloca - If the specified value is a fixed size alloca |
| /// instruction in the entry block, return it. Otherwise, return a null |
| /// pointer. |
| static AllocaInst *dyn_castFixedAlloca(Value *V) { |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
| BasicBlock *BB = AI->getParent(); |
| if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front()) |
| return AI; |
| } |
| return 0; |
| } |
| |
| /// getReg - This method turns an LLVM value into a register number. |
| /// |
| unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IPt) { |
| if (Constant *C = dyn_cast<Constant>(V)) { |
| unsigned Reg = makeAnotherReg(V->getType()); |
| copyConstantToRegister(MBB, IPt, C, Reg); |
| return Reg; |
| } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) { |
| unsigned Reg = makeAnotherReg(V->getType()); |
| unsigned FI = getFixedSizedAllocaFI(AI); |
| addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false); |
| return Reg; |
| } |
| |
| unsigned &Reg = RegMap[V]; |
| if (Reg == 0) { |
| Reg = makeAnotherReg(V->getType()); |
| RegMap[V] = Reg; |
| } |
| |
| return Reg; |
| } |
| |
| /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt |
| /// is okay to use as an immediate argument to a certain binary operator. |
| /// |
| /// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor. |
| bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) { |
| ConstantSInt *Op1Cs; |
| ConstantUInt *Op1Cu; |
| |
| // ADDI, Compare, and non-indexed Load take SIMM |
| bool cond1 = (Operator == 0) |
| && (Op1Cs = dyn_cast<ConstantSInt>(CI)) |
| && (Op1Cs->getValue() <= 32767) |
| && (Op1Cs->getValue() >= -32768); |
| |
| // SUBI takes -SIMM since it is a mnemonic for ADDI |
| bool cond2 = (Operator == 1) |
| && (Op1Cs = dyn_cast<ConstantSInt>(CI)) |
| && (Op1Cs->getValue() <= 32768) |
| && (Op1Cs->getValue() >= -32767); |
| |
| // ANDIo, ORI, and XORI take unsigned values |
| bool cond3 = (Operator >= 2) |
| && (Op1Cs = dyn_cast<ConstantSInt>(CI)) |
| && (Op1Cs->getValue() >= 0) |
| && (Op1Cs->getValue() <= 32767); |
| |
| // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit |
| bool cond4 = (Operator < 2) |
| && (Op1Cu = dyn_cast<ConstantUInt>(CI)) |
| && (Op1Cu->getValue() <= 32767); |
| |
| // ANDIo, ORI, and XORI take UIMMs, so they can be larger |
| bool cond5 = (Operator >= 2) |
| && (Op1Cu = dyn_cast<ConstantUInt>(CI)) |
| && (Op1Cu->getValue() <= 65535); |
| |
| if (cond1 || cond2 || cond3 || cond4 || cond5) |
| return true; |
| |
| return false; |
| } |
| |
| /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca |
| /// that is to be statically allocated with the initial stack frame |
| /// adjustment. |
| unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) { |
| // Already computed this? |
| std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI); |
| if (I != AllocaMap.end() && I->first == AI) return I->second; |
| |
| const Type *Ty = AI->getAllocatedType(); |
| ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize()); |
| unsigned TySize = TM.getTargetData().getTypeSize(Ty); |
| TySize *= CUI->getValue(); // Get total allocated size... |
| unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty); |
| |
| // Create a new stack object using the frame manager... |
| int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment); |
| AllocaMap.insert(I, std::make_pair(AI, FrameIdx)); |
| return FrameIdx; |
| } |
| |
| |
| /// copyGlobalBaseToRegister - Output the instructions required to put the |
| /// base address to use for accessing globals into a register. |
| /// |
| void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| unsigned R) { |
| if (!GlobalBaseInitialized) { |
| // Insert the set of GlobalBaseReg into the first MBB of the function |
| MachineBasicBlock &FirstMBB = F->front(); |
| MachineBasicBlock::iterator MBBI = FirstMBB.begin(); |
| GlobalBaseReg = makeAnotherReg(Type::IntTy); |
| BuildMI(FirstMBB, MBBI, PPC::IMPLICIT_DEF, 0, PPC::LR); |
| BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, GlobalBaseReg); |
| GlobalBaseInitialized = true; |
| } |
| // Emit our copy of GlobalBaseReg to the destination register in the |
| // current MBB |
| BuildMI(*MBB, IP, PPC::OR, 2, R).addReg(GlobalBaseReg) |
| .addReg(GlobalBaseReg); |
| } |
| |
| /// copyConstantToRegister - Output the instructions required to put the |
| /// specified constant into the specified register. |
| /// |
| void ISel::copyConstantToRegister(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Constant *C, unsigned R) { |
| if (C->getType()->isIntegral()) { |
| unsigned Class = getClassB(C->getType()); |
| |
| if (Class == cLong) { |
| if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) { |
| uint64_t uval = CUI->getValue(); |
| unsigned hiUVal = uval >> 32; |
| unsigned loUVal = uval; |
| ConstantUInt *CUHi = ConstantUInt::get(Type::UIntTy, hiUVal); |
| ConstantUInt *CULo = ConstantUInt::get(Type::UIntTy, loUVal); |
| copyConstantToRegister(MBB, IP, CUHi, R); |
| copyConstantToRegister(MBB, IP, CULo, R+1); |
| return; |
| } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) { |
| int64_t sval = CSI->getValue(); |
| int hiSVal = sval >> 32; |
| int loSVal = sval; |
| ConstantSInt *CSHi = ConstantSInt::get(Type::IntTy, hiSVal); |
| ConstantSInt *CSLo = ConstantSInt::get(Type::IntTy, loSVal); |
| copyConstantToRegister(MBB, IP, CSHi, R); |
| copyConstantToRegister(MBB, IP, CSLo, R+1); |
| return; |
| } else { |
| std::cerr << "Unhandled long constant type!\n"; |
| abort(); |
| } |
| } |
| |
| assert(Class <= cInt && "Type not handled yet!"); |
| |
| // Handle bool |
| if (C->getType() == Type::BoolTy) { |
| BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True); |
| return; |
| } |
| |
| // Handle int |
| if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) { |
| unsigned uval = CUI->getValue(); |
| if (uval < 32768) { |
| BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval); |
| } else { |
| unsigned Temp = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16); |
| BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval); |
| } |
| return; |
| } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) { |
| int sval = CSI->getValue(); |
| if (sval < 32768 && sval >= -32768) { |
| BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval); |
| } else { |
| unsigned Temp = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16); |
| BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval); |
| } |
| return; |
| } |
| |
| std::cerr << "Unhandled integer constant!\n"; |
| abort(); |
| } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { |
| // We need to spill the constant to memory... |
| MachineConstantPool *CP = F->getConstantPool(); |
| unsigned CPI = CP->getConstantPoolIndex(CFP); |
| const Type *Ty = CFP->getType(); |
| |
| assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); |
| |
| // Load addr of constant to reg; constant is located at base + distance |
| unsigned GlobalBase = makeAnotherReg(Type::IntTy); |
| unsigned Reg1 = makeAnotherReg(Type::IntTy); |
| unsigned Reg2 = makeAnotherReg(Type::IntTy); |
| // Move value at base + distance into return reg |
| copyGlobalBaseToRegister(MBB, IP, GlobalBase); |
| BuildMI(*MBB, IP, PPC::LOADHiAddr, 2, Reg1).addReg(GlobalBase) |
| .addConstantPoolIndex(CPI); |
| BuildMI(*MBB, IP, PPC::LOADLoDirect, 2, Reg2).addReg(Reg1) |
| .addConstantPoolIndex(CPI); |
| |
| unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD; |
| BuildMI(*MBB, IP, LoadOpcode, 2, R).addSImm(0).addReg(Reg2); |
| } else if (isa<ConstantPointerNull>(C)) { |
| // Copy zero (null pointer) to the register. |
| BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0); |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) { |
| // GV is located at base + distance |
| unsigned GlobalBase = makeAnotherReg(Type::IntTy); |
| unsigned TmpReg = makeAnotherReg(GV->getType()); |
| unsigned Opcode = (GV->hasWeakLinkage() || GV->isExternal()) ? |
| PPC::LOADLoIndirect : PPC::LOADLoDirect; |
| |
| // Move value at base + distance into return reg |
| copyGlobalBaseToRegister(MBB, IP, GlobalBase); |
| BuildMI(*MBB, IP, PPC::LOADHiAddr, 2, TmpReg).addReg(GlobalBase) |
| .addGlobalAddress(GV); |
| BuildMI(*MBB, IP, Opcode, 2, R).addReg(TmpReg).addGlobalAddress(GV); |
| |
| // Add the GV to the list of things whose addresses have been taken. |
| TM.AddressTaken.insert(GV); |
| } else { |
| std::cerr << "Offending constant: " << *C << "\n"; |
| assert(0 && "Type not handled yet!"); |
| } |
| } |
| |
| /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from |
| /// the stack into virtual registers. |
| void ISel::LoadArgumentsToVirtualRegs(Function &Fn) { |
| unsigned ArgOffset = 24; |
| unsigned GPR_remaining = 8; |
| unsigned FPR_remaining = 13; |
| unsigned GPR_idx = 0, FPR_idx = 0; |
| static const unsigned GPR[] = { |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10, |
| }; |
| static const unsigned FPR[] = { |
| PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, |
| PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 |
| }; |
| |
| MachineFrameInfo *MFI = F->getFrameInfo(); |
| |
| for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) { |
| bool ArgLive = !I->use_empty(); |
| unsigned Reg = ArgLive ? getReg(*I) : 0; |
| int FI; // Frame object index |
| |
| switch (getClassB(I->getType())) { |
| case cByte: |
| if (ArgLive) { |
| FI = MFI->CreateFixedObject(4, ArgOffset); |
| if (GPR_remaining > 0) { |
| BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); |
| BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) |
| .addReg(GPR[GPR_idx]); |
| } else { |
| addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI); |
| } |
| } |
| break; |
| case cShort: |
| if (ArgLive) { |
| FI = MFI->CreateFixedObject(4, ArgOffset); |
| if (GPR_remaining > 0) { |
| BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); |
| BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) |
| .addReg(GPR[GPR_idx]); |
| } else { |
| addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI); |
| } |
| } |
| break; |
| case cInt: |
| if (ArgLive) { |
| FI = MFI->CreateFixedObject(4, ArgOffset); |
| if (GPR_remaining > 0) { |
| BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); |
| BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) |
| .addReg(GPR[GPR_idx]); |
| } else { |
| addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI); |
| } |
| } |
| break; |
| case cLong: |
| if (ArgLive) { |
| FI = MFI->CreateFixedObject(8, ArgOffset); |
| if (GPR_remaining > 1) { |
| BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); |
| BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx+1]); |
| BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) |
| .addReg(GPR[GPR_idx]); |
| BuildMI(BB, PPC::OR, 2, Reg+1).addReg(GPR[GPR_idx+1]) |
| .addReg(GPR[GPR_idx+1]); |
| } else { |
| addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI); |
| addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg+1), FI, 4); |
| } |
| } |
| // longs require 4 additional bytes and use 2 GPRs |
| ArgOffset += 4; |
| if (GPR_remaining > 1) { |
| GPR_remaining--; |
| GPR_idx++; |
| } |
| break; |
| case cFP32: |
| if (ArgLive) { |
| FI = MFI->CreateFixedObject(4, ArgOffset); |
| |
| if (FPR_remaining > 0) { |
| BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]); |
| BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]); |
| FPR_remaining--; |
| FPR_idx++; |
| } else { |
| addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI); |
| } |
| } |
| break; |
| case cFP64: |
| if (ArgLive) { |
| FI = MFI->CreateFixedObject(8, ArgOffset); |
| |
| if (FPR_remaining > 0) { |
| BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]); |
| BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]); |
| FPR_remaining--; |
| FPR_idx++; |
| } else { |
| addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI); |
| } |
| } |
| |
| // doubles require 4 additional bytes and use 2 GPRs of param space |
| ArgOffset += 4; |
| if (GPR_remaining > 0) { |
| GPR_remaining--; |
| GPR_idx++; |
| } |
| break; |
| default: |
| assert(0 && "Unhandled argument type!"); |
| } |
| ArgOffset += 4; // Each argument takes at least 4 bytes on the stack... |
| if (GPR_remaining > 0) { |
| GPR_remaining--; // uses up 2 GPRs |
| GPR_idx++; |
| } |
| } |
| |
| // If the function takes variable number of arguments, add a frame offset for |
| // the start of the first vararg value... this is used to expand |
| // llvm.va_start. |
| if (Fn.getFunctionType()->isVarArg()) |
| VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset); |
| } |
| |
| |
| /// SelectPHINodes - Insert machine code to generate phis. This is tricky |
| /// because we have to generate our sources into the source basic blocks, not |
| /// the current one. |
| /// |
| void ISel::SelectPHINodes() { |
| const TargetInstrInfo &TII = *TM.getInstrInfo(); |
| const Function &LF = *F->getFunction(); // The LLVM function... |
| for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { |
| const BasicBlock *BB = I; |
| MachineBasicBlock &MBB = *MBBMap[I]; |
| |
| // Loop over all of the PHI nodes in the LLVM basic block... |
| MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); |
| for (BasicBlock::const_iterator I = BB->begin(); |
| PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) { |
| |
| // Create a new machine instr PHI node, and insert it. |
| unsigned PHIReg = getReg(*PN); |
| MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, |
| PPC::PHI, PN->getNumOperands(), PHIReg); |
| |
| MachineInstr *LongPhiMI = 0; |
| if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) |
| LongPhiMI = BuildMI(MBB, PHIInsertPoint, |
| PPC::PHI, PN->getNumOperands(), PHIReg+1); |
| |
| // PHIValues - Map of blocks to incoming virtual registers. We use this |
| // so that we only initialize one incoming value for a particular block, |
| // even if the block has multiple entries in the PHI node. |
| // |
| std::map<MachineBasicBlock*, unsigned> PHIValues; |
| |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| MachineBasicBlock *PredMBB = 0; |
| for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (), |
| PE = MBB.pred_end (); PI != PE; ++PI) |
| if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) { |
| PredMBB = *PI; |
| break; |
| } |
| assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi"); |
| |
| unsigned ValReg; |
| std::map<MachineBasicBlock*, unsigned>::iterator EntryIt = |
| PHIValues.lower_bound(PredMBB); |
| |
| if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { |
| // We already inserted an initialization of the register for this |
| // predecessor. Recycle it. |
| ValReg = EntryIt->second; |
| } else { |
| // Get the incoming value into a virtual register. |
| // |
| Value *Val = PN->getIncomingValue(i); |
| |
| // If this is a constant or GlobalValue, we may have to insert code |
| // into the basic block to compute it into a virtual register. |
| if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) || |
| isa<GlobalValue>(Val)) { |
| // Simple constants get emitted at the end of the basic block, |
| // before any terminator instructions. We "know" that the code to |
| // move a constant into a register will never clobber any flags. |
| ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator()); |
| } else { |
| // Because we don't want to clobber any values which might be in |
| // physical registers with the computation of this constant (which |
| // might be arbitrarily complex if it is a constant expression), |
| // just insert the computation at the top of the basic block. |
| MachineBasicBlock::iterator PI = PredMBB->begin(); |
| |
| // Skip over any PHI nodes though! |
| while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI) |
| ++PI; |
| |
| ValReg = getReg(Val, PredMBB, PI); |
| } |
| |
| // Remember that we inserted a value for this PHI for this predecessor |
| PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); |
| } |
| |
| PhiMI->addRegOperand(ValReg); |
| PhiMI->addMachineBasicBlockOperand(PredMBB); |
| if (LongPhiMI) { |
| LongPhiMI->addRegOperand(ValReg+1); |
| LongPhiMI->addMachineBasicBlockOperand(PredMBB); |
| } |
| } |
| |
| // Now that we emitted all of the incoming values for the PHI node, make |
| // sure to reposition the InsertPoint after the PHI that we just added. |
| // This is needed because we might have inserted a constant into this |
| // block, right after the PHI's which is before the old insert point! |
| PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI; |
| ++PHIInsertPoint; |
| } |
| } |
| } |
| |
| |
| // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold |
| // it into the conditional branch or select instruction which is the only user |
| // of the cc instruction. This is the case if the conditional branch is the |
| // only user of the setcc, and if the setcc is in the same basic block as the |
| // conditional branch. |
| // |
| static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) { |
| if (SetCondInst *SCI = dyn_cast<SetCondInst>(V)) |
| if (SCI->hasOneUse()) { |
| Instruction *User = cast<Instruction>(SCI->use_back()); |
| if ((isa<BranchInst>(User) || isa<SelectInst>(User)) && |
| SCI->getParent() == User->getParent()) |
| return SCI; |
| } |
| return 0; |
| } |
| |
| |
| // canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into |
| // the load or store instruction that is the only user of the GEP. |
| // |
| static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) { |
| if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) |
| if (GEPI->hasOneUse()) { |
| Instruction *User = cast<Instruction>(GEPI->use_back()); |
| if (isa<StoreInst>(User) && |
| GEPI->getParent() == User->getParent() && |
| User->getOperand(0) != GEPI && |
| User->getOperand(1) == GEPI) { |
| ++GEPFolds; |
| return GEPI; |
| } |
| if (isa<LoadInst>(User) && |
| GEPI->getParent() == User->getParent() && |
| User->getOperand(0) == GEPI) { |
| ++GEPFolds; |
| return GEPI; |
| } |
| } |
| return 0; |
| } |
| |
| |
| // Return a fixed numbering for setcc instructions which does not depend on the |
| // order of the opcodes. |
| // |
| static unsigned getSetCCNumber(unsigned Opcode) { |
| switch (Opcode) { |
| default: assert(0 && "Unknown setcc instruction!"); |
| case Instruction::SetEQ: return 0; |
| case Instruction::SetNE: return 1; |
| case Instruction::SetLT: return 2; |
| case Instruction::SetGE: return 3; |
| case Instruction::SetGT: return 4; |
| case Instruction::SetLE: return 5; |
| } |
| } |
| |
| static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) { |
| switch (Opcode) { |
| default: assert(0 && "Unknown setcc instruction!"); |
| case Instruction::SetEQ: return PPC::BEQ; |
| case Instruction::SetNE: return PPC::BNE; |
| case Instruction::SetLT: return PPC::BLT; |
| case Instruction::SetGE: return PPC::BGE; |
| case Instruction::SetGT: return PPC::BGT; |
| case Instruction::SetLE: return PPC::BLE; |
| } |
| } |
| |
| /// emitUCOM - emits an unordered FP compare. |
| void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, |
| unsigned LHS, unsigned RHS) { |
| BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS); |
| } |
| |
| /// EmitComparison - emits a comparison of the two operands, returning the |
| /// extended setcc code to use. The result is in CR0. |
| /// |
| unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, |
| MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP) { |
| // The arguments are already supposed to be of the same type. |
| const Type *CompTy = Op0->getType(); |
| unsigned Class = getClassB(CompTy); |
| unsigned Op0r = getReg(Op0, MBB, IP); |
| |
| // Before we do a comparison, we have to make sure that we're truncating our |
| // registers appropriately. |
| if (Class == cByte) { |
| unsigned TmpReg = makeAnotherReg(CompTy); |
| if (CompTy->isSigned()) |
| BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Op0r); |
| else |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0) |
| .addImm(24).addImm(31); |
| Op0r = TmpReg; |
| } else if (Class == cShort) { |
| unsigned TmpReg = makeAnotherReg(CompTy); |
| if (CompTy->isSigned()) |
| BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Op0r); |
| else |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0) |
| .addImm(16).addImm(31); |
| Op0r = TmpReg; |
| } |
| |
| // Use crand for lt, gt and crandc for le, ge |
| unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC; |
| // ? cr1[lt] : cr1[gt] |
| unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 4 : 5; |
| // ? cr0[lt] : cr0[gt] |
| unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1; |
| unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW; |
| unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI; |
| |
| // Special case handling of: cmp R, i |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| if (Class == cByte || Class == cShort || Class == cInt) { |
| unsigned Op1v = CI->getRawValue() & 0xFFFF; |
| |
| // Treat compare like ADDI for the purposes of immediate suitability |
| if (canUseAsImmediateForOpcode(CI, 0)) { |
| BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v); |
| } else { |
| unsigned Op1r = getReg(Op1, MBB, IP); |
| BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r); |
| } |
| return OpNum; |
| } else { |
| assert(Class == cLong && "Unknown integer class!"); |
| unsigned LowCst = CI->getRawValue(); |
| unsigned HiCst = CI->getRawValue() >> 32; |
| if (OpNum < 2) { // seteq, setne |
| unsigned LoLow = makeAnotherReg(Type::IntTy); |
| unsigned LoTmp = makeAnotherReg(Type::IntTy); |
| unsigned HiLow = makeAnotherReg(Type::IntTy); |
| unsigned HiTmp = makeAnotherReg(Type::IntTy); |
| unsigned FinalTmp = makeAnotherReg(Type::IntTy); |
| |
| BuildMI(*MBB, IP, PPC::XORI, 2, LoLow).addReg(Op0r+1) |
| .addImm(LowCst & 0xFFFF); |
| BuildMI(*MBB, IP, PPC::XORIS, 2, LoTmp).addReg(LoLow) |
| .addImm(LowCst >> 16); |
| BuildMI(*MBB, IP, PPC::XORI, 2, HiLow).addReg(Op0r) |
| .addImm(HiCst & 0xFFFF); |
| BuildMI(*MBB, IP, PPC::XORIS, 2, HiTmp).addReg(HiLow) |
| .addImm(HiCst >> 16); |
| BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); |
| return OpNum; |
| } else { |
| unsigned ConstReg = makeAnotherReg(CompTy); |
| copyConstantToRegister(MBB, IP, CI, ConstReg); |
| |
| // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6) |
| BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r) |
| .addReg(ConstReg); |
| BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1) |
| .addReg(ConstReg+1); |
| BuildMI(*MBB, IP, PPC::CRAND, 3).addImm(2).addImm(2).addImm(CR1field); |
| BuildMI(*MBB, IP, PPC::CROR, 3).addImm(CR0field).addImm(CR0field) |
| .addImm(2); |
| return OpNum; |
| } |
| } |
| } |
| |
| unsigned Op1r = getReg(Op1, MBB, IP); |
| |
| switch (Class) { |
| default: assert(0 && "Unknown type class!"); |
| case cByte: |
| case cShort: |
| case cInt: |
| BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r); |
| break; |
| |
| case cFP32: |
| case cFP64: |
| emitUCOM(MBB, IP, Op0r, Op1r); |
| break; |
| |
| case cLong: |
| if (OpNum < 2) { // seteq, setne |
| unsigned LoTmp = makeAnotherReg(Type::IntTy); |
| unsigned HiTmp = makeAnotherReg(Type::IntTy); |
| unsigned FinalTmp = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, PPC::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r); |
| BuildMI(*MBB, IP, PPC::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1); |
| BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); |
| break; // Allow the sete or setne to be generated from flags set by OR |
| } else { |
| unsigned TmpReg1 = makeAnotherReg(Type::IntTy); |
| unsigned TmpReg2 = makeAnotherReg(Type::IntTy); |
| |
| // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6) |
| BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r); |
| BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1).addReg(Op1r+1); |
| BuildMI(*MBB, IP, PPC::CRAND, 3).addImm(2).addImm(2).addImm(CR1field); |
| BuildMI(*MBB, IP, PPC::CROR, 3).addImm(CR0field).addImm(CR0field) |
| .addImm(2); |
| return OpNum; |
| } |
| } |
| return OpNum; |
| } |
| |
| /// visitSetCondInst - emit code to calculate the condition via |
| /// EmitComparison(), and possibly store a 0 or 1 to a register as a result |
| /// |
| void ISel::visitSetCondInst(SetCondInst &I) { |
| if (canFoldSetCCIntoBranchOrSelect(&I)) |
| return; |
| |
| unsigned DestReg = getReg(I); |
| unsigned OpNum = I.getOpcode(); |
| const Type *Ty = I.getOperand (0)->getType(); |
| |
| EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end()); |
| |
| unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum); |
| MachineBasicBlock *thisMBB = BB; |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| ilist<MachineBasicBlock>::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // cmpTY cr0, r1, r2 |
| // bCC copy1MBB |
| // b copy0MBB |
| |
| // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB) |
| // if we could insert other, non-terminator instructions after the |
| // bCC. But MBB->getFirstTerminator() can't understand this. |
| MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB); |
| F->getBasicBlockList().insert(It, copy1MBB); |
| BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB); |
| MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); |
| F->getBasicBlockList().insert(It, copy0MBB); |
| BuildMI(BB, PPC::B, 1).addMBB(copy0MBB); |
| MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); |
| F->getBasicBlockList().insert(It, sinkMBB); |
| // Update machine-CFG edges |
| BB->addSuccessor(copy1MBB); |
| BB->addSuccessor(copy0MBB); |
| |
| // copy1MBB: |
| // %TrueValue = li 1 |
| // b sinkMBB |
| BB = copy1MBB; |
| unsigned TrueValue = makeAnotherReg(I.getType()); |
| BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1); |
| BuildMI(BB, PPC::B, 1).addMBB(sinkMBB); |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = li 0 |
| // fallthrough |
| BB = copy0MBB; |
| unsigned FalseValue = makeAnotherReg(I.getType()); |
| BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0); |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue) |
| .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB); |
| } |
| |
| void ISel::visitSelectInst(SelectInst &SI) { |
| unsigned DestReg = getReg(SI); |
| MachineBasicBlock::iterator MII = BB->end(); |
| emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(), |
| SI.getFalseValue(), DestReg); |
| } |
| |
| /// emitSelect - Common code shared between visitSelectInst and the constant |
| /// expression support. |
| /// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has |
| /// no select instruction. FSEL only works for comparisons against zero. |
| void ISel::emitSelectOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Cond, Value *TrueVal, Value *FalseVal, |
| unsigned DestReg) { |
| unsigned SelectClass = getClassB(TrueVal->getType()); |
| unsigned Opcode; |
| |
| // See if we can fold the setcc into the select instruction, or if we have |
| // to get the register of the Cond value |
| if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) { |
| // We successfully folded the setcc into the select instruction. |
| unsigned OpNum = getSetCCNumber(SCI->getOpcode()); |
| OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP); |
| Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode()); |
| } else { |
| unsigned CondReg = getReg(Cond, MBB, IP); |
| BuildMI(*MBB, IP, PPC::CMPI, 2, PPC::CR0).addReg(CondReg).addSImm(0); |
| Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE); |
| } |
| |
| // thisMBB: |
| // ... |
| // cmpTY cr0, r1, r2 |
| // bCC copy1MBB |
| // b copy0MBB |
| |
| MachineBasicBlock *thisMBB = BB; |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| ilist<MachineBasicBlock>::iterator It = BB; |
| ++It; |
| |
| // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB) |
| // if we could insert other, non-terminator instructions after the |
| // bCC. But MBB->getFirstTerminator() can't understand this. |
| MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB); |
| F->getBasicBlockList().insert(It, copy1MBB); |
| BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB); |
| MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); |
| F->getBasicBlockList().insert(It, copy0MBB); |
| BuildMI(BB, PPC::B, 1).addMBB(copy0MBB); |
| MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); |
| F->getBasicBlockList().insert(It, sinkMBB); |
| // Update machine-CFG edges |
| BB->addSuccessor(copy1MBB); |
| BB->addSuccessor(copy0MBB); |
| |
| // copy1MBB: |
| // %TrueValue = ... |
| // b sinkMBB |
| BB = copy1MBB; |
| unsigned TrueValue = getReg(TrueVal, BB, BB->begin()); |
| BuildMI(BB, PPC::B, 1).addMBB(sinkMBB); |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // fallthrough |
| BB = copy0MBB; |
| unsigned FalseValue = getReg(FalseVal, BB, BB->begin()); |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue) |
| .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB); |
| // For a register pair representing a long value, define the second reg |
| if (getClass(TrueVal->getType()) == cLong) |
| BuildMI(BB, PPC::LI, 1, DestReg+1).addImm(0); |
| return; |
| } |
| |
| |
| |
| /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide |
| /// operand, in the specified target register. |
| /// |
| void ISel::promote32(unsigned targetReg, const ValueRecord &VR) { |
| bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy; |
| |
| Value *Val = VR.Val; |
| const Type *Ty = VR.Ty; |
| if (Val) { |
| if (Constant *C = dyn_cast<Constant>(Val)) { |
| Val = ConstantExpr::getCast(C, Type::IntTy); |
| Ty = Type::IntTy; |
| } |
| |
| // If this is a simple constant, just emit a load directly to avoid the copy |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { |
| int TheVal = CI->getRawValue() & 0xFFFFFFFF; |
| |
| if (TheVal < 32768 && TheVal >= -32768) { |
| BuildMI(BB, PPC::LI, 1, targetReg).addSImm(TheVal); |
| } else { |
| unsigned TmpReg = makeAnotherReg(Type::IntTy); |
| BuildMI(BB, PPC::LIS, 1, TmpReg).addSImm(TheVal >> 16); |
| BuildMI(BB, PPC::ORI, 2, targetReg).addReg(TmpReg) |
| .addImm(TheVal & 0xFFFF); |
| } |
| return; |
| } |
| } |
| |
| // Make sure we have the register number for this value... |
| unsigned Reg = Val ? getReg(Val) : VR.Reg; |
| switch (getClassB(Ty)) { |
| case cByte: |
| // Extend value into target register (8->32) |
| if (isUnsigned) |
| BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0) |
| .addZImm(24).addZImm(31); |
| else |
| BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg); |
| break; |
| case cShort: |
| // Extend value into target register (16->32) |
| if (isUnsigned) |
| BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0) |
| .addZImm(16).addZImm(31); |
| else |
| BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg); |
| break; |
| case cInt: |
| // Move value into target register (32->32) |
| BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg); |
| break; |
| default: |
| assert(0 && "Unpromotable operand class in promote32"); |
| } |
| } |
| |
| /// visitReturnInst - implemented with BLR |
| /// |
| void ISel::visitReturnInst(ReturnInst &I) { |
| // Only do the processing if this is a non-void return |
| if (I.getNumOperands() > 0) { |
| Value *RetVal = I.getOperand(0); |
| switch (getClassB(RetVal->getType())) { |
| case cByte: // integral return values: extend or move into r3 and return |
| case cShort: |
| case cInt: |
| promote32(PPC::R3, ValueRecord(RetVal)); |
| break; |
| case cFP32: |
| case cFP64: { // Floats & Doubles: Return in f1 |
| unsigned RetReg = getReg(RetVal); |
| BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg); |
| break; |
| } |
| case cLong: { |
| unsigned RetReg = getReg(RetVal); |
| BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(RetReg).addReg(RetReg); |
| BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(RetReg+1).addReg(RetReg+1); |
| break; |
| } |
| default: |
| visitInstruction(I); |
| } |
| } |
| BuildMI(BB, PPC::BLR, 1).addImm(0); |
| } |
| |
| // getBlockAfter - Return the basic block which occurs lexically after the |
| // specified one. |
| static inline BasicBlock *getBlockAfter(BasicBlock *BB) { |
| Function::iterator I = BB; ++I; // Get iterator to next block |
| return I != BB->getParent()->end() ? &*I : 0; |
| } |
| |
| /// visitBranchInst - Handle conditional and unconditional branches here. Note |
| /// that since code layout is frozen at this point, that if we are trying to |
| /// jump to a block that is the immediate successor of the current block, we can |
| /// just make a fall-through (but we don't currently). |
| /// |
| void ISel::visitBranchInst(BranchInst &BI) { |
| // Update machine-CFG edges |
| BB->addSuccessor(MBBMap[BI.getSuccessor(0)]); |
| if (BI.isConditional()) |
| BB->addSuccessor(MBBMap[BI.getSuccessor(1)]); |
| |
| BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one |
| |
| if (!BI.isConditional()) { // Unconditional branch? |
| if (BI.getSuccessor(0) != NextBB) |
| BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]); |
| return; |
| } |
| |
| // See if we can fold the setcc into the branch itself... |
| SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition()); |
| if (SCI == 0) { |
| // Nope, cannot fold setcc into this branch. Emit a branch on a condition |
| // computed some other way... |
| unsigned condReg = getReg(BI.getCondition()); |
| BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg) |
| .addImm(0); |
| if (BI.getSuccessor(1) == NextBB) { |
| if (BI.getSuccessor(0) != NextBB) |
| BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BNE) |
| .addMBB(MBBMap[BI.getSuccessor(0)]) |
| .addMBB(MBBMap[BI.getSuccessor(1)]); |
| } else { |
| BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BEQ) |
| .addMBB(MBBMap[BI.getSuccessor(1)]) |
| .addMBB(MBBMap[BI.getSuccessor(0)]); |
| if (BI.getSuccessor(0) != NextBB) |
| BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]); |
| } |
| return; |
| } |
| |
| unsigned OpNum = getSetCCNumber(SCI->getOpcode()); |
| unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode()); |
| MachineBasicBlock::iterator MII = BB->end(); |
| OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII); |
| |
| if (BI.getSuccessor(0) != NextBB) { |
| BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode) |
| .addMBB(MBBMap[BI.getSuccessor(0)]) |
| .addMBB(MBBMap[BI.getSuccessor(1)]); |
| if (BI.getSuccessor(1) != NextBB) |
| BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]); |
| } else { |
| // Change to the inverse condition... |
| if (BI.getSuccessor(1) != NextBB) { |
| Opcode = PowerPCInstrInfo::invertPPCBranchOpcode(Opcode); |
| BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode) |
| .addMBB(MBBMap[BI.getSuccessor(1)]) |
| .addMBB(MBBMap[BI.getSuccessor(0)]); |
| } |
| } |
| } |
| |
| /// doCall - This emits an abstract call instruction, setting up the arguments |
| /// and the return value as appropriate. For the actual function call itself, |
| /// it inserts the specified CallMI instruction into the stream. |
| /// |
| /// FIXME: See Documentation at the following URL for "correct" behavior |
| /// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html> |
| void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI, |
| const std::vector<ValueRecord> &Args, bool isVarArg) { |
| // Count how many bytes are to be pushed on the stack, including the linkage |
| // area, and parameter passing area. |
| unsigned NumBytes = 24; |
| unsigned ArgOffset = 24; |
| |
| if (!Args.empty()) { |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) |
| switch (getClassB(Args[i].Ty)) { |
| case cByte: case cShort: case cInt: |
| NumBytes += 4; break; |
| case cLong: |
| NumBytes += 8; break; |
| case cFP32: |
| NumBytes += 4; break; |
| case cFP64: |
| NumBytes += 8; break; |
| break; |
| default: assert(0 && "Unknown class!"); |
| } |
| |
| // Just to be safe, we'll always reserve the full 32 bytes worth of |
| // argument passing space in case any called code gets funky on us. |
| if (NumBytes < 24 + 32) NumBytes = 24 + 32; |
| |
| // Adjust the stack pointer for the new arguments... |
| // These functions are automatically eliminated by the prolog/epilog pass |
| BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes); |
| |
| // Arguments go on the stack in reverse order, as specified by the ABI. |
| // Offset to the paramater area on the stack is 24. |
| int GPR_remaining = 8, FPR_remaining = 13; |
| unsigned GPR_idx = 0, FPR_idx = 0; |
| static const unsigned GPR[] = { |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10, |
| }; |
| static const unsigned FPR[] = { |
| PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, |
| PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, |
| PPC::F13 |
| }; |
| |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| unsigned ArgReg; |
| switch (getClassB(Args[i].Ty)) { |
| case cByte: |
| case cShort: |
| // Promote arg to 32 bits wide into a temporary register... |
| ArgReg = makeAnotherReg(Type::UIntTy); |
| promote32(ArgReg, Args[i]); |
| |
| // Reg or stack? |
| if (GPR_remaining > 0) { |
| BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg) |
| .addReg(ArgReg); |
| CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); |
| } |
| if (GPR_remaining <= 0 || isVarArg) { |
| BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset) |
| .addReg(PPC::R1); |
| } |
| break; |
| case cInt: |
| ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; |
| |
| // Reg or stack? |
| if (GPR_remaining > 0) { |
| BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg) |
| .addReg(ArgReg); |
| CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); |
| } |
| if (GPR_remaining <= 0 || isVarArg) { |
| BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset) |
| .addReg(PPC::R1); |
| } |
| break; |
| case cLong: |
| ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; |
| |
| // Reg or stack? Note that PPC calling conventions state that long args |
| // are passed rN = hi, rN+1 = lo, opposite of LLVM. |
| if (GPR_remaining > 1) { |
| BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg) |
| .addReg(ArgReg); |
| BuildMI(BB, PPC::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1) |
| .addReg(ArgReg+1); |
| CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); |
| CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use); |
| } |
| if (GPR_remaining <= 1 || isVarArg) { |
| BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset) |
| .addReg(PPC::R1); |
| BuildMI(BB, PPC::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4) |
| .addReg(PPC::R1); |
| } |
| |
| ArgOffset += 4; // 8 byte entry, not 4. |
| GPR_remaining -= 1; // uses up 2 GPRs |
| GPR_idx += 1; |
| break; |
| case cFP32: |
| ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; |
| // Reg or stack? |
| if (FPR_remaining > 0) { |
| BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg); |
| CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use); |
| FPR_remaining--; |
| FPR_idx++; |
| |
| // If this is a vararg function, and there are GPRs left, also |
| // pass the float in an int. Otherwise, put it on the stack. |
| if (isVarArg) { |
| BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset) |
| .addReg(PPC::R1); |
| if (GPR_remaining > 0) { |
| BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx]) |
| .addSImm(ArgOffset).addReg(ArgReg); |
| CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); |
| } |
| } |
| } else { |
| BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset) |
| .addReg(PPC::R1); |
| } |
| break; |
| case cFP64: |
| ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; |
| // Reg or stack? |
| if (FPR_remaining > 0) { |
| BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg); |
| CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use); |
| FPR_remaining--; |
| FPR_idx++; |
| // For vararg functions, must pass doubles via int regs as well |
| if (isVarArg) { |
| BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset) |
| .addReg(PPC::R1); |
| |
| // Doubles can be split across reg + stack for varargs |
| if (GPR_remaining > 0) { |
| BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset) |
| .addReg(PPC::R1); |
| CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); |
| } |
| if (GPR_remaining > 1) { |
| BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx+1]) |
| .addSImm(ArgOffset+4).addReg(PPC::R1); |
| CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use); |
| } |
| } |
| } else { |
| BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset) |
| .addReg(PPC::R1); |
| } |
| // Doubles use 8 bytes, and 2 GPRs worth of param space |
| ArgOffset += 4; |
| GPR_remaining--; |
| GPR_idx++; |
| break; |
| |
| default: assert(0 && "Unknown class!"); |
| } |
| ArgOffset += 4; |
| GPR_remaining--; |
| GPR_idx++; |
| } |
| } else { |
| BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(0); |
| } |
| |
| BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR); |
| BB->push_back(CallMI); |
| |
| // These functions are automatically eliminated by the prolog/epilog pass |
| BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes); |
| |
| // If there is a return value, scavenge the result from the location the call |
| // leaves it in... |
| // |
| if (Ret.Ty != Type::VoidTy) { |
| unsigned DestClass = getClassB(Ret.Ty); |
| switch (DestClass) { |
| case cByte: |
| case cShort: |
| case cInt: |
| // Integral results are in r3 |
| BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3); |
| break; |
| case cFP32: // Floating-point return values live in f1 |
| case cFP64: |
| BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1); |
| break; |
| case cLong: // Long values are in r3:r4 |
| BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3); |
| BuildMI(BB, PPC::OR, 2, Ret.Reg+1).addReg(PPC::R4).addReg(PPC::R4); |
| break; |
| default: assert(0 && "Unknown class!"); |
| } |
| } |
| } |
| |
| |
| /// visitCallInst - Push args on stack and do a procedure call instruction. |
| void ISel::visitCallInst(CallInst &CI) { |
| MachineInstr *TheCall; |
| Function *F = CI.getCalledFunction(); |
| if (F) { |
| // Is it an intrinsic function call? |
| if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { |
| visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here |
| return; |
| } |
| // Emit a CALL instruction with PC-relative displacement. |
| TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true); |
| // Add it to the set of functions called to be used by the Printer |
| TM.CalledFunctions.insert(F); |
| } else { // Emit an indirect call through the CTR |
| unsigned Reg = getReg(CI.getCalledValue()); |
| BuildMI(BB, PPC::MTCTR, 1).addReg(Reg); |
| TheCall = BuildMI(PPC::CALLindirect, 2).addZImm(20).addZImm(0); |
| } |
| |
| std::vector<ValueRecord> Args; |
| for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i) |
| Args.push_back(ValueRecord(CI.getOperand(i))); |
| |
| unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0; |
| bool isVarArg = F ? F->getFunctionType()->isVarArg() : true; |
| doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg); |
| } |
| |
| |
| /// dyncastIsNan - Return the operand of an isnan operation if this is an isnan. |
| /// |
| static Value *dyncastIsNan(Value *V) { |
| if (CallInst *CI = dyn_cast<CallInst>(V)) |
| if (Function *F = CI->getCalledFunction()) |
| if (F->getIntrinsicID() == Intrinsic::isunordered) |
| return CI->getOperand(1); |
| return 0; |
| } |
| |
| /// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by |
| /// or's whos operands are all calls to the isnan predicate. |
| static bool isOnlyUsedByUnorderedComparisons(Value *V) { |
| assert(dyncastIsNan(V) && "The value isn't an isnan call!"); |
| |
| // Check all uses, which will be or's of isnans if this predicate is true. |
| for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ |
| Instruction *I = cast<Instruction>(*UI); |
| if (I->getOpcode() != Instruction::Or) return false; |
| if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false; |
| if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false; |
| } |
| |
| return true; |
| } |
| |
| /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the |
| /// function, lowering any calls to unknown intrinsic functions into the |
| /// equivalent LLVM code. |
| /// |
| void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) { |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) |
| if (CallInst *CI = dyn_cast<CallInst>(I++)) |
| if (Function *F = CI->getCalledFunction()) |
| switch (F->getIntrinsicID()) { |
| case Intrinsic::not_intrinsic: |
| case Intrinsic::vastart: |
| case Intrinsic::vacopy: |
| case Intrinsic::vaend: |
| case Intrinsic::returnaddress: |
| case Intrinsic::frameaddress: |
| // FIXME: should lower these ourselves |
| // case Intrinsic::isunordered: |
| // case Intrinsic::memcpy: -> doCall(). system memcpy almost |
| // guaranteed to be faster than anything we generate ourselves |
| // We directly implement these intrinsics |
| break; |
| case Intrinsic::readio: { |
| // On PPC, memory operations are in-order. Lower this intrinsic |
| // into a volatile load. |
| Instruction *Before = CI->getPrev(); |
| LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI); |
| CI->replaceAllUsesWith(LI); |
| BB->getInstList().erase(CI); |
| break; |
| } |
| case Intrinsic::writeio: { |
| // On PPC, memory operations are in-order. Lower this intrinsic |
| // into a volatile store. |
| Instruction *Before = CI->getPrev(); |
| StoreInst *SI = new StoreInst(CI->getOperand(1), |
| CI->getOperand(2), true, CI); |
| CI->replaceAllUsesWith(SI); |
| BB->getInstList().erase(CI); |
| break; |
| } |
| default: |
| // All other intrinsic calls we must lower. |
| Instruction *Before = CI->getPrev(); |
| TM.getIntrinsicLowering().LowerIntrinsicCall(CI); |
| if (Before) { // Move iterator to instruction after call |
| I = Before; ++I; |
| } else { |
| I = BB->begin(); |
| } |
| } |
| } |
| |
| void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) { |
| unsigned TmpReg1, TmpReg2, TmpReg3; |
| switch (ID) { |
| case Intrinsic::vastart: |
| // Get the address of the first vararg value... |
| TmpReg1 = getReg(CI); |
| addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex, |
| 0, false); |
| return; |
| |
| case Intrinsic::vacopy: |
| TmpReg1 = getReg(CI); |
| TmpReg2 = getReg(CI.getOperand(1)); |
| BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2); |
| return; |
| case Intrinsic::vaend: return; |
| |
| case Intrinsic::returnaddress: |
| TmpReg1 = getReg(CI); |
| if (cast<Constant>(CI.getOperand(1))->isNullValue()) { |
| MachineFrameInfo *MFI = F->getFrameInfo(); |
| unsigned NumBytes = MFI->getStackSize(); |
| |
| BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8) |
| .addReg(PPC::R1); |
| } else { |
| // Values other than zero are not implemented yet. |
| BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0); |
| } |
| return; |
| |
| case Intrinsic::frameaddress: |
| TmpReg1 = getReg(CI); |
| if (cast<Constant>(CI.getOperand(1))->isNullValue()) { |
| BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1); |
| } else { |
| // Values other than zero are not implemented yet. |
| BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0); |
| } |
| return; |
| |
| #if 0 |
| // This may be useful for supporting isunordered |
| case Intrinsic::isnan: |
| // If this is only used by 'isunordered' style comparisons, don't emit it. |
| if (isOnlyUsedByUnorderedComparisons(&CI)) return; |
| TmpReg1 = getReg(CI.getOperand(1)); |
| emitUCOM(BB, BB->end(), TmpReg1, TmpReg1); |
| TmpReg2 = makeAnotherReg(Type::IntTy); |
| BuildMI(BB, PPC::MFCR, TmpReg2); |
| TmpReg3 = getReg(CI); |
| BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31); |
| return; |
| #endif |
| |
| default: assert(0 && "Error: unknown intrinsics should have been lowered!"); |
| } |
| } |
| |
| /// visitSimpleBinary - Implement simple binary operators for integral types... |
| /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for |
| /// Xor. |
| /// |
| void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { |
| unsigned DestReg = getReg(B); |
| MachineBasicBlock::iterator MI = BB->end(); |
| Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1); |
| unsigned Class = getClassB(B.getType()); |
| |
| emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg); |
| } |
| |
| /// emitBinaryFPOperation - This method handles emission of floating point |
| /// Add (0), Sub (1), Mul (2), and Div (3) operations. |
| void ISel::emitBinaryFPOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, |
| unsigned OperatorClass, unsigned DestReg) { |
| |
| // Special case: op Reg, <const fp> |
| if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { |
| // Create a constant pool entry for this constant. |
| MachineConstantPool *CP = F->getConstantPool(); |
| unsigned CPI = CP->getConstantPoolIndex(Op1C); |
| const Type *Ty = Op1->getType(); |
| assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); |
| |
| static const unsigned OpcodeTab[][4] = { |
| { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float |
| { PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double |
| }; |
| |
| unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass]; |
| unsigned Op1Reg = getReg(Op1C, BB, IP); |
| unsigned Op0r = getReg(Op0, BB, IP); |
| BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg); |
| return; |
| } |
| |
| // Special case: R1 = op <const fp>, R2 |
| if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0)) |
| if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) { |
| // -0.0 - X === -X |
| unsigned op1Reg = getReg(Op1, BB, IP); |
| BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg); |
| return; |
| } else { |
| // R1 = op CST, R2 --> R1 = opr R2, CST |
| |
| // Create a constant pool entry for this constant. |
| MachineConstantPool *CP = F->getConstantPool(); |
| unsigned CPI = CP->getConstantPoolIndex(Op0C); |
| const Type *Ty = Op0C->getType(); |
| assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); |
| |
| static const unsigned OpcodeTab[][4] = { |
| { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float |
| { PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double |
| }; |
| |
| unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass]; |
| unsigned Op0Reg = getReg(Op0C, BB, IP); |
| unsigned Op1Reg = getReg(Op1, BB, IP); |
| BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg); |
| return; |
| } |
| |
| // General case. |
| static const unsigned OpcodeTab[] = { |
| PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV |
| }; |
| |
| unsigned Opcode = OpcodeTab[OperatorClass]; |
| unsigned Op0r = getReg(Op0, BB, IP); |
| unsigned Op1r = getReg(Op1, BB, IP); |
| BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); |
| } |
| |
| /// emitSimpleBinaryOperation - Implement simple binary operators for integral |
| /// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for |
| /// Or, 4 for Xor. |
| /// |
| /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary |
| /// and constant expression support. |
| /// |
| void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, |
| unsigned OperatorClass, unsigned DestReg) { |
| unsigned Class = getClassB(Op0->getType()); |
| |
| // Arithmetic and Bitwise operators |
| static const unsigned OpcodeTab[] = { |
| PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR |
| }; |
| static const unsigned ImmOpcodeTab[] = { |
| PPC::ADDI, PPC::SUBI, PPC::ANDIo, PPC::ORI, PPC::XORI |
| }; |
| static const unsigned RImmOpcodeTab[] = { |
| PPC::ADDI, PPC::SUBFIC, PPC::ANDIo, PPC::ORI, PPC::XORI |
| }; |
| |
| // Otherwise, code generate the full operation with a constant. |
| static const unsigned BottomTab[] = { |
| PPC::ADDC, PPC::SUBC, PPC::AND, PPC::OR, PPC::XOR |
| }; |
| static const unsigned TopTab[] = { |
| PPC::ADDE, PPC::SUBFE, PPC::AND, PPC::OR, PPC::XOR |
| }; |
| |
| if (Class == cFP32 || Class == cFP64) { |
| assert(OperatorClass < 2 && "No logical ops for FP!"); |
| emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg); |
| return; |
| } |
| |
| if (Op0->getType() == Type::BoolTy) { |
| if (OperatorClass == 3) |
| // If this is an or of two isnan's, emit an FP comparison directly instead |
| // of or'ing two isnan's together. |
| if (Value *LHS = dyncastIsNan(Op0)) |
| if (Value *RHS = dyncastIsNan(Op1)) { |
| unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP); |
| unsigned TmpReg = makeAnotherReg(Type::IntTy); |
| emitUCOM(MBB, IP, Op0Reg, Op1Reg); |
| BuildMI(*MBB, IP, PPC::MFCR, TmpReg); |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4) |
| .addImm(31).addImm(31); |
| return; |
| } |
| } |
| |
| // Special case: op <const int>, Reg |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) { |
| // sub 0, X -> subfic |
| if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) { |
| unsigned Op1r = getReg(Op1, MBB, IP); |
| int imm = CI->getRawValue() & 0xFFFF; |
| |
| if (Class == cLong) { |
| BuildMI(*MBB, IP, PPC::SUBFIC, 2, DestReg+1).addReg(Op1r+1) |
| .addSImm(imm); |
| BuildMI(*MBB, IP, PPC::SUBFZE, 1, DestReg).addReg(Op1r); |
| } else { |
| BuildMI(*MBB, IP, PPC::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm); |
| } |
| return; |
| } |
| |
| // If it is easy to do, swap the operands and emit an immediate op |
| if (Class != cLong && OperatorClass != 1 && |
| canUseAsImmediateForOpcode(CI, OperatorClass)) { |
| unsigned Op1r = getReg(Op1, MBB, IP); |
| int imm = CI->getRawValue() & 0xFFFF; |
| |
| if (OperatorClass < 2) |
| BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r) |
| .addSImm(imm); |
| else |
| BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r) |
| .addZImm(imm); |
| return; |
| } |
| } |
| |
| // Special case: op Reg, <const int> |
| if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { |
| unsigned Op0r = getReg(Op0, MBB, IP); |
| |
| // xor X, -1 -> not X |
| if (OperatorClass == 4 && Op1C->isAllOnesValue()) { |
| BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r); |
| if (Class == cLong) // Invert the low part too |
| BuildMI(*MBB, IP, PPC::NOR, 2, DestReg+1).addReg(Op0r+1) |
| .addReg(Op0r+1); |
| return; |
| } |
| |
| if (Class != cLong) { |
| if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) { |
| int immediate = Op1C->getRawValue() & 0xFFFF; |
| |
| if (OperatorClass < 2) |
| BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r) |
| .addSImm(immediate); |
| else |
| BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r) |
| .addZImm(immediate); |
| } else { |
| unsigned Op1r = getReg(Op1, MBB, IP); |
| BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r) |
| .addReg(Op1r); |
| } |
| return; |
| } |
| |
| unsigned Op1r = getReg(Op1, MBB, IP); |
| |
| BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1) |
| .addReg(Op1r+1); |
| BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r) |
| .addReg(Op1r); |
| return; |
| } |
| |
| // We couldn't generate an immediate variant of the op, load both halves into |
| // registers and emit the appropriate opcode. |
| unsigned Op0r = getReg(Op0, MBB, IP); |
| unsigned Op1r = getReg(Op1, MBB, IP); |
| |
| if (Class != cLong) { |
| unsigned Opcode = OpcodeTab[OperatorClass]; |
| BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); |
| } else { |
| BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1) |
| .addReg(Op1r+1); |
| BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r) |
| .addReg(Op1r); |
| } |
| return; |
| } |
| |
| // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It |
| // returns zero when the input is not exactly a power of two. |
| static unsigned ExactLog2(unsigned Val) { |
| if (Val == 0 || (Val & (Val-1))) return 0; |
| unsigned Count = 0; |
| while (Val != 1) { |
| Val >>= 1; |
| ++Count; |
| } |
| return Count; |
| } |
| |
| /// doMultiply - Emit appropriate instructions to multiply together the |
| /// Values Op0 and Op1, and put the result in DestReg. |
| /// |
| void ISel::doMultiply(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| unsigned DestReg, Value *Op0, Value *Op1) { |
| unsigned Class0 = getClass(Op0->getType()); |
| unsigned Class1 = getClass(Op1->getType()); |
| |
| unsigned Op0r = getReg(Op0, MBB, IP); |
| unsigned Op1r = getReg(Op1, MBB, IP); |
| |
| // 64 x 64 -> 64 |
| if (Class0 == cLong && Class1 == cLong) { |
| unsigned Tmp1 = makeAnotherReg(Type::IntTy); |
| unsigned Tmp2 = makeAnotherReg(Type::IntTy); |
| unsigned Tmp3 = makeAnotherReg(Type::IntTy); |
| unsigned Tmp4 = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1); |
| BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1); |
| BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r); |
| BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2); |
| BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1); |
| BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4); |
| return; |
| } |
| |
| // 64 x 32 or less, promote 32 to 64 and do a 64 x 64 |
| if (Class0 == cLong && Class1 <= cInt) { |
| unsigned Tmp0 = makeAnotherReg(Type::IntTy); |
| unsigned Tmp1 = makeAnotherReg(Type::IntTy); |
| unsigned Tmp2 = makeAnotherReg(Type::IntTy); |
| unsigned Tmp3 = makeAnotherReg(Type::IntTy); |
| unsigned Tmp4 = makeAnotherReg(Type::IntTy); |
| if (Op1->getType()->isSigned()) |
| BuildMI(*MBB, IP, PPC::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31); |
| else |
| BuildMI(*MBB, IP, PPC::LI, 2, Tmp0).addSImm(0); |
| BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r); |
| BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r); |
| BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0); |
| BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2); |
| BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r); |
| BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4); |
| return; |
| } |
| |
| // 32 x 32 -> 32 |
| if (Class0 <= cInt && Class1 <= cInt) { |
| BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r); |
| return; |
| } |
| |
| assert(0 && "doMultiply cannot operate on unknown type!"); |
| } |
| |
| /// doMultiplyConst - This method will multiply the value in Op0 by the |
| /// value of the ContantInt *CI |
| void ISel::doMultiplyConst(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| unsigned DestReg, Value *Op0, ConstantInt *CI) { |
| unsigned Class = getClass(Op0->getType()); |
| |
| // Mul op0, 0 ==> 0 |
| if (CI->isNullValue()) { |
| BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0); |
| if (Class == cLong) |
| BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0); |
| return; |
| } |
| |
| // Mul op0, 1 ==> op0 |
| if (CI->equalsInt(1)) { |
| unsigned Op0r = getReg(Op0, MBB, IP); |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r); |
| if (Class == cLong) |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1); |
| return; |
| } |
| |
| // If the element size is exactly a power of 2, use a shift to get it. |
| if (unsigned Shift = ExactLog2(CI->getRawValue())) { |
| ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift); |
| emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg); |
| return; |
| } |
| |
| // If 32 bits or less and immediate is in right range, emit mul by immediate |
| if (Class == cByte || Class == cShort || Class == cInt) { |
| if (canUseAsImmediateForOpcode(CI, 0)) { |
| unsigned Op0r = getReg(Op0, MBB, IP); |
| unsigned imm = CI->getRawValue() & 0xFFFF; |
| BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm); |
| return; |
| } |
| } |
| |
| doMultiply(MBB, IP, DestReg, Op0, CI); |
| } |
| |
| void ISel::visitMul(BinaryOperator &I) { |
| unsigned ResultReg = getReg(I); |
| |
| Value *Op0 = I.getOperand(0); |
| Value *Op1 = I.getOperand(1); |
| |
| MachineBasicBlock::iterator IP = BB->end(); |
| emitMultiply(BB, IP, Op0, Op1, ResultReg); |
| } |
| |
| void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, unsigned DestReg) { |
| TypeClass Class = getClass(Op0->getType()); |
| |
| switch (Class) { |
| case cByte: |
| case cShort: |
| case cInt: |
| case cLong: |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| doMultiplyConst(MBB, IP, DestReg, Op0, CI); |
| } else { |
| doMultiply(MBB, IP, DestReg, Op0, Op1); |
| } |
| return; |
| case cFP32: |
| case cFP64: |
| emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg); |
| return; |
| break; |
| } |
| } |
| |
| |
| /// visitDivRem - Handle division and remainder instructions... these |
| /// instruction both require the same instructions to be generated, they just |
| /// select the result from a different register. Note that both of these |
| /// instructions work differently for signed and unsigned operands. |
| /// |
| void ISel::visitDivRem(BinaryOperator &I) { |
| unsigned ResultReg = getReg(I); |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| MachineBasicBlock::iterator IP = BB->end(); |
| emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div, |
| ResultReg); |
| } |
| |
| void ISel::emitDivRemOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, bool isDiv, |
| unsigned ResultReg) { |
| const Type *Ty = Op0->getType(); |
| unsigned Class = getClass(Ty); |
| switch (Class) { |
| case cFP32: |
| if (isDiv) { |
| // Floating point divide... |
| emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg); |
| return; |
| } else { |
| // Floating point remainder via fmodf(float x, float y); |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| unsigned Op1Reg = getReg(Op1, BB, IP); |
| MachineInstr *TheCall = |
| BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true); |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(Op0Reg, Type::FloatTy)); |
| Args.push_back(ValueRecord(Op1Reg, Type::FloatTy)); |
| doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false); |
| TM.CalledFunctions.insert(fmodfFn); |
| } |
| return; |
| case cFP64: |
| if (isDiv) { |
| // Floating point divide... |
| emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg); |
| return; |
| } else { |
| // Floating point remainder via fmod(double x, double y); |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| unsigned Op1Reg = getReg(Op1, BB, IP); |
| MachineInstr *TheCall = |
| BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true); |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy)); |
| Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy)); |
| doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false); |
| TM.CalledFunctions.insert(fmodFn); |
| } |
| return; |
| case cLong: { |
| static Function* const Funcs[] = |
| { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn }; |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| unsigned Op1Reg = getReg(Op1, BB, IP); |
| unsigned NameIdx = Ty->isUnsigned()*2 + isDiv; |
| MachineInstr *TheCall = |
| BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true); |
| |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(Op0Reg, Type::LongTy)); |
| Args.push_back(ValueRecord(Op1Reg, Type::LongTy)); |
| doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false); |
| TM.CalledFunctions.insert(Funcs[NameIdx]); |
| return; |
| } |
| case cByte: case cShort: case cInt: |
| break; // Small integrals, handled below... |
| default: assert(0 && "Unknown class!"); |
| } |
| |
| // Special case signed division by power of 2. |
| if (isDiv) |
| if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) { |
| assert(Class != cLong && "This doesn't handle 64-bit divides!"); |
| int V = CI->getValue(); |
| |
| if (V == 1) { // X /s 1 => X |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| BuildMI(*BB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg); |
| return; |
| } |
| |
| if (V == -1) { // X /s -1 => -X |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| BuildMI(*BB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg); |
| return; |
| } |
| |
| unsigned log2V = ExactLog2(V); |
| if (log2V != 0 && Ty->isSigned()) { |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| unsigned TmpReg = makeAnotherReg(Op0->getType()); |
| |
| BuildMI(*BB, IP, PPC::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V); |
| BuildMI(*BB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg); |
| return; |
| } |
| } |
| |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| unsigned Op1Reg = getReg(Op1, BB, IP); |
| unsigned Opcode = Ty->isSigned() ? PPC::DIVW : PPC::DIVWU; |
| |
| if (isDiv) { |
| BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg); |
| } else { // Remainder |
| unsigned TmpReg1 = makeAnotherReg(Op0->getType()); |
| unsigned TmpReg2 = makeAnotherReg(Op0->getType()); |
| |
| BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(*BB, IP, PPC::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg); |
| BuildMI(*BB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg); |
| } |
| } |
| |
| |
| /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here |
| /// for constant immediate shift values, and for constant immediate |
| /// shift values equal to 1. Even the general case is sort of special, |
| /// because the shift amount has to be in CL, not just any old register. |
| /// |
| void ISel::visitShiftInst(ShiftInst &I) { |
| MachineBasicBlock::iterator IP = BB->end(); |
| emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1), |
| I.getOpcode() == Instruction::Shl, I.getType(), |
| getReg(I)); |
| } |
| |
| /// emitShiftOperation - Common code shared between visitShiftInst and |
| /// constant expression support. |
| /// |
| void ISel::emitShiftOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Op, Value *ShiftAmount, bool isLeftShift, |
| const Type *ResultTy, unsigned DestReg) { |
| unsigned SrcReg = getReg (Op, MBB, IP); |
| bool isSigned = ResultTy->isSigned (); |
| unsigned Class = getClass (ResultTy); |
| |
| // Longs, as usual, are handled specially... |
| if (Class == cLong) { |
| // If we have a constant shift, we can generate much more efficient code |
| // than otherwise... |
| // |
| if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) { |
| unsigned Amount = CUI->getValue(); |
| if (Amount < 32) { |
| if (isLeftShift) { |
| // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) |
| .addImm(Amount).addImm(0).addImm(31-Amount); |
| BuildMI(*MBB, IP, PPC::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1) |
| .addImm(Amount).addImm(32-Amount).addImm(31); |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1) |
| .addImm(Amount).addImm(0).addImm(31-Amount); |
| } else { |
| // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1) |
| .addImm(32-Amount).addImm(Amount).addImm(31); |
| BuildMI(*MBB, IP, PPC::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg) |
| .addImm(32-Amount).addImm(0).addImm(Amount-1); |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) |
| .addImm(32-Amount).addImm(Amount).addImm(31); |
| } |
| } else { // Shifting more than 32 bits |
| Amount -= 32; |
| if (isLeftShift) { |
| if (Amount != 0) { |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg+1) |
| .addImm(Amount).addImm(0).addImm(31-Amount); |
| } else { |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg+1) |
| .addReg(SrcReg+1); |
| } |
| BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0); |
| } else { |
| if (Amount != 0) { |
| if (isSigned) |
| BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg+1).addReg(SrcReg) |
| .addImm(Amount); |
| else |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg) |
| .addImm(32-Amount).addImm(Amount).addImm(31); |
| } else { |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg) |
| .addReg(SrcReg); |
| } |
| BuildMI(*MBB, IP,PPC::LI, 1, DestReg).addSImm(0); |
| } |
| } |
| } else { |
| unsigned TmpReg1 = makeAnotherReg(Type::IntTy); |
| unsigned TmpReg2 = makeAnotherReg(Type::IntTy); |
| unsigned TmpReg3 = makeAnotherReg(Type::IntTy); |
| unsigned TmpReg4 = makeAnotherReg(Type::IntTy); |
| unsigned TmpReg5 = makeAnotherReg(Type::IntTy); |
| unsigned TmpReg6 = makeAnotherReg(Type::IntTy); |
| unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); |
| |
| if (isLeftShift) { |
| BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg) |
| .addSImm(32); |
| BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg2).addReg(SrcReg) |
| .addReg(ShiftAmountReg); |
| BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg3).addReg(SrcReg+1) |
| .addReg(TmpReg1); |
| BuildMI(*MBB, IP, PPC::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3); |
| BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg) |
| .addSImm(-32); |
| BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg6).addReg(SrcReg+1) |
| .addReg(TmpReg5); |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(TmpReg4) |
| .addReg(TmpReg6); |
| BuildMI(*MBB, IP, PPC::SLW, 2, DestReg+1).addReg(SrcReg+1) |
| .addReg(ShiftAmountReg); |
| } else { |
| if (isSigned) { |
| // FIXME: Unimplemented |
| // Page C-3 of the PowerPC 32bit Programming Environments Manual |
| std::cerr << "ERROR: Unimplemented: signed right shift of long\n"; |
| abort(); |
| } else { |
| BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg) |
| .addSImm(32); |
| BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1) |
| .addReg(ShiftAmountReg); |
| BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg) |
| .addReg(TmpReg1); |
| BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2) |
| .addReg(TmpReg3); |
| BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg) |
| .addSImm(-32); |
| BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg6).addReg(SrcReg) |
| .addReg(TmpReg5); |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(TmpReg4) |
| .addReg(TmpReg6); |
| BuildMI(*MBB, IP, PPC::SRW, 2, DestReg).addReg(SrcReg) |
| .addReg(ShiftAmountReg); |
| } |
| } |
| } |
| return; |
| } |
| |
| if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) { |
| // The shift amount is constant, guaranteed to be a ubyte. Get its value. |
| assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); |
| unsigned Amount = CUI->getValue(); |
| |
| if (isLeftShift) { |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) |
| .addImm(Amount).addImm(0).addImm(31-Amount); |
| } else { |
| if (isSigned) { |
| BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount); |
| } else { |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) |
| .addImm(32-Amount).addImm(Amount).addImm(31); |
| } |
| } |
| } else { // The shift amount is non-constant. |
| unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); |
| |
| if (isLeftShift) { |
| BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg) |
| .addReg(ShiftAmountReg); |
| } else { |
| BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg) |
| .addReg(SrcReg).addReg(ShiftAmountReg); |
| } |
| } |
| } |
| |
| |
| /// visitLoadInst - Implement LLVM load instructions. Pretty straightforward |
| /// mapping of LLVM classes to PPC load instructions, with the exception of |
| /// signed byte loads, which need a sign extension following them. |
| /// |
| void ISel::visitLoadInst(LoadInst &I) { |
| // Immediate opcodes, for reg+imm addressing |
| static const unsigned ImmOpcodes[] = { |
| PPC::LBZ, PPC::LHZ, PPC::LWZ, |
| PPC::LFS, PPC::LFD, PPC::LWZ |
| }; |
| // Indexed opcodes, for reg+reg addressing |
| static const unsigned IdxOpcodes[] = { |
| PPC::LBZX, PPC::LHZX, PPC::LWZX, |
| PPC::LFSX, PPC::LFDX, PPC::LWZX |
| }; |
| |
| unsigned Class = getClassB(I.getType()); |
| unsigned ImmOpcode = ImmOpcodes[Class]; |
| unsigned IdxOpcode = IdxOpcodes[Class]; |
| unsigned DestReg = getReg(I); |
| Value *SourceAddr = I.getOperand(0); |
| |
| if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA; |
| if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX; |
| |
| if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) { |
| unsigned FI = getFixedSizedAllocaFI(AI); |
| if (Class == cLong) { |
| addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI); |
| addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4); |
| } else if (Class == cByte && I.getType()->isSigned()) { |
| unsigned TmpReg = makeAnotherReg(I.getType()); |
| addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI); |
| BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg); |
| } else { |
| addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI); |
| } |
| return; |
| } |
| |
| // If this load is the only use of the GEP instruction that is its address, |
| // then we can fold the GEP directly into the load instruction. |
| // emitGEPOperation with a second to last arg of 'true' will place the |
| // base register for the GEP into baseReg, and the constant offset from that |
| // into offset. If the offset fits in 16 bits, we can emit a reg+imm store |
| // otherwise, we copy the offset into another reg, and use reg+reg addressing. |
| if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) { |
| unsigned baseReg = getReg(GEPI); |
| unsigned pendingAdd; |
| ConstantSInt *offset; |
| |
| emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1, |
| GEPI->op_end(), baseReg, true, &offset, &pendingAdd); |
| |
| if (pendingAdd == 0 && Class != cLong && |
| canUseAsImmediateForOpcode(offset, 0)) { |
| if (Class == cByte && I.getType()->isSigned()) { |
| unsigned TmpReg = makeAnotherReg(I.getType()); |
| BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue()) |
| .addReg(baseReg); |
| BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg); |
| } else { |
| BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue()) |
| .addReg(baseReg); |
| } |
| return; |
| } |
| |
| unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset); |
| |
| if (Class == cLong) { |
| unsigned indexPlus4 = makeAnotherReg(Type::IntTy); |
| BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4); |
| BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg); |
| BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg); |
| } else if (Class == cByte && I.getType()->isSigned()) { |
| unsigned TmpReg = makeAnotherReg(I.getType()); |
| BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg); |
| BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg); |
| } else { |
| BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg); |
| } |
| return; |
| } |
| |
| // The fallback case, where the load was from a source that could not be |
| // folded into the load instruction. |
| unsigned SrcAddrReg = getReg(SourceAddr); |
| |
| if (Class == cLong) { |
| BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg); |
| BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg); |
| } else if (Class == cByte && I.getType()->isSigned()) { |
| unsigned TmpReg = makeAnotherReg(I.getType()); |
| BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg); |
| BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg); |
| } else { |
| BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg); |
| } |
| } |
| |
| /// visitStoreInst - Implement LLVM store instructions |
| /// |
| void ISel::visitStoreInst(StoreInst &I) { |
| // Immediate opcodes, for reg+imm addressing |
| static const unsigned ImmOpcodes[] = { |
| PPC::STB, PPC::STH, PPC::STW, |
| PPC::STFS, PPC::STFD, PPC::STW |
| }; |
| // Indexed opcodes, for reg+reg addressing |
| static const unsigned IdxOpcodes[] = { |
| PPC::STBX, PPC::STHX, PPC::STWX, |
| PPC::STFSX, PPC::STFDX, PPC::STWX |
| }; |
| |
| Value *SourceAddr = I.getOperand(1); |
| const Type *ValTy = I.getOperand(0)->getType(); |
| unsigned Class = getClassB(ValTy); |
| unsigned ImmOpcode = ImmOpcodes[Class]; |
| unsigned IdxOpcode = IdxOpcodes[Class]; |
| unsigned ValReg = getReg(I.getOperand(0)); |
| |
| // If this store is the only use of the GEP instruction that is its address, |
| // then we can fold the GEP directly into the store instruction. |
| // emitGEPOperation with a second to last arg of 'true' will place the |
| // base register for the GEP into baseReg, and the constant offset from that |
| // into offset. If the offset fits in 16 bits, we can emit a reg+imm store |
| // otherwise, we copy the offset into another reg, and use reg+reg addressing. |
| if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) { |
| unsigned baseReg = getReg(GEPI); |
| unsigned pendingAdd; |
| ConstantSInt *offset; |
| |
| emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1, |
| GEPI->op_end(), baseReg, true, &offset, &pendingAdd); |
| |
| if (0 == pendingAdd && Class != cLong && |
| canUseAsImmediateForOpcode(offset, 0)) { |
| BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue()) |
| .addReg(baseReg); |
| return; |
| } |
| |
| unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset); |
| |
| if (Class == cLong) { |
| unsigned indexPlus4 = makeAnotherReg(Type::IntTy); |
| BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4); |
| BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg); |
| BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4) |
| .addReg(baseReg); |
| return; |
| } |
| BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg); |
| return; |
| } |
| |
| // If the store address wasn't the only use of a GEP, we fall back to the |
| // standard path: store the ValReg at the value in AddressReg. |
| unsigned AddressReg = getReg(I.getOperand(1)); |
| if (Class == cLong) { |
| BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg); |
| BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg); |
| return; |
| } |
| BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg); |
| } |
| |
| |
| /// visitCastInst - Here we have various kinds of copying with or without sign |
| /// extension going on. |
| /// |
| void ISel::visitCastInst(CastInst &CI) { |
| Value *Op = CI.getOperand(0); |
| |
| unsigned SrcClass = getClassB(Op->getType()); |
| unsigned DestClass = getClassB(CI.getType()); |
| |
| // If this is a cast from a 32-bit integer to a Long type, and the only uses |
| // of the case are GEP instructions, then the cast does not need to be |
| // generated explicitly, it will be folded into the GEP. |
| if (DestClass == cLong && SrcClass == cInt) { |
| bool AllUsesAreGEPs = true; |
| for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) |
| if (!isa<GetElementPtrInst>(*I)) { |
| AllUsesAreGEPs = false; |
| break; |
| } |
| |
| // No need to codegen this cast if all users are getelementptr instrs... |
| if (AllUsesAreGEPs) return; |
| } |
| |
| unsigned DestReg = getReg(CI); |
| MachineBasicBlock::iterator MI = BB->end(); |
| emitCastOperation(BB, MI, Op, CI.getType(), DestReg); |
| } |
| |
| /// emitCastOperation - Common code shared between visitCastInst and constant |
| /// expression cast support. |
| /// |
| void ISel::emitCastOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Src, const Type *DestTy, |
| unsigned DestReg) { |
| const Type *SrcTy = Src->getType(); |
| unsigned SrcClass = getClassB(SrcTy); |
| unsigned DestClass = getClassB(DestTy); |
| unsigned SrcReg = getReg(Src, MBB, IP); |
| |
| // Implement casts to bool by using compare on the operand followed by set if |
| // not zero on the result. |
| if (DestTy == Type::BoolTy) { |
| switch (SrcClass) { |
| case cByte: |
| case cShort: |
| case cInt: { |
| unsigned TmpReg = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1); |
| BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg); |
| break; |
| } |
| case cLong: { |
| unsigned TmpReg = makeAnotherReg(Type::IntTy); |
| unsigned SrcReg2 = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, PPC::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1); |
| BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1); |
| BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg) |
| .addReg(SrcReg2); |
| break; |
| } |
| case cFP32: |
| case cFP64: |
| // FSEL perhaps? |
| std::cerr << "ERROR: Cast fp-to-bool not implemented!\n"; |
| abort(); |
| } |
| return; |
| } |
| |
| // Handle cast of Float -> Double |
| if (SrcClass == cFP32 && DestClass == cFP64) { |
| BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg); |
| return; |
| } |
| |
| // Handle cast of Double -> Float |
| if (SrcClass == cFP64 && DestClass == cFP32) { |
| BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg); |
| return; |
| } |
| |
| // Handle casts from integer to floating point now... |
| if (DestClass == cFP32 || DestClass == cFP64) { |
| |
| // Emit a library call for long to float conversion |
| if (SrcClass == cLong) { |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(SrcReg, SrcTy)); |
| Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn; |
| MachineInstr *TheCall = |
| BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true); |
| doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false); |
| TM.CalledFunctions.insert(floatFn); |
| return; |
| } |
| |
| // Make sure we're dealing with a full 32 bits |
| unsigned TmpReg = makeAnotherReg(Type::IntTy); |
| promote32(TmpReg, ValueRecord(SrcReg, SrcTy)); |
| |
| SrcReg = TmpReg; |
| |
| // Spill the integer to memory and reload it from there. |
| // Also spill room for a special conversion constant |
| int ConstantFrameIndex = |
| F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData()); |
| int ValueFrameIdx = |
| F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData()); |
| |
| unsigned constantHi = makeAnotherReg(Type::IntTy); |
| unsigned constantLo = makeAnotherReg(Type::IntTy); |
| unsigned ConstF = makeAnotherReg(Type::DoubleTy); |
| unsigned TempF = makeAnotherReg(Type::DoubleTy); |
| |
| if (!SrcTy->isSigned()) { |
| BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330); |
| BuildMI(*BB, IP, PPC::LI, 1, constantLo).addSImm(0); |
| addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), |
| ConstantFrameIndex); |
| addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo), |
| ConstantFrameIndex, 4); |
| addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), |
| ValueFrameIdx); |
| addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(SrcReg), |
| ValueFrameIdx, 4); |
| addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF), |
| ConstantFrameIndex); |
| addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx); |
| BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF); |
| } else { |
| unsigned TempLo = makeAnotherReg(Type::IntTy); |
| BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330); |
| BuildMI(*BB, IP, PPC::LIS, 1, constantLo).addSImm(0x8000); |
| addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), |
| ConstantFrameIndex); |
| addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo), |
| ConstantFrameIndex, 4); |
| addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), |
| ValueFrameIdx); |
| BuildMI(*BB, IP, PPC::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000); |
| addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(TempLo), |
| ValueFrameIdx, 4); |
| addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF), |
| ConstantFrameIndex); |
| addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx); |
| BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF); |
| } |
| return; |
| } |
| |
| // Handle casts from floating point to integer now... |
| if (SrcClass == cFP32 || SrcClass == cFP64) { |
| static Function* const Funcs[] = |
| { __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn }; |
| // emit library call |
| if (DestClass == cLong) { |
| bool isDouble = SrcClass == cFP64; |
| unsigned nameIndex = 2 * DestTy->isSigned() + isDouble; |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(SrcReg, SrcTy)); |
| Function *floatFn = Funcs[nameIndex]; |
| MachineInstr *TheCall = |
| BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true); |
| doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false); |
| TM.CalledFunctions.insert(floatFn); |
| return; |
| } |
| |
| int ValueFrameIdx = |
| F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData()); |
| |
| if (DestTy->isSigned()) { |
| unsigned TempReg = makeAnotherReg(Type::DoubleTy); |
| |
| // Convert to integer in the FP reg and store it to a stack slot |
| BuildMI(*BB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg); |
| addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3) |
| .addReg(TempReg), ValueFrameIdx); |
| |
| // There is no load signed byte opcode, so we must emit a sign extend for |
| // that particular size. Make sure to source the new integer from the |
| // correct offset. |
| if (DestClass == cByte) { |
| unsigned TempReg2 = makeAnotherReg(DestTy); |
| addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, TempReg2), |
| ValueFrameIdx, 7); |
| BuildMI(*MBB, IP, PPC::EXTSB, DestReg).addReg(TempReg2); |
| } else { |
| int offset = (DestClass == cShort) ? 6 : 4; |
| unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ; |
| addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg), |
| ValueFrameIdx, offset); |
| } |
| } else { |
| unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f)); |
| double maxInt = (1LL << 32) - 1; |
| unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt)); |
| double border = 1LL << 31; |
| unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border)); |
| unsigned UseZero = makeAnotherReg(Type::DoubleTy); |
| unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy); |
| unsigned UseChoice = makeAnotherReg(Type::DoubleTy); |
| unsigned TmpReg = makeAnotherReg(Type::DoubleTy); |
| unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy); |
| unsigned ConvReg = makeAnotherReg(Type::DoubleTy); |
| unsigned IntTmp = makeAnotherReg(Type::IntTy); |
| unsigned XorReg = makeAnotherReg(Type::IntTy); |
| int FrameIdx = |
| F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData()); |
| // Update machine-CFG edges |
| MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock()); |
| MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock()); |
| MachineBasicBlock *OldMBB = BB; |
| ilist<MachineBasicBlock>::iterator It = BB; ++It; |
| F->getBasicBlockList().insert(It, XorMBB); |
| F->getBasicBlockList().insert(It, PhiMBB); |
| BB->addSuccessor(XorMBB); |
| BB->addSuccessor(PhiMBB); |
| |
| // Convert from floating point to unsigned 32-bit value |
| // Use 0 if incoming value is < 0.0 |
| BuildMI(*BB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg) |
| .addReg(Zero); |
| // Use 2**32 - 1 if incoming value is >= 2**32 |
| BuildMI(*BB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg); |
| BuildMI(*BB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt) |
| .addReg(UseZero).addReg(MaxInt); |
| // Subtract 2**31 |
| BuildMI(*BB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border); |
| // Use difference if >= 2**31 |
| BuildMI(*BB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice) |
| .addReg(Border); |
| BuildMI(*BB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg) |
| .addReg(UseChoice); |
| // Convert to integer |
| BuildMI(*BB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2); |
| addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3).addReg(ConvReg), |
| FrameIdx); |
| if (DestClass == cByte) { |
| addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, DestReg), |
| FrameIdx, 7); |
| } else if (DestClass == cShort) { |
| addFrameReference(BuildMI(*BB, IP, PPC::LHZ, 2, DestReg), |
| FrameIdx, 6); |
| } if (DestClass == cInt) { |
| addFrameReference(BuildMI(*BB, IP, PPC::LWZ, 2, IntTmp), |
| FrameIdx, 4); |
| BuildMI(*BB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB); |
| BuildMI(*BB, IP, PPC::B, 1).addMBB(XorMBB); |
| |
| // XorMBB: |
| // add 2**31 if input was >= 2**31 |
| BB = XorMBB; |
| BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000); |
| XorMBB->addSuccessor(PhiMBB); |
| |
| // PhiMBB: |
| // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ] |
| BB = PhiMBB; |
| BuildMI(BB, PPC::PHI, 2, DestReg).addReg(IntTmp).addMBB(OldMBB) |
| .addReg(XorReg).addMBB(XorMBB); |
| } |
| } |
| return; |
| } |
| |
| // Check our invariants |
| assert((SrcClass <= cInt || SrcClass == cLong) && |
| "Unhandled source class for cast operation!"); |
| assert((DestClass <= cInt || DestClass == cLong) && |
| "Unhandled destination class for cast operation!"); |
| |
| bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy; |
| bool destUnsigned = DestTy->isUnsigned(); |
| |
| // Unsigned -> Unsigned, clear if larger, |
| if (sourceUnsigned && destUnsigned) { |
| // handle long dest class now to keep switch clean |
| if (DestClass == cLong) { |
| if (SrcClass == cLong) { |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1) |
| .addReg(SrcReg+1); |
| } else { |
| BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0); |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg) |
| .addReg(SrcReg); |
| } |
| return; |
| } |
| |
| // handle u{ byte, short, int } x u{ byte, short, int } |
| unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16; |
| switch (SrcClass) { |
| case cByte: |
| case cShort: |
| if (SrcClass == DestClass) |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); |
| else |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) |
| .addImm(0).addImm(clearBits).addImm(31); |
| break; |
| case cLong: |
| ++SrcReg; |
| // Fall through |
| case cInt: |
| if (DestClass == cInt) |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); |
| else |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) |
| .addImm(0).addImm(clearBits).addImm(31); |
| break; |
| } |
| return; |
| } |
| |
| // Signed -> Signed |
| if (!sourceUnsigned && !destUnsigned) { |
| // handle long dest class now to keep switch clean |
| if (DestClass == cLong) { |
| if (SrcClass == cLong) { |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1) |
| .addReg(SrcReg+1); |
| } else { |
| BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31); |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg) |
| .addReg(SrcReg); |
| } |
| return; |
| } |
| |
| // handle { byte, short, int } x { byte, short, int } |
| switch (SrcClass) { |
| case cByte: |
| if (DestClass == cByte) |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); |
| else |
| BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); |
| break; |
| case cShort: |
| if (DestClass == cByte) |
| BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); |
| else if (DestClass == cShort) |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); |
| else |
| BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg); |
| break; |
| case cLong: |
| ++SrcReg; |
| // Fall through |
| case cInt: |
| if (DestClass == cByte) |
| BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); |
| else if (DestClass == cShort) |
| BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg); |
| else |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); |
| break; |
| } |
| return; |
| } |
| |
| // Unsigned -> Signed |
| if (sourceUnsigned && !destUnsigned) { |
| // handle long dest class now to keep switch clean |
| if (DestClass == cLong) { |
| if (SrcClass == cLong) { |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1). |
| addReg(SrcReg+1); |
| } else { |
| BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0); |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg) |
| .addReg(SrcReg); |
| } |
| return; |
| } |
| |
| // handle u{ byte, short, int } -> { byte, short, int } |
| switch (SrcClass) { |
| case cByte: |
| if (DestClass == cByte) |
| // uByte 255 -> signed byte == -1 |
| BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); |
| else |
| // uByte 255 -> signed short/int == 255 |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0) |
| .addImm(24).addImm(31); |
| break; |
| case cShort: |
| if (DestClass == cByte) |
| BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); |
| else if (DestClass == cShort) |
| BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg); |
| else |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0) |
| .addImm(16).addImm(31); |
| break; |
| case cLong: |
| ++SrcReg; |
| // Fall through |
| case cInt: |
| if (DestClass == cByte) |
| BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); |
| else if (DestClass == cShort) |
| BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg); |
| else |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); |
| break; |
| } |
| return; |
| } |
| |
| // Signed -> Unsigned |
| if (!sourceUnsigned && destUnsigned) { |
| // handle long dest class now to keep switch clean |
| if (DestClass == cLong) { |
| if (SrcClass == cLong) { |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1) |
| .addReg(SrcReg+1); |
| } else { |
| BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31); |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg) |
| .addReg(SrcReg); |
| } |
| return; |
| } |
| |
| // handle { byte, short, int } -> u{ byte, short, int } |
| unsigned clearBits = (DestClass == cByte) ? 24 : 16; |
| switch (SrcClass) { |
| case cByte: |
| case cShort: |
| if (DestClass == cByte || DestClass == cShort) |
| // sbyte -1 -> ubyte 0x000000FF |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) |
| .addImm(0).addImm(clearBits).addImm(31); |
| else |
| // sbyte -1 -> ubyte 0xFFFFFFFF |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); |
| break; |
| case cLong: |
| ++SrcReg; |
| // Fall through |
| case cInt: |
| if (DestClass == cInt) |
| BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); |
| else |
| BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) |
| .addImm(0).addImm(clearBits).addImm(31); |
| break; |
| } |
| return; |
| } |
| |
| // Anything we haven't handled already, we can't (yet) handle at all. |
| std::cerr << "Unhandled cast from " << SrcTy->getDescription() |
| << "to " << DestTy->getDescription() << '\n'; |
| abort(); |
| } |
| |
| /// visitVANextInst - Implement the va_next instruction... |
| /// |
| void ISel::visitVANextInst(VANextInst &I) { |
| unsigned VAList = getReg(I.getOperand(0)); |
| unsigned DestReg = getReg(I); |
| |
| unsigned Size; |
| switch (I.getArgType()->getTypeID()) { |
| default: |
| std::cerr << I; |
| assert(0 && "Error: bad type for va_next instruction!"); |
| return; |
| case Type::PointerTyID: |
| case Type::UIntTyID: |
| case Type::IntTyID: |
| Size = 4; |
| break; |
| case Type::ULongTyID: |
| case Type::LongTyID: |
| case Type::DoubleTyID: |
| Size = 8; |
| break; |
| } |
| |
| // Increment the VAList pointer... |
| BuildMI(BB, PPC::ADDI, 2, DestReg).addReg(VAList).addSImm(Size); |
| } |
| |
| void ISel::visitVAArgInst(VAArgInst &I) { |
| unsigned VAList = getReg(I.getOperand(0)); |
| unsigned DestReg = getReg(I); |
| |
| switch (I.getType()->getTypeID()) { |
| default: |
| std::cerr << I; |
| assert(0 && "Error: bad type for va_next instruction!"); |
| return; |
| case Type::PointerTyID: |
| case Type::UIntTyID: |
| case Type::IntTyID: |
| BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList); |
| break; |
| case Type::ULongTyID: |
| case Type::LongTyID: |
| BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList); |
| BuildMI(BB, PPC::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList); |
| break; |
| case Type::FloatTyID: |
| BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList); |
| break; |
| case Type::DoubleTyID: |
| BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList); |
| break; |
| } |
| } |
| |
| /// visitGetElementPtrInst - instruction-select GEP instructions |
| /// |
| void ISel::visitGetElementPtrInst(GetElementPtrInst &I) { |
| if (canFoldGEPIntoLoadOrStore(&I)) |
| return; |
| |
| unsigned outputReg = getReg(I); |
| emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(), |
| outputReg, false, 0, 0); |
| } |
| |
| /// emitGEPOperation - Common code shared between visitGetElementPtrInst and |
| /// constant expression GEP support. |
| /// |
| void ISel::emitGEPOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Src, User::op_iterator IdxBegin, |
| User::op_iterator IdxEnd, unsigned TargetReg, |
| bool GEPIsFolded, ConstantSInt **RemainderPtr, |
| unsigned *PendingAddReg) { |
| const TargetData &TD = TM.getTargetData(); |
| const Type *Ty = Src->getType(); |
| unsigned basePtrReg = getReg(Src, MBB, IP); |
| int64_t constValue = 0; |
| |
| // Record the operations to emit the GEP in a vector so that we can emit them |
| // after having analyzed the entire instruction. |
| std::vector<CollapsedGepOp> ops; |
| |
| // GEPs have zero or more indices; we must perform a struct access |
| // or array access for each one. |
| for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe; |
| ++oi) { |
| Value *idx = *oi; |
| if (const StructType *StTy = dyn_cast<StructType>(Ty)) { |
| // It's a struct access. idx is the index into the structure, |
| // which names the field. Use the TargetData structure to |
| // pick out what the layout of the structure is in memory. |
| // Use the (constant) structure index's value to find the |
| // right byte offset from the StructLayout class's list of |
| // structure member offsets. |
| unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue(); |
| unsigned memberOffset = |
| TD.getStructLayout(StTy)->MemberOffsets[fieldIndex]; |
| |
| // StructType member offsets are always constant values. Add it to the |
| // running total. |
| constValue += memberOffset; |
| |
| // The next type is the member of the structure selected by the |
| // index. |
| Ty = StTy->getElementType (fieldIndex); |
| } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) { |
| // Many GEP instructions use a [cast (int/uint) to LongTy] as their |
| // operand. Handle this case directly now... |
| if (CastInst *CI = dyn_cast<CastInst>(idx)) |
| if (CI->getOperand(0)->getType() == Type::IntTy || |
| CI->getOperand(0)->getType() == Type::UIntTy) |
| idx = CI->getOperand(0); |
| |
| // It's an array or pointer access: [ArraySize x ElementType]. |
| // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we |
| // must find the size of the pointed-to type (Not coincidentally, the next |
| // type is the type of the elements in the array). |
| Ty = SqTy->getElementType(); |
| unsigned elementSize = TD.getTypeSize(Ty); |
| |
| if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) { |
| if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C)) |
| constValue += CS->getValue() * elementSize; |
| else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C)) |
| constValue += CU->getValue() * elementSize; |
| else |
| assert(0 && "Invalid ConstantInt GEP index type!"); |
| } else { |
| // Push current gep state to this point as an add |
| ops.push_back(CollapsedGepOp(false, 0, |
| ConstantSInt::get(Type::IntTy,constValue))); |
| |
| // Push multiply gep op and reset constant value |
| ops.push_back(CollapsedGepOp(true, idx, |
| ConstantSInt::get(Type::IntTy, elementSize))); |
| |
| constValue = 0; |
| } |
| } |
| } |
| // Emit instructions for all the collapsed ops |
| bool pendingAdd = false; |
| unsigned pendingAddReg = 0; |
| |
| for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(), |
| cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) { |
| CollapsedGepOp& cgo = *cgo_i; |
| unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy); |
| |
| // If we didn't emit an add last time through the loop, we need to now so |
| // that the base reg is updated appropriately. |
| if (pendingAdd) { |
| assert(pendingAddReg != 0 && "Uninitialized register in pending add!"); |
| BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg) |
| .addReg(pendingAddReg); |
| basePtrReg = nextBasePtrReg; |
| nextBasePtrReg = makeAnotherReg(Type::IntTy); |
| pendingAddReg = 0; |
| pendingAdd = false; |
| } |
| |
| if (cgo.isMul) { |
| // We know the elementSize is a constant, so we can emit a constant mul |
| unsigned TmpReg = makeAnotherReg(Type::IntTy); |
| doMultiplyConst(MBB, IP, nextBasePtrReg, cgo.index, cgo.size); |
| pendingAddReg = basePtrReg; |
| pendingAdd = true; |
| } else { |
| // Try and generate an immediate addition if possible |
| if (cgo.size->isNullValue()) { |
| BuildMI(*MBB, IP, PPC::OR, 2, nextBasePtrReg).addReg(basePtrReg) |
| .addReg(basePtrReg); |
| } else if (canUseAsImmediateForOpcode(cgo.size, 0)) { |
| BuildMI(*MBB, IP, PPC::ADDI, 2, nextBasePtrReg).addReg(basePtrReg) |
| .addSImm(cgo.size->getValue()); |
| } else { |
| unsigned Op1r = getReg(cgo.size, MBB, IP); |
| BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg) |
| .addReg(Op1r); |
| } |
| } |
| |
| basePtrReg = nextBasePtrReg; |
| } |
| // Add the current base register plus any accumulated constant value |
| ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue); |
| |
| // If we are emitting this during a fold, copy the current base register to |
| // the target, and save the current constant offset so the folding load or |
| // store can try and use it as an immediate. |
| if (GEPIsFolded) { |
| // If this is a folded GEP and the last element was an index, then we need |
| // to do some extra work to turn a shift/add/stw into a shift/stwx |
| if (pendingAdd && 0 == remainder->getValue()) { |
| assert(pendingAddReg != 0 && "Uninitialized register in pending add!"); |
| *PendingAddReg = pendingAddReg; |
| } else { |
| *PendingAddReg = 0; |
| if (pendingAdd) { |
| unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy); |
| assert(pendingAddReg != 0 && "Uninitialized register in pending add!"); |
| BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg) |
| .addReg(pendingAddReg); |
| basePtrReg = nextBasePtrReg; |
| } |
| } |
| BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg) |
| .addReg(basePtrReg); |
| *RemainderPtr = remainder; |
| return; |
| } |
| |
| // If we still have a pending add at this point, emit it now |
| if (pendingAdd) { |
| unsigned TmpReg = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg).addReg(pendingAddReg) |
| .addReg(basePtrReg); |
| basePtrReg = TmpReg; |
| } |
| |
| // After we have processed all the indices, the result is left in |
| // basePtrReg. Move it to the register where we were expected to |
| // put the answer. |
| if (remainder->isNullValue()) { |
| BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg) |
| .addReg(basePtrReg); |
| } else if (canUseAsImmediateForOpcode(remainder, 0)) { |
| BuildMI(*MBB, IP, PPC::ADDI, 2, TargetReg).addReg(basePtrReg) |
| .addSImm(remainder->getValue()); |
| } else { |
| unsigned Op1r = getReg(remainder, MBB, IP); |
| BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r); |
| } |
| } |
| |
| /// visitAllocaInst - If this is a fixed size alloca, allocate space from the |
| /// frame manager, otherwise do it the hard way. |
| /// |
| void ISel::visitAllocaInst(AllocaInst &I) { |
| // If this is a fixed size alloca in the entry block for the function, we |
| // statically stack allocate the space, so we don't need to do anything here. |
| // |
| if (dyn_castFixedAlloca(&I)) return; |
| |
| // Find the data size of the alloca inst's getAllocatedType. |
| const Type *Ty = I.getAllocatedType(); |
| unsigned TySize = TM.getTargetData().getTypeSize(Ty); |
| |
| // Create a register to hold the temporary result of multiplying the type size |
| // constant by the variable amount. |
| unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy); |
| |
| // TotalSizeReg = mul <numelements>, <TypeSize> |
| MachineBasicBlock::iterator MBBI = BB->end(); |
| ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize); |
| doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI); |
| |
| // AddedSize = add <TotalSizeReg>, 15 |
| unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy); |
| BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15); |
| |
| // AlignedSize = and <AddedSize>, ~15 |
| unsigned AlignedSize = makeAnotherReg(Type::UIntTy); |
| BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0) |
| .addImm(0).addImm(27); |
| |
| // Subtract size from stack pointer, thereby allocating some space. |
| BuildMI(BB, PPC::SUB, 2, PPC::R1).addReg(PPC::R1).addReg(AlignedSize); |
| |
| // Put a pointer to the space into the result register, by copying |
| // the stack pointer. |
| BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1); |
| |
| // Inform the Frame Information that we have just allocated a variable-sized |
| // object. |
| F->getFrameInfo()->CreateVariableSizedObject(); |
| } |
| |
| /// visitMallocInst - Malloc instructions are code generated into direct calls |
| /// to the library malloc. |
| /// |
| void ISel::visitMallocInst(MallocInst &I) { |
| unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType()); |
| unsigned Arg; |
| |
| if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) { |
| Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize)); |
| } else { |
| Arg = makeAnotherReg(Type::UIntTy); |
| MachineBasicBlock::iterator MBBI = BB->end(); |
| ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize); |
| doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI); |
| } |
| |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(Arg, Type::UIntTy)); |
| MachineInstr *TheCall = |
| BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true); |
| doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false); |
| TM.CalledFunctions.insert(mallocFn); |
| } |
| |
| |
| /// visitFreeInst - Free instructions are code gen'd to call the free libc |
| /// function. |
| /// |
| void ISel::visitFreeInst(FreeInst &I) { |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(I.getOperand(0))); |
| MachineInstr *TheCall = |
| BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true); |
| doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false); |
| TM.CalledFunctions.insert(freeFn); |
| } |
| |
| /// createPPCSimpleInstructionSelector - This pass converts an LLVM function |
| /// into a machine code representation is a very simple peep-hole fashion. The |
| /// generated code sucks but the implementation is nice and simple. |
| /// |
| FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) { |
| return new ISel(TM); |
| } |