| //===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This register allocator allocates registers to a basic block at a time, | 
 | // attempting to keep values in registers and reusing registers as appropriate. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "regalloc" | 
 | #include "llvm/BasicBlock.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/Passes.h" | 
 | #include "llvm/CodeGen/RegAllocRegistry.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/IndexedMap.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include <algorithm> | 
 | using namespace llvm; | 
 |  | 
 | STATISTIC(NumStores, "Number of stores added"); | 
 | STATISTIC(NumLoads , "Number of loads added"); | 
 |  | 
 | static RegisterRegAlloc | 
 |   localRegAlloc("local", "local register allocator", | 
 |                 createLocalRegisterAllocator); | 
 |  | 
 | namespace { | 
 |   class RALocal : public MachineFunctionPass { | 
 |   public: | 
 |     static char ID; | 
 |     RALocal() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1) {} | 
 |   private: | 
 |     const TargetMachine *TM; | 
 |     MachineFunction *MF; | 
 |     const TargetRegisterInfo *TRI; | 
 |     const TargetInstrInfo *TII; | 
 |  | 
 |     // StackSlotForVirtReg - Maps virtual regs to the frame index where these | 
 |     // values are spilled. | 
 |     IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; | 
 |  | 
 |     // Virt2PhysRegMap - This map contains entries for each virtual register | 
 |     // that is currently available in a physical register. | 
 |     IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap; | 
 |  | 
 |     unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) { | 
 |       return Virt2PhysRegMap[VirtReg]; | 
 |     } | 
 |  | 
 |     // PhysRegsUsed - This array is effectively a map, containing entries for | 
 |     // each physical register that currently has a value (ie, it is in | 
 |     // Virt2PhysRegMap).  The value mapped to is the virtual register | 
 |     // corresponding to the physical register (the inverse of the | 
 |     // Virt2PhysRegMap), or 0.  The value is set to 0 if this register is pinned | 
 |     // because it is used by a future instruction, and to -2 if it is not | 
 |     // allocatable.  If the entry for a physical register is -1, then the | 
 |     // physical register is "not in the map". | 
 |     // | 
 |     std::vector<int> PhysRegsUsed; | 
 |  | 
 |     // PhysRegsUseOrder - This contains a list of the physical registers that | 
 |     // currently have a virtual register value in them.  This list provides an | 
 |     // ordering of registers, imposing a reallocation order.  This list is only | 
 |     // used if all registers are allocated and we have to spill one, in which | 
 |     // case we spill the least recently used register.  Entries at the front of | 
 |     // the list are the least recently used registers, entries at the back are | 
 |     // the most recently used. | 
 |     // | 
 |     std::vector<unsigned> PhysRegsUseOrder; | 
 |  | 
 |     // Virt2LastUseMap - This maps each virtual register to its last use | 
 |     // (MachineInstr*, operand index pair). | 
 |     IndexedMap<std::pair<MachineInstr*, unsigned>, VirtReg2IndexFunctor> | 
 |     Virt2LastUseMap; | 
 |  | 
 |     std::pair<MachineInstr*,unsigned>& getVirtRegLastUse(unsigned Reg) { | 
 |       assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); | 
 |       return Virt2LastUseMap[Reg]; | 
 |     } | 
 |  | 
 |     // VirtRegModified - This bitset contains information about which virtual | 
 |     // registers need to be spilled back to memory when their registers are | 
 |     // scavenged.  If a virtual register has simply been rematerialized, there | 
 |     // is no reason to spill it to memory when we need the register back. | 
 |     // | 
 |     BitVector VirtRegModified; | 
 |      | 
 |     // UsedInMultipleBlocks - Tracks whether a particular register is used in | 
 |     // more than one block. | 
 |     BitVector UsedInMultipleBlocks; | 
 |  | 
 |     void markVirtRegModified(unsigned Reg, bool Val = true) { | 
 |       assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); | 
 |       Reg -= TargetRegisterInfo::FirstVirtualRegister; | 
 |       if (Val) | 
 |         VirtRegModified.set(Reg); | 
 |       else | 
 |         VirtRegModified.reset(Reg); | 
 |     } | 
 |  | 
 |     bool isVirtRegModified(unsigned Reg) const { | 
 |       assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); | 
 |       assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size() | 
 |              && "Illegal virtual register!"); | 
 |       return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister]; | 
 |     } | 
 |  | 
 |     void AddToPhysRegsUseOrder(unsigned Reg) { | 
 |       std::vector<unsigned>::iterator It = | 
 |         std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg); | 
 |       if (It != PhysRegsUseOrder.end()) | 
 |         PhysRegsUseOrder.erase(It); | 
 |       PhysRegsUseOrder.push_back(Reg); | 
 |     } | 
 |  | 
 |     void MarkPhysRegRecentlyUsed(unsigned Reg) { | 
 |       if (PhysRegsUseOrder.empty() || | 
 |           PhysRegsUseOrder.back() == Reg) return;  // Already most recently used | 
 |  | 
 |       for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i) | 
 |         if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) { | 
 |           unsigned RegMatch = PhysRegsUseOrder[i-1];       // remove from middle | 
 |           PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1); | 
 |           // Add it to the end of the list | 
 |           PhysRegsUseOrder.push_back(RegMatch); | 
 |           if (RegMatch == Reg) | 
 |             return;    // Found an exact match, exit early | 
 |         } | 
 |     } | 
 |  | 
 |   public: | 
 |     virtual const char *getPassName() const { | 
 |       return "Local Register Allocator"; | 
 |     } | 
 |  | 
 |     virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.setPreservesCFG(); | 
 |       AU.addRequiredID(PHIEliminationID); | 
 |       AU.addRequiredID(TwoAddressInstructionPassID); | 
 |       MachineFunctionPass::getAnalysisUsage(AU); | 
 |     } | 
 |  | 
 |   private: | 
 |     /// runOnMachineFunction - Register allocate the whole function | 
 |     bool runOnMachineFunction(MachineFunction &Fn); | 
 |  | 
 |     /// AllocateBasicBlock - Register allocate the specified basic block. | 
 |     void AllocateBasicBlock(MachineBasicBlock &MBB); | 
 |  | 
 |  | 
 |     /// areRegsEqual - This method returns true if the specified registers are | 
 |     /// related to each other.  To do this, it checks to see if they are equal | 
 |     /// or if the first register is in the alias set of the second register. | 
 |     /// | 
 |     bool areRegsEqual(unsigned R1, unsigned R2) const { | 
 |       if (R1 == R2) return true; | 
 |       for (const unsigned *AliasSet = TRI->getAliasSet(R2); | 
 |            *AliasSet; ++AliasSet) { | 
 |         if (*AliasSet == R1) return true; | 
 |       } | 
 |       return false; | 
 |     } | 
 |  | 
 |     /// getStackSpaceFor - This returns the frame index of the specified virtual | 
 |     /// register on the stack, allocating space if necessary. | 
 |     int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); | 
 |  | 
 |     /// removePhysReg - This method marks the specified physical register as no | 
 |     /// longer being in use. | 
 |     /// | 
 |     void removePhysReg(unsigned PhysReg); | 
 |  | 
 |     /// spillVirtReg - This method spills the value specified by PhysReg into | 
 |     /// the virtual register slot specified by VirtReg.  It then updates the RA | 
 |     /// data structures to indicate the fact that PhysReg is now available. | 
 |     /// | 
 |     void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, | 
 |                       unsigned VirtReg, unsigned PhysReg); | 
 |  | 
 |     /// spillPhysReg - This method spills the specified physical register into | 
 |     /// the virtual register slot associated with it.  If OnlyVirtRegs is set to | 
 |     /// true, then the request is ignored if the physical register does not | 
 |     /// contain a virtual register. | 
 |     /// | 
 |     void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, | 
 |                       unsigned PhysReg, bool OnlyVirtRegs = false); | 
 |  | 
 |     /// assignVirtToPhysReg - This method updates local state so that we know | 
 |     /// that PhysReg is the proper container for VirtReg now.  The physical | 
 |     /// register must not be used for anything else when this is called. | 
 |     /// | 
 |     void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg); | 
 |  | 
 |     /// isPhysRegAvailable - Return true if the specified physical register is | 
 |     /// free and available for use.  This also includes checking to see if | 
 |     /// aliased registers are all free... | 
 |     /// | 
 |     bool isPhysRegAvailable(unsigned PhysReg) const; | 
 |  | 
 |     /// getFreeReg - Look to see if there is a free register available in the | 
 |     /// specified register class.  If not, return 0. | 
 |     /// | 
 |     unsigned getFreeReg(const TargetRegisterClass *RC); | 
 |  | 
 |     /// getReg - Find a physical register to hold the specified virtual | 
 |     /// register.  If all compatible physical registers are used, this method | 
 |     /// spills the last used virtual register to the stack, and uses that | 
 |     /// register. If NoFree is true, that means the caller knows there isn't | 
 |     /// a free register, do not call getFreeReg(). | 
 |     unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI, | 
 |                     unsigned VirtReg, bool NoFree = false); | 
 |  | 
 |     /// reloadVirtReg - This method transforms the specified virtual | 
 |     /// register use to refer to a physical register.  This method may do this | 
 |     /// in one of several ways: if the register is available in a physical | 
 |     /// register already, it uses that physical register.  If the value is not | 
 |     /// in a physical register, and if there are physical registers available, | 
 |     /// it loads it into a register: PhysReg if that is an available physical | 
 |     /// register, otherwise any physical register of the right class. | 
 |     /// If register pressure is high, and it is possible, it tries to fold the | 
 |     /// load of the virtual register into the instruction itself.  It avoids | 
 |     /// doing this if register pressure is low to improve the chance that | 
 |     /// subsequent instructions can use the reloaded value.  This method | 
 |     /// returns the modified instruction. | 
 |     /// | 
 |     MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, | 
 |                                 unsigned OpNum, SmallSet<unsigned, 4> &RRegs, | 
 |                                 unsigned PhysReg); | 
 |  | 
 |     /// ComputeLocalLiveness - Computes liveness of registers within a basic | 
 |     /// block, setting the killed/dead flags as appropriate. | 
 |     void ComputeLocalLiveness(MachineBasicBlock& MBB); | 
 |  | 
 |     void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, | 
 |                        unsigned PhysReg); | 
 |   }; | 
 |   char RALocal::ID = 0; | 
 | } | 
 |  | 
 | /// getStackSpaceFor - This allocates space for the specified virtual register | 
 | /// to be held on the stack. | 
 | int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { | 
 |   // Find the location Reg would belong... | 
 |   int SS = StackSlotForVirtReg[VirtReg]; | 
 |   if (SS != -1) | 
 |     return SS;          // Already has space allocated? | 
 |  | 
 |   // Allocate a new stack object for this spill location... | 
 |   int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), | 
 |                                                             RC->getAlignment()); | 
 |  | 
 |   // Assign the slot... | 
 |   StackSlotForVirtReg[VirtReg] = FrameIdx; | 
 |   return FrameIdx; | 
 | } | 
 |  | 
 |  | 
 | /// removePhysReg - This method marks the specified physical register as no | 
 | /// longer being in use. | 
 | /// | 
 | void RALocal::removePhysReg(unsigned PhysReg) { | 
 |   PhysRegsUsed[PhysReg] = -1;      // PhyReg no longer used | 
 |  | 
 |   std::vector<unsigned>::iterator It = | 
 |     std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg); | 
 |   if (It != PhysRegsUseOrder.end()) | 
 |     PhysRegsUseOrder.erase(It); | 
 | } | 
 |  | 
 |  | 
 | /// spillVirtReg - This method spills the value specified by PhysReg into the | 
 | /// virtual register slot specified by VirtReg.  It then updates the RA data | 
 | /// structures to indicate the fact that PhysReg is now available. | 
 | /// | 
 | void RALocal::spillVirtReg(MachineBasicBlock &MBB, | 
 |                            MachineBasicBlock::iterator I, | 
 |                            unsigned VirtReg, unsigned PhysReg) { | 
 |   assert(VirtReg && "Spilling a physical register is illegal!" | 
 |          " Must not have appropriate kill for the register or use exists beyond" | 
 |          " the intended one."); | 
 |   DEBUG(dbgs() << "  Spilling register " << TRI->getName(PhysReg) | 
 |                << " containing %reg" << VirtReg); | 
 |    | 
 |   if (!isVirtRegModified(VirtReg)) { | 
 |     DEBUG(dbgs() << " which has not been modified, so no store necessary!"); | 
 |     std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg); | 
 |     if (LastUse.first) | 
 |       LastUse.first->getOperand(LastUse.second).setIsKill(); | 
 |   } else { | 
 |     // Otherwise, there is a virtual register corresponding to this physical | 
 |     // register.  We only need to spill it into its stack slot if it has been | 
 |     // modified. | 
 |     const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); | 
 |     int FrameIndex = getStackSpaceFor(VirtReg, RC); | 
 |     DEBUG(dbgs() << " to stack slot #" << FrameIndex); | 
 |     // If the instruction reads the register that's spilled, (e.g. this can | 
 |     // happen if it is a move to a physical register), then the spill | 
 |     // instruction is not a kill. | 
 |     bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg)); | 
 |     TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC); | 
 |     ++NumStores;   // Update statistics | 
 |   } | 
 |  | 
 |   getVirt2PhysRegMapSlot(VirtReg) = 0;   // VirtReg no longer available | 
 |  | 
 |   DEBUG(dbgs() << '\n'); | 
 |   removePhysReg(PhysReg); | 
 | } | 
 |  | 
 |  | 
 | /// spillPhysReg - This method spills the specified physical register into the | 
 | /// virtual register slot associated with it.  If OnlyVirtRegs is set to true, | 
 | /// then the request is ignored if the physical register does not contain a | 
 | /// virtual register. | 
 | /// | 
 | void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, | 
 |                            unsigned PhysReg, bool OnlyVirtRegs) { | 
 |   if (PhysRegsUsed[PhysReg] != -1) {            // Only spill it if it's used! | 
 |     assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!"); | 
 |     if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs) | 
 |       spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg); | 
 |   } else { | 
 |     // If the selected register aliases any other registers, we must make | 
 |     // sure that one of the aliases isn't alive. | 
 |     for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg); | 
 |          *AliasSet; ++AliasSet) | 
 |       if (PhysRegsUsed[*AliasSet] != -1 &&     // Spill aliased register. | 
 |           PhysRegsUsed[*AliasSet] != -2)       // If allocatable. | 
 |           if (PhysRegsUsed[*AliasSet]) | 
 |             spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /// assignVirtToPhysReg - This method updates local state so that we know | 
 | /// that PhysReg is the proper container for VirtReg now.  The physical | 
 | /// register must not be used for anything else when this is called. | 
 | /// | 
 | void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { | 
 |   assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!"); | 
 |   // Update information to note the fact that this register was just used, and | 
 |   // it holds VirtReg. | 
 |   PhysRegsUsed[PhysReg] = VirtReg; | 
 |   getVirt2PhysRegMapSlot(VirtReg) = PhysReg; | 
 |   AddToPhysRegsUseOrder(PhysReg);   // New use of PhysReg | 
 | } | 
 |  | 
 |  | 
 | /// isPhysRegAvailable - Return true if the specified physical register is free | 
 | /// and available for use.  This also includes checking to see if aliased | 
 | /// registers are all free... | 
 | /// | 
 | bool RALocal::isPhysRegAvailable(unsigned PhysReg) const { | 
 |   if (PhysRegsUsed[PhysReg] != -1) return false; | 
 |  | 
 |   // If the selected register aliases any other allocated registers, it is | 
 |   // not free! | 
 |   for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg); | 
 |        *AliasSet; ++AliasSet) | 
 |     if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use? | 
 |       return false;                    // Can't use this reg then. | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | /// getFreeReg - Look to see if there is a free register available in the | 
 | /// specified register class.  If not, return 0. | 
 | /// | 
 | unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) { | 
 |   // Get iterators defining the range of registers that are valid to allocate in | 
 |   // this class, which also specifies the preferred allocation order. | 
 |   TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF); | 
 |   TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF); | 
 |  | 
 |   for (; RI != RE; ++RI) | 
 |     if (isPhysRegAvailable(*RI)) {       // Is reg unused? | 
 |       assert(*RI != 0 && "Cannot use register!"); | 
 |       return *RI; // Found an unused register! | 
 |     } | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | /// getReg - Find a physical register to hold the specified virtual | 
 | /// register.  If all compatible physical registers are used, this method spills | 
 | /// the last used virtual register to the stack, and uses that register. | 
 | /// | 
 | unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I, | 
 |                          unsigned VirtReg, bool NoFree) { | 
 |   const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); | 
 |  | 
 |   // First check to see if we have a free register of the requested type... | 
 |   unsigned PhysReg = NoFree ? 0 : getFreeReg(RC); | 
 |  | 
 |   // If we didn't find an unused register, scavenge one now! | 
 |   if (PhysReg == 0) { | 
 |     assert(!PhysRegsUseOrder.empty() && "No allocated registers??"); | 
 |  | 
 |     // Loop over all of the preallocated registers from the least recently used | 
 |     // to the most recently used.  When we find one that is capable of holding | 
 |     // our register, use it. | 
 |     for (unsigned i = 0; PhysReg == 0; ++i) { | 
 |       assert(i != PhysRegsUseOrder.size() && | 
 |              "Couldn't find a register of the appropriate class!"); | 
 |  | 
 |       unsigned R = PhysRegsUseOrder[i]; | 
 |  | 
 |       // We can only use this register if it holds a virtual register (ie, it | 
 |       // can be spilled).  Do not use it if it is an explicitly allocated | 
 |       // physical register! | 
 |       assert(PhysRegsUsed[R] != -1 && | 
 |              "PhysReg in PhysRegsUseOrder, but is not allocated?"); | 
 |       if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) { | 
 |         // If the current register is compatible, use it. | 
 |         if (RC->contains(R)) { | 
 |           PhysReg = R; | 
 |           break; | 
 |         } else { | 
 |           // If one of the registers aliased to the current register is | 
 |           // compatible, use it. | 
 |           for (const unsigned *AliasIt = TRI->getAliasSet(R); | 
 |                *AliasIt; ++AliasIt) { | 
 |             if (RC->contains(*AliasIt) && | 
 |                 // If this is pinned down for some reason, don't use it.  For | 
 |                 // example, if CL is pinned, and we run across CH, don't use | 
 |                 // CH as justification for using scavenging ECX (which will | 
 |                 // fail). | 
 |                 PhysRegsUsed[*AliasIt] != 0 && | 
 |                  | 
 |                 // Make sure the register is allocatable.  Don't allocate SIL on | 
 |                 // x86-32. | 
 |                 PhysRegsUsed[*AliasIt] != -2) { | 
 |               PhysReg = *AliasIt;    // Take an aliased register | 
 |               break; | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     assert(PhysReg && "Physical register not assigned!?!?"); | 
 |  | 
 |     // At this point PhysRegsUseOrder[i] is the least recently used register of | 
 |     // compatible register class.  Spill it to memory and reap its remains. | 
 |     spillPhysReg(MBB, I, PhysReg); | 
 |   } | 
 |  | 
 |   // Now that we know which register we need to assign this to, do it now! | 
 |   assignVirtToPhysReg(VirtReg, PhysReg); | 
 |   return PhysReg; | 
 | } | 
 |  | 
 |  | 
 | /// reloadVirtReg - This method transforms the specified virtual | 
 | /// register use to refer to a physical register.  This method may do this in | 
 | /// one of several ways: if the register is available in a physical register | 
 | /// already, it uses that physical register.  If the value is not in a physical | 
 | /// register, and if there are physical registers available, it loads it into a | 
 | /// register: PhysReg if that is an available physical register, otherwise any | 
 | /// register.  If register pressure is high, and it is possible, it tries to | 
 | /// fold the load of the virtual register into the instruction itself.  It | 
 | /// avoids doing this if register pressure is low to improve the chance that | 
 | /// subsequent instructions can use the reloaded value.  This method returns | 
 | /// the modified instruction. | 
 | /// | 
 | MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, | 
 |                                      unsigned OpNum, | 
 |                                      SmallSet<unsigned, 4> &ReloadedRegs, | 
 |                                      unsigned PhysReg) { | 
 |   unsigned VirtReg = MI->getOperand(OpNum).getReg(); | 
 |  | 
 |   // If the virtual register is already available, just update the instruction | 
 |   // and return. | 
 |   if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) { | 
 |     MI->getOperand(OpNum).setReg(PR);  // Assign the input register | 
 |     if (!MI->isDebugValue()) { | 
 |       // Do not do these for DBG_VALUE as they can affect codegen. | 
 |       MarkPhysRegRecentlyUsed(PR);       // Already have this value available! | 
 |       getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum); | 
 |     } | 
 |     return MI; | 
 |   } | 
 |  | 
 |   // Otherwise, we need to fold it into the current instruction, or reload it. | 
 |   // If we have registers available to hold the value, use them. | 
 |   const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); | 
 |   // If we already have a PhysReg (this happens when the instruction is a | 
 |   // reg-to-reg copy with a PhysReg destination) use that. | 
 |   if (!PhysReg || !TargetRegisterInfo::isPhysicalRegister(PhysReg) || | 
 |       !isPhysRegAvailable(PhysReg)) | 
 |     PhysReg = getFreeReg(RC); | 
 |   int FrameIndex = getStackSpaceFor(VirtReg, RC); | 
 |  | 
 |   if (PhysReg) {   // Register is available, allocate it! | 
 |     assignVirtToPhysReg(VirtReg, PhysReg); | 
 |   } else {         // No registers available. | 
 |     // Force some poor hapless value out of the register file to | 
 |     // make room for the new register, and reload it. | 
 |     PhysReg = getReg(MBB, MI, VirtReg, true); | 
 |   } | 
 |  | 
 |   markVirtRegModified(VirtReg, false);   // Note that this reg was just reloaded | 
 |  | 
 |   DEBUG(dbgs() << "  Reloading %reg" << VirtReg << " into " | 
 |                << TRI->getName(PhysReg) << "\n"); | 
 |  | 
 |   // Add move instruction(s) | 
 |   TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC); | 
 |   ++NumLoads;    // Update statistics | 
 |  | 
 |   MF->getRegInfo().setPhysRegUsed(PhysReg); | 
 |   MI->getOperand(OpNum).setReg(PhysReg);  // Assign the input register | 
 |   getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum); | 
 |  | 
 |   if (!ReloadedRegs.insert(PhysReg)) { | 
 |     std::string msg; | 
 |     raw_string_ostream Msg(msg); | 
 |     Msg << "Ran out of registers during register allocation!"; | 
 |     if (MI->isInlineAsm()) { | 
 |       Msg << "\nPlease check your inline asm statement for invalid " | 
 |            << "constraints:\n"; | 
 |       MI->print(Msg, TM); | 
 |     } | 
 |     llvm_report_error(Msg.str()); | 
 |   } | 
 |   for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg); | 
 |        *SubRegs; ++SubRegs) { | 
 |     if (!ReloadedRegs.insert(*SubRegs)) { | 
 |       std::string msg; | 
 |       raw_string_ostream Msg(msg); | 
 |       Msg << "Ran out of registers during register allocation!"; | 
 |       if (MI->isInlineAsm()) { | 
 |         Msg << "\nPlease check your inline asm statement for invalid " | 
 |              << "constraints:\n"; | 
 |         MI->print(Msg, TM); | 
 |       } | 
 |       llvm_report_error(Msg.str()); | 
 |     } | 
 |   } | 
 |  | 
 |   return MI; | 
 | } | 
 |  | 
 | /// isReadModWriteImplicitKill - True if this is an implicit kill for a | 
 | /// read/mod/write register, i.e. update partial register. | 
 | static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) { | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand& MO = MI->getOperand(i); | 
 |     if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() && | 
 |         MO.isDef() && !MO.isDead()) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// isReadModWriteImplicitDef - True if this is an implicit def for a | 
 | /// read/mod/write register, i.e. update partial register. | 
 | static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) { | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand& MO = MI->getOperand(i); | 
 |     if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() && | 
 |         !MO.isDef() && MO.isKill()) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // precedes - Helper function to determine with MachineInstr A | 
 | // precedes MachineInstr B within the same MBB. | 
 | static bool precedes(MachineBasicBlock::iterator A, | 
 |                      MachineBasicBlock::iterator B) { | 
 |   if (A == B) | 
 |     return false; | 
 |    | 
 |   MachineBasicBlock::iterator I = A->getParent()->begin(); | 
 |   while (I != A->getParent()->end()) { | 
 |     if (I == A) | 
 |       return true; | 
 |     else if (I == B) | 
 |       return false; | 
 |      | 
 |     ++I; | 
 |   } | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | /// ComputeLocalLiveness - Computes liveness of registers within a basic | 
 | /// block, setting the killed/dead flags as appropriate. | 
 | void RALocal::ComputeLocalLiveness(MachineBasicBlock& MBB) { | 
 |   MachineRegisterInfo& MRI = MBB.getParent()->getRegInfo(); | 
 |   // Keep track of the most recently seen previous use or def of each reg,  | 
 |   // so that we can update them with dead/kill markers. | 
 |   DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > LastUseDef; | 
 |   for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); | 
 |        I != E; ++I) { | 
 |     if (I->isDebugValue()) | 
 |       continue; | 
 |     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { | 
 |       MachineOperand& MO = I->getOperand(i); | 
 |       // Uses don't trigger any flags, but we need to save | 
 |       // them for later.  Also, we have to process these | 
 |       // _before_ processing the defs, since an instr | 
 |       // uses regs before it defs them. | 
 |       if (MO.isReg() && MO.getReg() && MO.isUse()) { | 
 |         LastUseDef[MO.getReg()] = std::make_pair(I, i); | 
 |          | 
 |          | 
 |         if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue; | 
 |          | 
 |         const unsigned* Aliases = TRI->getAliasSet(MO.getReg()); | 
 |         if (Aliases) { | 
 |           while (*Aliases) { | 
 |             DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator | 
 |               alias = LastUseDef.find(*Aliases); | 
 |              | 
 |             if (alias != LastUseDef.end() && alias->second.first != I) | 
 |               LastUseDef[*Aliases] = std::make_pair(I, i); | 
 |              | 
 |             ++Aliases; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |      | 
 |     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { | 
 |       MachineOperand& MO = I->getOperand(i); | 
 |       // Defs others than 2-addr redefs _do_ trigger flag changes: | 
 |       //   - A def followed by a def is dead | 
 |       //   - A use followed by a def is a kill | 
 |       if (MO.isReg() && MO.getReg() && MO.isDef()) { | 
 |         DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator | 
 |           last = LastUseDef.find(MO.getReg()); | 
 |         if (last != LastUseDef.end()) { | 
 |           // Check if this is a two address instruction.  If so, then | 
 |           // the def does not kill the use. | 
 |           if (last->second.first == I && | 
 |               I->isRegTiedToUseOperand(i)) | 
 |             continue; | 
 |            | 
 |           MachineOperand& lastUD = | 
 |                       last->second.first->getOperand(last->second.second); | 
 |           if (lastUD.isDef()) | 
 |             lastUD.setIsDead(true); | 
 |           else | 
 |             lastUD.setIsKill(true); | 
 |         } | 
 |          | 
 |         LastUseDef[MO.getReg()] = std::make_pair(I, i); | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   // Live-out (of the function) registers contain return values of the function, | 
 |   // so we need to make sure they are alive at return time. | 
 |   if (!MBB.empty() && MBB.back().getDesc().isReturn()) { | 
 |     MachineInstr* Ret = &MBB.back(); | 
 |     for (MachineRegisterInfo::liveout_iterator | 
 |          I = MF->getRegInfo().liveout_begin(), | 
 |          E = MF->getRegInfo().liveout_end(); I != E; ++I) | 
 |       if (!Ret->readsRegister(*I)) { | 
 |         Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); | 
 |         LastUseDef[*I] = std::make_pair(Ret, Ret->getNumOperands()-1); | 
 |       } | 
 |   } | 
 |    | 
 |   // Finally, loop over the final use/def of each reg  | 
 |   // in the block and determine if it is dead. | 
 |   for (DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator | 
 |        I = LastUseDef.begin(), E = LastUseDef.end(); I != E; ++I) { | 
 |     MachineInstr* MI = I->second.first; | 
 |     unsigned idx = I->second.second; | 
 |     MachineOperand& MO = MI->getOperand(idx); | 
 |      | 
 |     bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(MO.getReg()); | 
 |      | 
 |     // A crude approximation of "live-out" calculation | 
 |     bool usedOutsideBlock = isPhysReg ? false :    | 
 |           UsedInMultipleBlocks.test(MO.getReg() -   | 
 |                                     TargetRegisterInfo::FirstVirtualRegister); | 
 |     if (!isPhysReg && !usedOutsideBlock) { | 
 |       // DBG_VALUE complicates this:  if the only refs of a register outside | 
 |       // this block are DBG_VALUE, we can't keep the reg live just for that, | 
 |       // as it will cause the reg to be spilled at the end of this block when | 
 |       // it wouldn't have been otherwise.  Nullify the DBG_VALUEs when that | 
 |       // happens. | 
 |       bool UsedByDebugValueOnly = false; | 
 |       for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()), | 
 |            UE = MRI.reg_end(); UI != UE; ++UI) | 
 |         // Two cases: | 
 |         // - used in another block | 
 |         // - used in the same block before it is defined (loop) | 
 |         if (UI->getParent() != &MBB || | 
 |             (MO.isDef() && UI.getOperand().isUse() && precedes(&*UI, MI))) { | 
 |           if (UI->isDebugValue()) { | 
 |             UsedByDebugValueOnly = true; | 
 |             continue; | 
 |           } | 
 |           // A non-DBG_VALUE use means we can leave DBG_VALUE uses alone. | 
 |           UsedInMultipleBlocks.set(MO.getReg() -  | 
 |                                    TargetRegisterInfo::FirstVirtualRegister); | 
 |           usedOutsideBlock = true; | 
 |           UsedByDebugValueOnly = false; | 
 |           break; | 
 |         } | 
 |       if (UsedByDebugValueOnly) | 
 |         for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()), | 
 |              UE = MRI.reg_end(); UI != UE; ++UI) | 
 |           if (UI->isDebugValue() && | 
 |               (UI->getParent() != &MBB || | 
 |                (MO.isDef() && precedes(&*UI, MI)))) | 
 |             UI.getOperand().setReg(0U); | 
 |     } | 
 |    | 
 |     // Physical registers and those that are not live-out of the block | 
 |     // are killed/dead at their last use/def within this block. | 
 |     if (isPhysReg || !usedOutsideBlock) { | 
 |       if (MO.isUse()) { | 
 |         // Don't mark uses that are tied to defs as kills. | 
 |         if (!MI->isRegTiedToDefOperand(idx)) | 
 |           MO.setIsKill(true); | 
 |       } else | 
 |         MO.setIsDead(true); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) { | 
 |   // loop over each instruction | 
 |   MachineBasicBlock::iterator MII = MBB.begin(); | 
 |    | 
 |   DEBUG({ | 
 |       const BasicBlock *LBB = MBB.getBasicBlock(); | 
 |       if (LBB) | 
 |         dbgs() << "\nStarting RegAlloc of BB: " << LBB->getName(); | 
 |     }); | 
 |  | 
 |   // Add live-in registers as active. | 
 |   for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(), | 
 |          E = MBB.livein_end(); I != E; ++I) { | 
 |     unsigned Reg = *I; | 
 |     MF->getRegInfo().setPhysRegUsed(Reg); | 
 |     PhysRegsUsed[Reg] = 0;            // It is free and reserved now | 
 |     AddToPhysRegsUseOrder(Reg);  | 
 |     for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); | 
 |          *SubRegs; ++SubRegs) { | 
 |       if (PhysRegsUsed[*SubRegs] != -2) { | 
 |         AddToPhysRegsUseOrder(*SubRegs);  | 
 |         PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now | 
 |         MF->getRegInfo().setPhysRegUsed(*SubRegs); | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   ComputeLocalLiveness(MBB); | 
 |    | 
 |   // Otherwise, sequentially allocate each instruction in the MBB. | 
 |   while (MII != MBB.end()) { | 
 |     MachineInstr *MI = MII++; | 
 |     const TargetInstrDesc &TID = MI->getDesc(); | 
 |     DEBUG({ | 
 |         dbgs() << "\nStarting RegAlloc of: " << *MI; | 
 |         dbgs() << "  Regs have values: "; | 
 |         for (unsigned i = 0; i != TRI->getNumRegs(); ++i) | 
 |           if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) | 
 |             dbgs() << "[" << TRI->getName(i) | 
 |                    << ",%reg" << PhysRegsUsed[i] << "] "; | 
 |         dbgs() << '\n'; | 
 |       }); | 
 |  | 
 |     // Determine whether this is a copy instruction.  The cases where the | 
 |     // source or destination are phys regs are handled specially. | 
 |     unsigned SrcCopyReg, DstCopyReg, SrcCopySubReg, DstCopySubReg; | 
 |     unsigned SrcCopyPhysReg = 0U; | 
 |     bool isCopy = TII->isMoveInstr(*MI, SrcCopyReg, DstCopyReg,  | 
 |                                    SrcCopySubReg, DstCopySubReg); | 
 |     if (isCopy && TargetRegisterInfo::isVirtualRegister(SrcCopyReg)) | 
 |       SrcCopyPhysReg = getVirt2PhysRegMapSlot(SrcCopyReg); | 
 |  | 
 |     // Loop over the implicit uses, making sure that they are at the head of the | 
 |     // use order list, so they don't get reallocated. | 
 |     if (TID.ImplicitUses) { | 
 |       for (const unsigned *ImplicitUses = TID.ImplicitUses; | 
 |            *ImplicitUses; ++ImplicitUses) | 
 |         MarkPhysRegRecentlyUsed(*ImplicitUses); | 
 |     } | 
 |  | 
 |     SmallVector<unsigned, 8> Kills; | 
 |     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |       MachineOperand& MO = MI->getOperand(i); | 
 |       if (MO.isReg() && MO.isKill()) { | 
 |         if (!MO.isImplicit()) | 
 |           Kills.push_back(MO.getReg()); | 
 |         else if (!isReadModWriteImplicitKill(MI, MO.getReg())) | 
 |           // These are extra physical register kills when a sub-register | 
 |           // is defined (def of a sub-register is a read/mod/write of the | 
 |           // larger registers). Ignore. | 
 |           Kills.push_back(MO.getReg()); | 
 |       } | 
 |     } | 
 |  | 
 |     // If any physical regs are earlyclobber, spill any value they might | 
 |     // have in them, then mark them unallocatable. | 
 |     // If any virtual regs are earlyclobber, allocate them now (before | 
 |     // freeing inputs that are killed). | 
 |     if (MI->isInlineAsm()) { | 
 |       for (unsigned i = 0; i != MI->getNumOperands(); ++i) { | 
 |         MachineOperand& MO = MI->getOperand(i); | 
 |         if (MO.isReg() && MO.isDef() && MO.isEarlyClobber() && | 
 |             MO.getReg()) { | 
 |           if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { | 
 |             unsigned DestVirtReg = MO.getReg(); | 
 |             unsigned DestPhysReg; | 
 |  | 
 |             // If DestVirtReg already has a value, use it. | 
 |             if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) | 
 |               DestPhysReg = getReg(MBB, MI, DestVirtReg); | 
 |             MF->getRegInfo().setPhysRegUsed(DestPhysReg); | 
 |             markVirtRegModified(DestVirtReg); | 
 |             getVirtRegLastUse(DestVirtReg) = | 
 |                    std::make_pair((MachineInstr*)0, 0); | 
 |             DEBUG(dbgs() << "  Assigning " << TRI->getName(DestPhysReg) | 
 |                          << " to %reg" << DestVirtReg << "\n"); | 
 |             MO.setReg(DestPhysReg);  // Assign the earlyclobber register | 
 |           } else { | 
 |             unsigned Reg = MO.getReg(); | 
 |             if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP. | 
 |             // These are extra physical register defs when a sub-register | 
 |             // is defined (def of a sub-register is a read/mod/write of the | 
 |             // larger registers). Ignore. | 
 |             if (isReadModWriteImplicitDef(MI, MO.getReg())) continue; | 
 |  | 
 |             MF->getRegInfo().setPhysRegUsed(Reg); | 
 |             spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg | 
 |             PhysRegsUsed[Reg] = 0;            // It is free and reserved now | 
 |             AddToPhysRegsUseOrder(Reg);  | 
 |  | 
 |             for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); | 
 |                  *SubRegs; ++SubRegs) { | 
 |               if (PhysRegsUsed[*SubRegs] != -2) { | 
 |                 MF->getRegInfo().setPhysRegUsed(*SubRegs); | 
 |                 PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now | 
 |                 AddToPhysRegsUseOrder(*SubRegs);  | 
 |               } | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // If a DBG_VALUE says something is located in a spilled register, | 
 |     // change the DBG_VALUE to be undef, which prevents the register | 
 |     // from being reloaded here.  Doing that would change the generated | 
 |     // code, unless another use immediately follows this instruction. | 
 |     if (MI->isDebugValue() && | 
 |         MI->getNumOperands()==3 && MI->getOperand(0).isReg()) { | 
 |       unsigned VirtReg = MI->getOperand(0).getReg(); | 
 |       if (VirtReg && TargetRegisterInfo::isVirtualRegister(VirtReg) && | 
 |           !getVirt2PhysRegMapSlot(VirtReg)) | 
 |         MI->getOperand(0).setReg(0U); | 
 |     } | 
 |  | 
 |     // Get the used operands into registers.  This has the potential to spill | 
 |     // incoming values if we are out of registers.  Note that we completely | 
 |     // ignore physical register uses here.  We assume that if an explicit | 
 |     // physical register is referenced by the instruction, that it is guaranteed | 
 |     // to be live-in, or the input is badly hosed. | 
 |     // | 
 |     SmallSet<unsigned, 4> ReloadedRegs; | 
 |     for (unsigned i = 0; i != MI->getNumOperands(); ++i) { | 
 |       MachineOperand& MO = MI->getOperand(i); | 
 |       // here we are looking for only used operands (never def&use) | 
 |       if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() && | 
 |           TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
 |         MI = reloadVirtReg(MBB, MI, i, ReloadedRegs, | 
 |                            isCopy ? DstCopyReg : 0); | 
 |     } | 
 |  | 
 |     // If this instruction is the last user of this register, kill the | 
 |     // value, freeing the register being used, so it doesn't need to be | 
 |     // spilled to memory. | 
 |     // | 
 |     for (unsigned i = 0, e = Kills.size(); i != e; ++i) { | 
 |       unsigned VirtReg = Kills[i]; | 
 |       unsigned PhysReg = VirtReg; | 
 |       if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { | 
 |         // If the virtual register was never materialized into a register, it | 
 |         // might not be in the map, but it won't hurt to zero it out anyway. | 
 |         unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); | 
 |         PhysReg = PhysRegSlot; | 
 |         PhysRegSlot = 0; | 
 |       } else if (PhysRegsUsed[PhysReg] == -2) { | 
 |         // Unallocatable register dead, ignore. | 
 |         continue; | 
 |       } else { | 
 |         assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) && | 
 |                "Silently clearing a virtual register?"); | 
 |       } | 
 |  | 
 |       if (PhysReg) { | 
 |         DEBUG(dbgs() << "  Last use of " << TRI->getName(PhysReg) | 
 |                      << "[%reg" << VirtReg <<"], removing it from live set\n"); | 
 |         removePhysReg(PhysReg); | 
 |         for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg); | 
 |              *SubRegs; ++SubRegs) { | 
 |           if (PhysRegsUsed[*SubRegs] != -2) { | 
 |             DEBUG(dbgs()  << "  Last use of " | 
 |                           << TRI->getName(*SubRegs) << "[%reg" << VirtReg | 
 |                           <<"], removing it from live set\n"); | 
 |             removePhysReg(*SubRegs); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Loop over all of the operands of the instruction, spilling registers that | 
 |     // are defined, and marking explicit destinations in the PhysRegsUsed map. | 
 |     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |       MachineOperand& MO = MI->getOperand(i); | 
 |       if (MO.isReg() && MO.isDef() && !MO.isImplicit() && MO.getReg() && | 
 |           !MO.isEarlyClobber() && | 
 |           TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { | 
 |         unsigned Reg = MO.getReg(); | 
 |         if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP. | 
 |         // These are extra physical register defs when a sub-register | 
 |         // is defined (def of a sub-register is a read/mod/write of the | 
 |         // larger registers). Ignore. | 
 |         if (isReadModWriteImplicitDef(MI, MO.getReg())) continue; | 
 |  | 
 |         MF->getRegInfo().setPhysRegUsed(Reg); | 
 |         spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg | 
 |         PhysRegsUsed[Reg] = 0;            // It is free and reserved now | 
 |         AddToPhysRegsUseOrder(Reg);  | 
 |  | 
 |         for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); | 
 |              *SubRegs; ++SubRegs) { | 
 |           if (PhysRegsUsed[*SubRegs] != -2) { | 
 |             MF->getRegInfo().setPhysRegUsed(*SubRegs); | 
 |             PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now | 
 |             AddToPhysRegsUseOrder(*SubRegs);  | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Loop over the implicit defs, spilling them as well. | 
 |     if (TID.ImplicitDefs) { | 
 |       for (const unsigned *ImplicitDefs = TID.ImplicitDefs; | 
 |            *ImplicitDefs; ++ImplicitDefs) { | 
 |         unsigned Reg = *ImplicitDefs; | 
 |         if (PhysRegsUsed[Reg] != -2) { | 
 |           spillPhysReg(MBB, MI, Reg, true); | 
 |           AddToPhysRegsUseOrder(Reg);  | 
 |           PhysRegsUsed[Reg] = 0;            // It is free and reserved now | 
 |         } | 
 |         MF->getRegInfo().setPhysRegUsed(Reg); | 
 |         for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); | 
 |              *SubRegs; ++SubRegs) { | 
 |           if (PhysRegsUsed[*SubRegs] != -2) { | 
 |             AddToPhysRegsUseOrder(*SubRegs);  | 
 |             PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now | 
 |             MF->getRegInfo().setPhysRegUsed(*SubRegs); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     SmallVector<unsigned, 8> DeadDefs; | 
 |     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |       MachineOperand& MO = MI->getOperand(i); | 
 |       if (MO.isReg() && MO.isDead()) | 
 |         DeadDefs.push_back(MO.getReg()); | 
 |     } | 
 |  | 
 |     // Okay, we have allocated all of the source operands and spilled any values | 
 |     // that would be destroyed by defs of this instruction.  Loop over the | 
 |     // explicit defs and assign them to a register, spilling incoming values if | 
 |     // we need to scavenge a register. | 
 |     // | 
 |     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |       MachineOperand& MO = MI->getOperand(i); | 
 |       if (MO.isReg() && MO.isDef() && MO.getReg() && | 
 |           !MO.isEarlyClobber() && | 
 |           TargetRegisterInfo::isVirtualRegister(MO.getReg())) { | 
 |         unsigned DestVirtReg = MO.getReg(); | 
 |         unsigned DestPhysReg; | 
 |  | 
 |         // If DestVirtReg already has a value, use it. | 
 |         if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) { | 
 |           // If this is a copy try to reuse the input as the output; | 
 |           // that will make the copy go away. | 
 |           // If this is a copy, the source reg is a phys reg, and | 
 |           // that reg is available, use that phys reg for DestPhysReg. | 
 |           // If this is a copy, the source reg is a virtual reg, and | 
 |           // the phys reg that was assigned to that virtual reg is now | 
 |           // available, use that phys reg for DestPhysReg.  (If it's now | 
 |           // available that means this was the last use of the source.) | 
 |           if (isCopy && | 
 |               TargetRegisterInfo::isPhysicalRegister(SrcCopyReg) && | 
 |               isPhysRegAvailable(SrcCopyReg)) { | 
 |             DestPhysReg = SrcCopyReg; | 
 |             assignVirtToPhysReg(DestVirtReg, DestPhysReg); | 
 |           } else if (isCopy && | 
 |               TargetRegisterInfo::isVirtualRegister(SrcCopyReg) && | 
 |               SrcCopyPhysReg && isPhysRegAvailable(SrcCopyPhysReg) && | 
 |               MF->getRegInfo().getRegClass(DestVirtReg)-> | 
 |                                contains(SrcCopyPhysReg)) { | 
 |             DestPhysReg = SrcCopyPhysReg; | 
 |             assignVirtToPhysReg(DestVirtReg, DestPhysReg); | 
 |           } else | 
 |             DestPhysReg = getReg(MBB, MI, DestVirtReg); | 
 |         } | 
 |         MF->getRegInfo().setPhysRegUsed(DestPhysReg); | 
 |         markVirtRegModified(DestVirtReg); | 
 |         getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0); | 
 |         DEBUG(dbgs() << "  Assigning " << TRI->getName(DestPhysReg) | 
 |                      << " to %reg" << DestVirtReg << "\n"); | 
 |         MO.setReg(DestPhysReg);  // Assign the output register | 
 |       } | 
 |     } | 
 |  | 
 |     // If this instruction defines any registers that are immediately dead, | 
 |     // kill them now. | 
 |     // | 
 |     for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) { | 
 |       unsigned VirtReg = DeadDefs[i]; | 
 |       unsigned PhysReg = VirtReg; | 
 |       if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { | 
 |         unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); | 
 |         PhysReg = PhysRegSlot; | 
 |         assert(PhysReg != 0); | 
 |         PhysRegSlot = 0; | 
 |       } else if (PhysRegsUsed[PhysReg] == -2) { | 
 |         // Unallocatable register dead, ignore. | 
 |         continue; | 
 |       } | 
 |  | 
 |       if (PhysReg) { | 
 |         DEBUG(dbgs()  << "  Register " << TRI->getName(PhysReg) | 
 |                       << " [%reg" << VirtReg | 
 |                       << "] is never used, removing it from live set\n"); | 
 |         removePhysReg(PhysReg); | 
 |         for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg); | 
 |              *AliasSet; ++AliasSet) { | 
 |           if (PhysRegsUsed[*AliasSet] != -2) { | 
 |             DEBUG(dbgs()  << "  Register " << TRI->getName(*AliasSet) | 
 |                           << " [%reg" << *AliasSet | 
 |                           << "] is never used, removing it from live set\n"); | 
 |             removePhysReg(*AliasSet); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |      | 
 |     // Finally, if this is a noop copy instruction, zap it.  (Except that if | 
 |     // the copy is dead, it must be kept to avoid messing up liveness info for | 
 |     // the register scavenger.  See pr4100.) | 
 |     if (TII->isMoveInstr(*MI, SrcCopyReg, DstCopyReg, | 
 |                          SrcCopySubReg, DstCopySubReg) && | 
 |         SrcCopyReg == DstCopyReg && DeadDefs.empty()) | 
 |       MBB.erase(MI); | 
 |   } | 
 |  | 
 |   MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); | 
 |  | 
 |   // Spill all physical registers holding virtual registers now. | 
 |   for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) | 
 |     if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) { | 
 |       if (unsigned VirtReg = PhysRegsUsed[i]) | 
 |         spillVirtReg(MBB, MI, VirtReg, i); | 
 |       else | 
 |         removePhysReg(i); | 
 |     } | 
 |  | 
 | #if 0 | 
 |   // This checking code is very expensive. | 
 |   bool AllOk = true; | 
 |   for (unsigned i = TargetRegisterInfo::FirstVirtualRegister, | 
 |            e = MF->getRegInfo().getLastVirtReg(); i <= e; ++i) | 
 |     if (unsigned PR = Virt2PhysRegMap[i]) { | 
 |       cerr << "Register still mapped: " << i << " -> " << PR << "\n"; | 
 |       AllOk = false; | 
 |     } | 
 |   assert(AllOk && "Virtual registers still in phys regs?"); | 
 | #endif | 
 |  | 
 |   // Clear any physical register which appear live at the end of the basic | 
 |   // block, but which do not hold any virtual registers.  e.g., the stack | 
 |   // pointer. | 
 |   PhysRegsUseOrder.clear(); | 
 | } | 
 |  | 
 | /// runOnMachineFunction - Register allocate the whole function | 
 | /// | 
 | bool RALocal::runOnMachineFunction(MachineFunction &Fn) { | 
 |   DEBUG(dbgs() << "Machine Function\n"); | 
 |   MF = &Fn; | 
 |   TM = &Fn.getTarget(); | 
 |   TRI = TM->getRegisterInfo(); | 
 |   TII = TM->getInstrInfo(); | 
 |  | 
 |   PhysRegsUsed.assign(TRI->getNumRegs(), -1); | 
 |    | 
 |   // At various places we want to efficiently check to see whether a register | 
 |   // is allocatable.  To handle this, we mark all unallocatable registers as | 
 |   // being pinned down, permanently. | 
 |   { | 
 |     BitVector Allocable = TRI->getAllocatableSet(Fn); | 
 |     for (unsigned i = 0, e = Allocable.size(); i != e; ++i) | 
 |       if (!Allocable[i]) | 
 |         PhysRegsUsed[i] = -2;  // Mark the reg unallocable. | 
 |   } | 
 |  | 
 |   // initialize the virtual->physical register map to have a 'null' | 
 |   // mapping for all virtual registers | 
 |   unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg(); | 
 |   StackSlotForVirtReg.grow(LastVirtReg); | 
 |   Virt2PhysRegMap.grow(LastVirtReg); | 
 |   Virt2LastUseMap.grow(LastVirtReg); | 
 |   VirtRegModified.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister); | 
 |   UsedInMultipleBlocks.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister); | 
 |   | 
 |   // Loop over all of the basic blocks, eliminating virtual register references | 
 |   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); | 
 |        MBB != MBBe; ++MBB) | 
 |     AllocateBasicBlock(*MBB); | 
 |  | 
 |   StackSlotForVirtReg.clear(); | 
 |   PhysRegsUsed.clear(); | 
 |   VirtRegModified.clear(); | 
 |   UsedInMultipleBlocks.clear(); | 
 |   Virt2PhysRegMap.clear(); | 
 |   Virt2LastUseMap.clear(); | 
 |   return true; | 
 | } | 
 |  | 
 | FunctionPass *llvm::createLocalRegisterAllocator() { | 
 |   return new RALocal(); | 
 | } |