| //===-------- SplitKit.h - Toolkit for splitting live ranges ----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the SplitAnalysis class as well as mutator functions for |
| // live range splitting. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/IntervalMap.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| |
| namespace llvm { |
| |
| class ConnectedVNInfoEqClasses; |
| class LiveInterval; |
| class LiveIntervals; |
| class LiveRangeEdit; |
| class MachineInstr; |
| class MachineLoop; |
| class MachineLoopInfo; |
| class MachineRegisterInfo; |
| class TargetInstrInfo; |
| class TargetRegisterInfo; |
| class VirtRegMap; |
| class VNInfo; |
| class raw_ostream; |
| |
| /// At some point we should just include MachineDominators.h: |
| class MachineDominatorTree; |
| template <class NodeT> class DomTreeNodeBase; |
| typedef DomTreeNodeBase<MachineBasicBlock> MachineDomTreeNode; |
| |
| |
| /// SplitAnalysis - Analyze a LiveInterval, looking for live range splitting |
| /// opportunities. |
| class SplitAnalysis { |
| public: |
| const MachineFunction &MF; |
| const LiveIntervals &LIS; |
| const MachineLoopInfo &Loops; |
| const TargetInstrInfo &TII; |
| |
| // Instructions using the the current register. |
| typedef SmallPtrSet<const MachineInstr*, 16> InstrPtrSet; |
| InstrPtrSet UsingInstrs; |
| |
| // Sorted slot indexes of using instructions. |
| SmallVector<SlotIndex, 8> UseSlots; |
| |
| // The number of instructions using CurLI in each basic block. |
| typedef DenseMap<const MachineBasicBlock*, unsigned> BlockCountMap; |
| BlockCountMap UsingBlocks; |
| |
| // The number of basic block using CurLI in each loop. |
| typedef DenseMap<const MachineLoop*, unsigned> LoopCountMap; |
| LoopCountMap UsingLoops; |
| |
| private: |
| // Current live interval. |
| const LiveInterval *CurLI; |
| |
| // Sumarize statistics by counting instructions using CurLI. |
| void analyzeUses(); |
| |
| /// canAnalyzeBranch - Return true if MBB ends in a branch that can be |
| /// analyzed. |
| bool canAnalyzeBranch(const MachineBasicBlock *MBB); |
| |
| public: |
| SplitAnalysis(const MachineFunction &mf, const LiveIntervals &lis, |
| const MachineLoopInfo &mli); |
| |
| /// analyze - set CurLI to the specified interval, and analyze how it may be |
| /// split. |
| void analyze(const LiveInterval *li); |
| |
| /// clear - clear all data structures so SplitAnalysis is ready to analyze a |
| /// new interval. |
| void clear(); |
| |
| /// hasUses - Return true if MBB has any uses of CurLI. |
| bool hasUses(const MachineBasicBlock *MBB) const { |
| return UsingBlocks.lookup(MBB); |
| } |
| |
| typedef SmallPtrSet<const MachineBasicBlock*, 16> BlockPtrSet; |
| typedef SmallPtrSet<const MachineLoop*, 16> LoopPtrSet; |
| |
| // Print a set of blocks with use counts. |
| void print(const BlockPtrSet&, raw_ostream&) const; |
| |
| // Sets of basic blocks surrounding a machine loop. |
| struct LoopBlocks { |
| BlockPtrSet Loop; // Blocks in the loop. |
| BlockPtrSet Preds; // Loop predecessor blocks. |
| BlockPtrSet Exits; // Loop exit blocks. |
| |
| void clear() { |
| Loop.clear(); |
| Preds.clear(); |
| Exits.clear(); |
| } |
| }; |
| |
| // Print loop blocks with use counts. |
| void print(const LoopBlocks&, raw_ostream&) const; |
| |
| // Calculate the block sets surrounding the loop. |
| void getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks); |
| |
| /// LoopPeripheralUse - how is a variable used in and around a loop? |
| /// Peripheral blocks are the loop predecessors and exit blocks. |
| enum LoopPeripheralUse { |
| ContainedInLoop, // All uses are inside the loop. |
| SinglePeripheral, // At most one instruction per peripheral block. |
| MultiPeripheral, // Multiple instructions in some peripheral blocks. |
| OutsideLoop // Uses outside loop periphery. |
| }; |
| |
| /// analyzeLoopPeripheralUse - Return an enum describing how CurLI is used in |
| /// and around the Loop. |
| LoopPeripheralUse analyzeLoopPeripheralUse(const LoopBlocks&); |
| |
| /// getCriticalExits - It may be necessary to partially break critical edges |
| /// leaving the loop if an exit block has phi uses of CurLI. Collect the exit |
| /// blocks that need special treatment into CriticalExits. |
| void getCriticalExits(const LoopBlocks &Blocks, BlockPtrSet &CriticalExits); |
| |
| /// canSplitCriticalExits - Return true if it is possible to insert new exit |
| /// blocks before the blocks in CriticalExits. |
| bool canSplitCriticalExits(const LoopBlocks &Blocks, |
| BlockPtrSet &CriticalExits); |
| |
| /// getCriticalPreds - Get the set of loop predecessors with critical edges to |
| /// blocks outside the loop that have CurLI live in. We don't have to break |
| /// these edges, but they do require special treatment. |
| void getCriticalPreds(const LoopBlocks &Blocks, BlockPtrSet &CriticalPreds); |
| |
| /// getSplitLoops - Get the set of loops that have CurLI uses and would be |
| /// profitable to split. |
| void getSplitLoops(LoopPtrSet&); |
| |
| /// getBestSplitLoop - Return the loop where CurLI may best be split to a |
| /// separate register, or NULL. |
| const MachineLoop *getBestSplitLoop(); |
| |
| /// isBypassLoop - Return true if CurLI is live through Loop and has no uses |
| /// inside the loop. Bypass loops are candidates for splitting because it can |
| /// prevent interference inside the loop. |
| bool isBypassLoop(const MachineLoop *Loop); |
| |
| /// getBypassLoops - Get all the maximal bypass loops. These are the bypass |
| /// loops whose parent is not a bypass loop. |
| void getBypassLoops(LoopPtrSet&); |
| |
| /// getMultiUseBlocks - Add basic blocks to Blocks that may benefit from |
| /// having CurLI split to a new live interval. Return true if Blocks can be |
| /// passed to SplitEditor::splitSingleBlocks. |
| bool getMultiUseBlocks(BlockPtrSet &Blocks); |
| |
| /// getBlockForInsideSplit - If CurLI is contained inside a single basic |
| /// block, and it would pay to subdivide the interval inside that block, |
| /// return it. Otherwise return NULL. The returned block can be passed to |
| /// SplitEditor::splitInsideBlock. |
| const MachineBasicBlock *getBlockForInsideSplit(); |
| }; |
| |
| |
| /// LiveIntervalMap - Map values from a large LiveInterval into a small |
| /// interval that is a subset. Insert phi-def values as needed. This class is |
| /// used by SplitEditor to create new smaller LiveIntervals. |
| /// |
| /// ParentLI is the larger interval, LI is the subset interval. Every value |
| /// in LI corresponds to exactly one value in ParentLI, and the live range |
| /// of the value is contained within the live range of the ParentLI value. |
| /// Values in ParentLI may map to any number of OpenLI values, including 0. |
| class LiveIntervalMap { |
| LiveIntervals &LIS; |
| MachineDominatorTree &MDT; |
| |
| // The parent interval is never changed. |
| const LiveInterval &ParentLI; |
| |
| // The child interval's values are fully contained inside ParentLI values. |
| LiveInterval *LI; |
| |
| typedef DenseMap<const VNInfo*, VNInfo*> ValueMap; |
| |
| // Map ParentLI values to simple values in LI that are defined at the same |
| // SlotIndex, or NULL for ParentLI values that have complex LI defs. |
| // Note there is a difference between values mapping to NULL (complex), and |
| // values not present (unknown/unmapped). |
| ValueMap Values; |
| |
| typedef std::pair<VNInfo*, MachineDomTreeNode*> LiveOutPair; |
| typedef DenseMap<MachineBasicBlock*,LiveOutPair> LiveOutMap; |
| |
| // LiveOutCache - Map each basic block where LI is live out to the live-out |
| // value and its defining block. One of these conditions shall be true: |
| // |
| // 1. !LiveOutCache.count(MBB) |
| // 2. LiveOutCache[MBB].second.getNode() == MBB |
| // 3. forall P in preds(MBB): LiveOutCache[P] == LiveOutCache[MBB] |
| // |
| // This is only a cache, the values can be computed as: |
| // |
| // VNI = LI->getVNInfoAt(LIS.getMBBEndIdx(MBB)) |
| // Node = mbt_[LIS.getMBBFromIndex(VNI->def)] |
| // |
| // The cache is also used as a visiteed set by mapValue(). |
| LiveOutMap LiveOutCache; |
| |
| // Dump the live-out cache to dbgs(). |
| void dumpCache(); |
| |
| public: |
| LiveIntervalMap(LiveIntervals &lis, |
| MachineDominatorTree &mdt, |
| const LiveInterval &parentli) |
| : LIS(lis), MDT(mdt), ParentLI(parentli), LI(0) {} |
| |
| /// reset - clear all data structures and start a new live interval. |
| void reset(LiveInterval *); |
| |
| /// getLI - return the current live interval. |
| LiveInterval *getLI() const { return LI; } |
| |
| /// defValue - define a value in LI from the ParentLI value VNI and Idx. |
| /// Idx does not have to be ParentVNI->def, but it must be contained within |
| /// ParentVNI's live range in ParentLI. |
| /// Return the new LI value. |
| VNInfo *defValue(const VNInfo *ParentVNI, SlotIndex Idx); |
| |
| /// mapValue - map ParentVNI to the corresponding LI value at Idx. It is |
| /// assumed that ParentVNI is live at Idx. |
| /// If ParentVNI has not been defined by defValue, it is assumed that |
| /// ParentVNI->def dominates Idx. |
| /// If ParentVNI has been defined by defValue one or more times, a value that |
| /// dominates Idx will be returned. This may require creating extra phi-def |
| /// values and adding live ranges to LI. |
| /// If simple is not NULL, *simple will indicate if ParentVNI is a simply |
| /// mapped value. |
| VNInfo *mapValue(const VNInfo *ParentVNI, SlotIndex Idx, bool *simple = 0); |
| |
| // extendTo - Find the last LI value defined in MBB at or before Idx. The |
| // parentli is assumed to be live at Idx. Extend the live range to include |
| // Idx. Return the found VNInfo, or NULL. |
| VNInfo *extendTo(const MachineBasicBlock *MBB, SlotIndex Idx); |
| |
| /// isMapped - Return true is ParentVNI is a known mapped value. It may be a |
| /// simple 1-1 mapping or a complex mapping to later defs. |
| bool isMapped(const VNInfo *ParentVNI) const { |
| return Values.count(ParentVNI); |
| } |
| |
| /// isComplexMapped - Return true if ParentVNI has received new definitions |
| /// with defValue. |
| bool isComplexMapped(const VNInfo *ParentVNI) const; |
| |
| /// markComplexMapped - Mark ParentVNI as complex mapped regardless of the |
| /// number of definitions. |
| void markComplexMapped(const VNInfo *ParentVNI) { Values[ParentVNI] = 0; } |
| |
| // addSimpleRange - Add a simple range from ParentLI to LI. |
| // ParentVNI must be live in the [Start;End) interval. |
| void addSimpleRange(SlotIndex Start, SlotIndex End, const VNInfo *ParentVNI); |
| |
| /// addRange - Add live ranges to LI where [Start;End) intersects ParentLI. |
| /// All needed values whose def is not inside [Start;End) must be defined |
| /// beforehand so mapValue will work. |
| void addRange(SlotIndex Start, SlotIndex End); |
| }; |
| |
| |
| /// SplitEditor - Edit machine code and LiveIntervals for live range |
| /// splitting. |
| /// |
| /// - Create a SplitEditor from a SplitAnalysis. |
| /// - Start a new live interval with openIntv. |
| /// - Mark the places where the new interval is entered using enterIntv* |
| /// - Mark the ranges where the new interval is used with useIntv* |
| /// - Mark the places where the interval is exited with exitIntv*. |
| /// - Finish the current interval with closeIntv and repeat from 2. |
| /// - Rewrite instructions with finish(). |
| /// |
| class SplitEditor { |
| SplitAnalysis &sa_; |
| LiveIntervals &LIS; |
| VirtRegMap &VRM; |
| MachineRegisterInfo &MRI; |
| MachineDominatorTree &MDT; |
| const TargetInstrInfo &TII; |
| const TargetRegisterInfo &TRI; |
| |
| /// Edit - The current parent register and new intervals created. |
| LiveRangeEdit &Edit; |
| |
| /// Index into Edit of the currently open interval. |
| /// The index 0 is used for the complement, so the first interval started by |
| /// openIntv will be 1. |
| unsigned OpenIdx; |
| |
| typedef IntervalMap<SlotIndex, unsigned> RegAssignMap; |
| |
| /// Allocator for the interval map. This will eventually be shared with |
| /// SlotIndexes and LiveIntervals. |
| RegAssignMap::Allocator Allocator; |
| |
| /// RegAssign - Map of the assigned register indexes. |
| /// Edit.get(RegAssign.lookup(Idx)) is the register that should be live at |
| /// Idx. |
| RegAssignMap RegAssign; |
| |
| /// LIMappers - One LiveIntervalMap or each interval in Edit. |
| SmallVector<LiveIntervalMap, 4> LIMappers; |
| |
| /// defFromParent - Define Reg from ParentVNI at UseIdx using either |
| /// rematerialization or a COPY from parent. Return the new value. |
| VNInfo *defFromParent(unsigned RegIdx, |
| VNInfo *ParentVNI, |
| SlotIndex UseIdx, |
| MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I); |
| |
| /// rewriteAssigned - Rewrite all uses of Edit.getReg() to assigned registers. |
| void rewriteAssigned(); |
| |
| /// rewriteComponents - Rewrite all uses of Intv[0] according to the eq |
| /// classes in ConEQ. |
| /// This must be done when Intvs[0] is styill live at all uses, before calling |
| /// ConEq.Distribute(). |
| void rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs, |
| const ConnectedVNInfoEqClasses &ConEq); |
| |
| public: |
| /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. |
| /// Newly created intervals will be appended to newIntervals. |
| SplitEditor(SplitAnalysis &SA, LiveIntervals&, VirtRegMap&, |
| MachineDominatorTree&, LiveRangeEdit&); |
| |
| /// getAnalysis - Get the corresponding analysis. |
| SplitAnalysis &getAnalysis() { return sa_; } |
| |
| /// Create a new virtual register and live interval. |
| void openIntv(); |
| |
| /// enterIntvBefore - Enter the open interval before the instruction at Idx. |
| /// If the parent interval is not live before Idx, a COPY is not inserted. |
| /// Return the beginning of the new live range. |
| SlotIndex enterIntvBefore(SlotIndex Idx); |
| |
| /// enterIntvAtEnd - Enter the open interval at the end of MBB. |
| /// Use the open interval from he inserted copy to the MBB end. |
| /// Return the beginning of the new live range. |
| SlotIndex enterIntvAtEnd(MachineBasicBlock &MBB); |
| |
| /// useIntv - indicate that all instructions in MBB should use OpenLI. |
| void useIntv(const MachineBasicBlock &MBB); |
| |
| /// useIntv - indicate that all instructions in range should use OpenLI. |
| void useIntv(SlotIndex Start, SlotIndex End); |
| |
| /// leaveIntvAfter - Leave the open interval after the instruction at Idx. |
| /// Return the end of the live range. |
| SlotIndex leaveIntvAfter(SlotIndex Idx); |
| |
| /// leaveIntvAtTop - Leave the interval at the top of MBB. |
| /// Add liveness from the MBB top to the copy. |
| /// Return the end of the live range. |
| SlotIndex leaveIntvAtTop(MachineBasicBlock &MBB); |
| |
| /// closeIntv - Indicate that we are done editing the currently open |
| /// LiveInterval, and ranges can be trimmed. |
| void closeIntv(); |
| |
| /// finish - after all the new live ranges have been created, compute the |
| /// remaining live range, and rewrite instructions to use the new registers. |
| void finish(); |
| |
| /// dump - print the current interval maping to dbgs(). |
| void dump() const; |
| |
| // ===--- High level methods ---=== |
| |
| /// splitAroundLoop - Split CurLI into a separate live interval inside |
| /// the loop. |
| void splitAroundLoop(const MachineLoop*); |
| |
| /// splitSingleBlocks - Split CurLI into a separate live interval inside each |
| /// basic block in Blocks. |
| void splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks); |
| |
| /// splitInsideBlock - Split CurLI into multiple intervals inside MBB. |
| void splitInsideBlock(const MachineBasicBlock *); |
| }; |
| |
| } |