| //===- DataStructure.cpp - Implement the core data structure analysis -----===// |
| // |
| // This file implements the core data structure functionality. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/DSGraph.h" |
| #include "llvm/Function.h" |
| #include "llvm/iOther.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Target/TargetData.h" |
| #include "Support/STLExtras.h" |
| #include "Support/Statistic.h" |
| #include <algorithm> |
| #include <set> |
| |
| using std::vector; |
| |
| namespace DataStructureAnalysis { // TODO: FIXME |
| // isPointerType - Return true if this first class type is big enough to hold |
| // a pointer. |
| // |
| bool isPointerType(const Type *Ty); |
| extern TargetData TD; |
| } |
| using namespace DataStructureAnalysis; |
| |
| //===----------------------------------------------------------------------===// |
| // DSNode Implementation |
| //===----------------------------------------------------------------------===// |
| |
| DSNode::DSNode(enum NodeTy NT, const Type *T) : NodeType(NT) { |
| // Add the type entry if it is specified... |
| if (T) getTypeRec(T, 0); |
| } |
| |
| // DSNode copy constructor... do not copy over the referrers list! |
| DSNode::DSNode(const DSNode &N) |
| : Links(N.Links), MergeMap(N.MergeMap), |
| TypeEntries(N.TypeEntries), Globals(N.Globals), NodeType(N.NodeType) { |
| } |
| |
| void DSNode::removeReferrer(DSNodeHandle *H) { |
| // Search backwards, because we depopulate the list from the back for |
| // efficiency (because it's a vector). |
| vector<DSNodeHandle*>::reverse_iterator I = |
| std::find(Referrers.rbegin(), Referrers.rend(), H); |
| assert(I != Referrers.rend() && "Referrer not pointing to node!"); |
| Referrers.erase(I.base()-1); |
| } |
| |
| // addGlobal - Add an entry for a global value to the Globals list. This also |
| // marks the node with the 'G' flag if it does not already have it. |
| // |
| void DSNode::addGlobal(GlobalValue *GV) { |
| // Keep the list sorted. |
| vector<GlobalValue*>::iterator I = |
| std::lower_bound(Globals.begin(), Globals.end(), GV); |
| |
| if (I == Globals.end() || *I != GV) { |
| //assert(GV->getType()->getElementType() == Ty); |
| Globals.insert(I, GV); |
| NodeType |= GlobalNode; |
| } |
| } |
| |
| /// foldNodeCompletely - If we determine that this node has some funny |
| /// behavior happening to it that we cannot represent, we fold it down to a |
| /// single, completely pessimistic, node. This node is represented as a |
| /// single byte with a single TypeEntry of "void". |
| /// |
| void DSNode::foldNodeCompletely() { |
| // We are no longer typed at all... |
| TypeEntries.clear(); |
| TypeEntries.push_back(DSTypeRec(Type::VoidTy, 0)); |
| |
| // Loop over all of our referrers, making them point to our one byte of space. |
| for (vector<DSNodeHandle*>::iterator I = Referrers.begin(), E=Referrers.end(); |
| I != E; ++I) |
| (*I)->setOffset(0); |
| |
| // Fold the MergeMap down to a single byte of space... |
| MergeMap.resize(1); |
| MergeMap[0] = -1; |
| |
| // If we have links, merge all of our outgoing links together... |
| if (!Links.empty()) { |
| MergeMap[0] = 0; // We now contain an outgoing edge... |
| for (unsigned i = 1, e = Links.size(); i != e; ++i) |
| Links[0].mergeWith(Links[i]); |
| Links.resize(1); |
| } |
| } |
| |
| /// isNodeCompletelyFolded - Return true if this node has been completely |
| /// folded down to something that can never be expanded, effectively losing |
| /// all of the field sensitivity that may be present in the node. |
| /// |
| bool DSNode::isNodeCompletelyFolded() const { |
| return getSize() == 1 && TypeEntries.size() == 1 && |
| TypeEntries[0].Ty == Type::VoidTy; |
| } |
| |
| |
| |
| /// setLink - Set the link at the specified offset to the specified |
| /// NodeHandle, replacing what was there. It is uncommon to use this method, |
| /// instead one of the higher level methods should be used, below. |
| /// |
| void DSNode::setLink(unsigned i, const DSNodeHandle &NH) { |
| // Create a new entry in the Links vector to hold a new element for offset. |
| if (!hasLink(i)) { |
| signed char NewIdx = Links.size(); |
| // Check to see if we allocate more than 128 distinct links for this node. |
| // If so, just merge with the last one. This really shouldn't ever happen, |
| // but it should work regardless of whether it does or not. |
| // |
| if (NewIdx >= 0) { |
| Links.push_back(NH); // Allocate space: common case |
| } else { // Wrap around? Too many links? |
| NewIdx--; // Merge with whatever happened last |
| assert(NewIdx > 0 && "Should wrap back around"); |
| std::cerr << "\n*** DSNode found that requires more than 128 " |
| << "active links at once!\n\n"; |
| } |
| |
| signed char OldIdx = MergeMap[i]; |
| assert (OldIdx < 0 && "Shouldn't contain link!"); |
| |
| // Make sure that anything aliasing this field gets updated to point to the |
| // new link field. |
| rewriteMergeMap(OldIdx, NewIdx); |
| assert(MergeMap[i] == NewIdx && "Field not replaced!"); |
| } else { |
| Links[MergeMap[i]] = NH; |
| } |
| } |
| |
| // addEdgeTo - Add an edge from the current node to the specified node. This |
| // can cause merging of nodes in the graph. |
| // |
| void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) { |
| assert(Offset < getSize() && "Offset out of range!"); |
| if (NH.getNode() == 0) return; // Nothing to do |
| |
| if (DSNodeHandle *ExistingNH = getLink(Offset)) { |
| // Merge the two nodes... |
| ExistingNH->mergeWith(NH); |
| } else { // No merging to perform... |
| setLink(Offset, NH); // Just force a link in there... |
| } |
| } |
| |
| /// getTypeRec - This method returns the specified type record if it exists. |
| /// If it does not yet exist, the method checks to see whether or not the |
| /// request would result in an untrackable state. If adding it would cause |
| /// untrackable state, we foldNodeCompletely the node and return the void |
| /// record, otherwise we add an new TypeEntry and return it. |
| /// |
| DSTypeRec &DSNode::getTypeRec(const Type *Ty, unsigned Offset) { |
| // If the node is already collapsed, we can't do anything... bail out early |
| if (isNodeCompletelyFolded()) { |
| assert(TypeEntries.size() == 1 && "Node folded and Entries.size() != 1?"); |
| return TypeEntries[0]; |
| } |
| |
| // First search to see if we already have a record for this... |
| DSTypeRec SearchFor(Ty, Offset); |
| |
| std::vector<DSTypeRec>::iterator I; |
| if (TypeEntries.size() < 5) { // Linear search if we have few entries. |
| I = TypeEntries.begin(); |
| while (I != TypeEntries.end() && *I < SearchFor) |
| ++I; |
| } else { |
| I = std::lower_bound(TypeEntries.begin(), TypeEntries.end(), SearchFor); |
| } |
| |
| // At this point, I either points to the right entry or it points to the entry |
| // we are to insert the new entry in front of... |
| // |
| if (I != TypeEntries.end() && *I == SearchFor) |
| return *I; |
| |
| // ASSUME that it's okay to add this type entry. |
| // FIXME: This should check to make sure it's ok. |
| |
| // If the data size is different then our current size, try to resize the node |
| unsigned ReqSize = Ty->isSized() ? TD.getTypeSize(Ty) : 0; |
| if (getSize() < ReqSize) { |
| // If we are trying to make it bigger, and we can grow the node, do so. |
| if (growNode(ReqSize)) { |
| assert(isNodeCompletelyFolded() && "Node isn't folded?"); |
| return TypeEntries[0]; |
| } |
| |
| } else if (getSize() > ReqSize) { |
| // If we are trying to make the node smaller, we don't have to do anything. |
| |
| } |
| |
| return *TypeEntries.insert(I, SearchFor); |
| } |
| |
| /// growNode - Attempt to grow the node to the specified size. This may do one |
| /// of three things: |
| /// 1. Grow the node, return false |
| /// 2. Refuse to grow the node, but maintain a trackable situation, return |
| /// false. |
| /// 3. Be unable to track if node was that size, so collapse the node and |
| /// return true. |
| /// |
| bool DSNode::growNode(unsigned ReqSize) { |
| unsigned OldSize = getSize(); |
| |
| if (0) { |
| // FIXME: DSNode::growNode() doesn't perform correct safety checks yet! |
| |
| foldNodeCompletely(); |
| return true; |
| } |
| |
| assert(ReqSize > OldSize && "Not growing node!"); |
| |
| // Resize the merge map to have enough space... |
| MergeMap.resize(ReqSize); |
| |
| // Assign unique values to all of the elements of MergeMap |
| if (ReqSize < 128) { |
| // Handle the common case of reasonable size structures... |
| for (unsigned i = OldSize; i != ReqSize; ++i) |
| MergeMap[i] = -1-i; // Assign -1, -2, -3, ... |
| } else { |
| // It's possible that we have something really big here. In this case, |
| // divide the object into chunks until it will fit into 128 elements. |
| unsigned Multiple = ReqSize/128; |
| |
| // It's probably an array, and probably some power of two in size. |
| // Because of this, find the biggest power of two that is bigger than |
| // multiple to use as our real Multiple. |
| unsigned RealMultiple = 2; |
| while (RealMultiple <= Multiple) RealMultiple <<= 1; |
| |
| unsigned RealBound = ReqSize/RealMultiple; |
| assert(RealBound <= 128 && "Math didn't work out right"); |
| |
| // Now go through and assign indexes that are between -1 and -128 |
| // inclusive |
| // |
| for (unsigned i = OldSize; i != ReqSize; ++i) |
| MergeMap[i] = -1-(i % RealBound); // Assign -1, -2, -3... |
| } |
| return false; |
| } |
| |
| /// mergeMappedValues - This is the higher level form of rewriteMergeMap. It is |
| /// fully capable of merging links together if neccesary as well as simply |
| /// rewriting the map entries. |
| /// |
| void DSNode::mergeMappedValues(signed char V1, signed char V2) { |
| assert(V1 != V2 && "Cannot merge two identical mapped values!"); |
| |
| if (V1 < 0) { // If there is no outgoing link from V1, merge it with V2 |
| if (V2 < 0 && V1 > V2) |
| // If both are not linked, merge to the field closer to 0 |
| rewriteMergeMap(V2, V1); |
| else |
| rewriteMergeMap(V1, V2); |
| } else if (V2 < 0) { // Is V2 < 0 && V1 >= 0? |
| rewriteMergeMap(V2, V1); // Merge into the one with the link... |
| } else { // Otherwise, links exist at both locations |
| // Merge Links[V1] with Links[V2] so they point to the same place now... |
| Links[V1].mergeWith(Links[V2]); |
| |
| // Merge the V2 link into V1 so that we reduce the overall value of the |
| // links are reduced... |
| // |
| if (V2 < V1) std::swap(V1, V2); // Ensure V1 < V2 |
| rewriteMergeMap(V2, V1); // After this, V2 is "dead" |
| |
| // Change the user of the last link to use V2 instead |
| if ((unsigned)V2 != Links.size()-1) { |
| rewriteMergeMap(Links.size()-1, V2); // Point to V2 instead of last el... |
| // Make sure V2 points the right DSNode |
| Links[V2] = Links.back(); |
| } |
| |
| // Reduce the number of distinct outgoing links... |
| Links.pop_back(); |
| } |
| } |
| |
| |
| // MergeSortedVectors - Efficiently merge a vector into another vector where |
| // duplicates are not allowed and both are sorted. This assumes that 'T's are |
| // efficiently copyable and have sane comparison semantics. |
| // |
| template<typename T> |
| void MergeSortedVectors(vector<T> &Dest, const vector<T> &Src) { |
| // By far, the most common cases will be the simple ones. In these cases, |
| // avoid having to allocate a temporary vector... |
| // |
| if (Src.empty()) { // Nothing to merge in... |
| return; |
| } else if (Dest.empty()) { // Just copy the result in... |
| Dest = Src; |
| } else if (Src.size() == 1) { // Insert a single element... |
| const T &V = Src[0]; |
| typename vector<T>::iterator I = |
| std::lower_bound(Dest.begin(), Dest.end(), V); |
| if (I == Dest.end() || *I != Src[0]) // If not already contained... |
| Dest.insert(I, Src[0]); |
| } else if (Dest.size() == 1) { |
| T Tmp = Dest[0]; // Save value in temporary... |
| Dest = Src; // Copy over list... |
| typename vector<T>::iterator I = |
| std::lower_bound(Dest.begin(), Dest.end(),Tmp); |
| if (I == Dest.end() || *I != Src[0]) // If not already contained... |
| Dest.insert(I, Src[0]); |
| |
| } else { |
| // Make a copy to the side of Dest... |
| vector<T> Old(Dest); |
| |
| // Make space for all of the type entries now... |
| Dest.resize(Dest.size()+Src.size()); |
| |
| // Merge the two sorted ranges together... into Dest. |
| std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin()); |
| |
| // Now erase any duplicate entries that may have accumulated into the |
| // vectors (because they were in both of the input sets) |
| Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end()); |
| } |
| } |
| |
| |
| // mergeWith - Merge this node and the specified node, moving all links to and |
| // from the argument node into the current node, deleting the node argument. |
| // Offset indicates what offset the specified node is to be merged into the |
| // current node. |
| // |
| // The specified node may be a null pointer (in which case, nothing happens). |
| // |
| void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) { |
| DSNode *N = NH.getNode(); |
| if (N == 0 || (N == this && NH.getOffset() == Offset)) |
| return; // Noop |
| |
| if (N == this) { |
| std::cerr << "WARNING: Cannot merge two portions of the same node yet, so we collapse instead!\n"; |
| N->foldNodeCompletely(); |
| return; |
| } |
| |
| // If we are merging a node with a completely folded node, then both nodes are |
| // now completely folded. |
| // |
| if (isNodeCompletelyFolded()) { |
| if (!N->isNodeCompletelyFolded()) |
| N->foldNodeCompletely(); |
| } else if (N->isNodeCompletelyFolded()) { |
| foldNodeCompletely(); |
| Offset = 0; |
| } |
| N = NH.getNode(); |
| |
| if (this == N) return; |
| |
| // If both nodes are not at offset 0, make sure that we are merging the node |
| // at an later offset into the node with the zero offset. |
| // |
| if (Offset > NH.getOffset()) { |
| N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); |
| return; |
| } else if (Offset == NH.getOffset() && getSize() < N->getSize()) { |
| // If the offsets are the same, merge the smaller node into the bigger node |
| N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); |
| return; |
| } |
| |
| #if 0 |
| std::cerr << "\n\nMerging:\n"; |
| N->print(std::cerr, 0); |
| std::cerr << " and:\n"; |
| print(std::cerr, 0); |
| #endif |
| |
| // Now we know that Offset <= NH.Offset, so convert it so our "Offset" (with |
| // respect to NH.Offset) is now zero. |
| // |
| unsigned NOffset = NH.getOffset()-Offset; |
| |
| // If our destination node is too small... try to grow it. |
| if (N->getSize()+NOffset > getSize() && |
| growNode(N->getSize()+NOffset)) { |
| // Catastrophic failure occured and we had to collapse the node. In this |
| // case, collapse the other node as well. |
| N->foldNodeCompletely(); |
| NOffset = 0; |
| } |
| unsigned NSize = N->getSize(); |
| |
| // Remove all edges pointing at N, causing them to point to 'this' instead. |
| // Make sure to adjust their offset, not just the node pointer. |
| // |
| while (!N->Referrers.empty()) { |
| DSNodeHandle &Ref = *N->Referrers.back(); |
| Ref = DSNodeHandle(this, NOffset+Ref.getOffset()); |
| } |
| |
| // We must merge fields in this node due to nodes merged in the source node. |
| // In order to handle this we build a map that converts from the source node's |
| // MergeMap values to our MergeMap values. This map is indexed by the |
| // expression: MergeMap[SMM+SourceNodeSize] so we need to allocate at least |
| // 2*SourceNodeSize elements of space for the mapping. We can do this because |
| // we know that there are at most SourceNodeSize outgoing links in the node |
| // (thus that many positive values) and at most SourceNodeSize distinct fields |
| // (thus that many negative values). |
| // |
| std::vector<signed char> MergeMapMap(NSize*2, 127); |
| |
| // Loop through the structures, merging them together... |
| for (unsigned i = 0, e = NSize; i != e; ++i) { |
| // Get what this byte of N maps to... |
| signed char NElement = N->MergeMap[i]; |
| |
| // Get what we map this byte to... |
| signed char Element = MergeMap[i+NOffset]; |
| // We use 127 as a sentinal and don't check for it's existence yet... |
| assert(Element != 127 && "MergeMapMap doesn't permit 127 values yet!"); |
| |
| signed char CurMappedVal = MergeMapMap[NElement+NSize]; |
| if (CurMappedVal == 127) { // Haven't seen this NElement yet? |
| MergeMapMap[NElement+NSize] = Element; // Map the two together... |
| } else if (CurMappedVal != Element) { |
| // If we are mapping two different fields together this means that we need |
| // to merge fields in the current node due to merging in the source node. |
| // |
| mergeMappedValues(CurMappedVal, Element); |
| MergeMapMap[NElement+NSize] = MergeMap[i+NOffset]; |
| } |
| } |
| |
| // Make all of the outgoing links of N now be outgoing links of this. This |
| // can cause recursive merging! |
| // |
| for (unsigned i = 0, e = NSize; i != e; ++i) |
| if (DSNodeHandle *Link = N->getLink(i)) { |
| addEdgeTo((i+NOffset) % getSize(), *Link); |
| N->MergeMap[i] = -1; // Kill outgoing edge |
| } |
| |
| // Now that there are no outgoing edges, all of the Links are dead. |
| N->Links.clear(); |
| |
| // Merge the node types |
| NodeType |= N->NodeType; |
| N->NodeType = 0; // N is now a dead node. |
| |
| // Adjust all of the type entries we are merging in by the offset... |
| // |
| if (NOffset != 0) { // This case is common enough to optimize for |
| // Offset all of the TypeEntries in N with their new offset |
| for (unsigned i = 0, e = N->TypeEntries.size(); i != e; ++i) |
| N->TypeEntries[i].Offset += NOffset; |
| } |
| |
| // ... now add them to the TypeEntries list. |
| MergeSortedVectors(TypeEntries, N->TypeEntries); |
| N->TypeEntries.clear(); // N is dead, no type-entries need exist |
| |
| // Merge the globals list... |
| if (!N->Globals.empty()) { |
| MergeSortedVectors(Globals, N->Globals); |
| |
| // Delete the globals from the old node... |
| N->Globals.clear(); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DSCallSite Implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h |
| Function &DSCallSite::getCaller() const { |
| return *Inst->getParent()->getParent(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // DSGraph Implementation |
| //===----------------------------------------------------------------------===// |
| |
| DSGraph::DSGraph(const DSGraph &G) : Func(G.Func) { |
| std::map<const DSNode*, DSNode*> NodeMap; |
| RetNode = cloneInto(G, ScalarMap, NodeMap); |
| } |
| |
| DSGraph::DSGraph(const DSGraph &G, std::map<const DSNode*, DSNode*> &NodeMap) |
| : Func(G.Func) { |
| RetNode = cloneInto(G, ScalarMap, NodeMap); |
| } |
| |
| DSGraph::~DSGraph() { |
| FunctionCalls.clear(); |
| ScalarMap.clear(); |
| RetNode.setNode(0); |
| |
| #ifndef NDEBUG |
| // Drop all intra-node references, so that assertions don't fail... |
| std::for_each(Nodes.begin(), Nodes.end(), |
| std::mem_fun(&DSNode::dropAllReferences)); |
| #endif |
| |
| // Delete all of the nodes themselves... |
| std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>); |
| } |
| |
| // dump - Allow inspection of graph in a debugger. |
| void DSGraph::dump() const { print(std::cerr); } |
| |
| |
| // Helper function used to clone a function list. |
| // |
| static void CopyFunctionCallsList(const vector<DSCallSite>& fromCalls, |
| vector<DSCallSite> &toCalls, |
| std::map<const DSNode*, DSNode*> &NodeMap) { |
| unsigned FC = toCalls.size(); // FirstCall |
| toCalls.reserve(FC+fromCalls.size()); |
| for (unsigned i = 0, ei = fromCalls.size(); i != ei; ++i) |
| toCalls.push_back(DSCallSite(fromCalls[i], NodeMap)); |
| } |
| |
| /// remapLinks - Change all of the Links in the current node according to the |
| /// specified mapping. |
| /// |
| void DSNode::remapLinks(std::map<const DSNode*, DSNode*> &OldNodeMap) { |
| for (unsigned i = 0, e = Links.size(); i != e; ++i) |
| Links[i].setNode(OldNodeMap[Links[i].getNode()]); |
| } |
| |
| |
| // cloneInto - Clone the specified DSGraph into the current graph, returning the |
| // Return node of the graph. The translated ScalarMap for the old function is |
| // filled into the OldValMap member. If StripAllocas is set to true, Alloca |
| // markers are removed from the graph, as the graph is being cloned into a |
| // calling function's graph. |
| // |
| DSNodeHandle DSGraph::cloneInto(const DSGraph &G, |
| std::map<Value*, DSNodeHandle> &OldValMap, |
| std::map<const DSNode*, DSNode*> &OldNodeMap, |
| bool StripScalars, // FIXME: Kill StripScalars |
| bool StripAllocas) { |
| assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!"); |
| |
| unsigned FN = Nodes.size(); // First new node... |
| |
| // Duplicate all of the nodes, populating the node map... |
| Nodes.reserve(FN+G.Nodes.size()); |
| for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) { |
| DSNode *Old = G.Nodes[i]; |
| DSNode *New = new DSNode(*Old); |
| Nodes.push_back(New); |
| OldNodeMap[Old] = New; |
| } |
| |
| // Rewrite the links in the new nodes to point into the current graph now. |
| for (unsigned i = FN, e = Nodes.size(); i != e; ++i) |
| Nodes[i]->remapLinks(OldNodeMap); |
| |
| // Remove local markers as specified |
| unsigned char StripBits = StripAllocas ? DSNode::AllocaNode : 0; |
| if (StripBits) |
| for (unsigned i = FN, e = Nodes.size(); i != e; ++i) |
| Nodes[i]->NodeType &= ~StripBits; |
| |
| // Copy the value map... and merge all of the global nodes... |
| for (std::map<Value*, DSNodeHandle>::const_iterator I = G.ScalarMap.begin(), |
| E = G.ScalarMap.end(); I != E; ++I) { |
| DSNodeHandle &H = OldValMap[I->first]; |
| H.setNode(OldNodeMap[I->second.getNode()]); |
| H.setOffset(I->second.getOffset()); |
| |
| if (isa<GlobalValue>(I->first)) { // Is this a global? |
| std::map<Value*, DSNodeHandle>::iterator GVI = ScalarMap.find(I->first); |
| if (GVI != ScalarMap.end()) { // Is the global value in this fn already? |
| GVI->second.mergeWith(H); |
| } else { |
| ScalarMap[I->first] = H; // Add global pointer to this graph |
| } |
| } |
| } |
| // Copy the function calls list... |
| CopyFunctionCallsList(G.FunctionCalls, FunctionCalls, OldNodeMap); |
| |
| |
| // Return the returned node pointer... |
| return DSNodeHandle(OldNodeMap[G.RetNode.getNode()], G.RetNode.getOffset()); |
| } |
| |
| #if 0 |
| // cloneGlobalInto - Clone the given global node and all its target links |
| // (and all their llinks, recursively). |
| // |
| DSNode *DSGraph::cloneGlobalInto(const DSNode *GNode) { |
| if (GNode == 0 || GNode->getGlobals().size() == 0) return 0; |
| |
| // If a clone has already been created for GNode, return it. |
| DSNodeHandle& ValMapEntry = ScalarMap[GNode->getGlobals()[0]]; |
| if (ValMapEntry != 0) |
| return ValMapEntry; |
| |
| // Clone the node and update the ValMap. |
| DSNode* NewNode = new DSNode(*GNode); |
| ValMapEntry = NewNode; // j=0 case of loop below! |
| Nodes.push_back(NewNode); |
| for (unsigned j = 1, N = NewNode->getGlobals().size(); j < N; ++j) |
| ScalarMap[NewNode->getGlobals()[j]] = NewNode; |
| |
| // Rewrite the links in the new node to point into the current graph. |
| for (unsigned j = 0, e = GNode->getNumLinks(); j != e; ++j) |
| NewNode->setLink(j, cloneGlobalInto(GNode->getLink(j))); |
| |
| return NewNode; |
| } |
| #endif |
| |
| |
| // markIncompleteNodes - Mark the specified node as having contents that are not |
| // known with the current analysis we have performed. Because a node makes all |
| // of the nodes it can reach imcomplete if the node itself is incomplete, we |
| // must recursively traverse the data structure graph, marking all reachable |
| // nodes as incomplete. |
| // |
| static void markIncompleteNode(DSNode *N) { |
| // Stop recursion if no node, or if node already marked... |
| if (N == 0 || (N->NodeType & DSNode::Incomplete)) return; |
| |
| // Actually mark the node |
| N->NodeType |= DSNode::Incomplete; |
| |
| // Recusively process children... |
| for (unsigned i = 0, e = N->getSize(); i != e; ++i) |
| if (DSNodeHandle *DSNH = N->getLink(i)) |
| markIncompleteNode(DSNH->getNode()); |
| } |
| |
| |
| // markIncompleteNodes - Traverse the graph, identifying nodes that may be |
| // modified by other functions that have not been resolved yet. This marks |
| // nodes that are reachable through three sources of "unknownness": |
| // |
| // Global Variables, Function Calls, and Incoming Arguments |
| // |
| // For any node that may have unknown components (because something outside the |
| // scope of current analysis may have modified it), the 'Incomplete' flag is |
| // added to the NodeType. |
| // |
| void DSGraph::markIncompleteNodes(bool markFormalArgs) { |
| // Mark any incoming arguments as incomplete... |
| if (markFormalArgs && Func) |
| for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I) |
| if (isPointerType(I->getType()) && ScalarMap.find(I) != ScalarMap.end()) |
| markIncompleteNode(ScalarMap[I].getNode()); |
| |
| // Mark stuff passed into functions calls as being incomplete... |
| for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) { |
| DSCallSite &Call = FunctionCalls[i]; |
| // Then the return value is certainly incomplete! |
| markIncompleteNode(Call.getRetVal().getNode()); |
| |
| // All objects pointed to by function arguments are incomplete though! |
| for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i) |
| markIncompleteNode(Call.getPtrArg(i).getNode()); |
| } |
| |
| // Mark all of the nodes pointed to by global nodes as incomplete... |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) |
| if (Nodes[i]->NodeType & DSNode::GlobalNode) { |
| DSNode *N = Nodes[i]; |
| // FIXME: Make more efficient by looking over Links directly |
| for (unsigned i = 0, e = N->getSize(); i != e; ++i) |
| if (DSNodeHandle *DSNH = N->getLink(i)) |
| markIncompleteNode(DSNH->getNode()); |
| } |
| } |
| |
| // removeRefsToGlobal - Helper function that removes globals from the |
| // ScalarMap so that the referrer count will go down to zero. |
| static void removeRefsToGlobal(DSNode* N, |
| std::map<Value*, DSNodeHandle> &ScalarMap) { |
| while (!N->getGlobals().empty()) { |
| GlobalValue *GV = N->getGlobals().back(); |
| N->getGlobals().pop_back(); |
| ScalarMap.erase(GV); |
| } |
| } |
| |
| |
| // isNodeDead - This method checks to see if a node is dead, and if it isn't, it |
| // checks to see if there are simple transformations that it can do to make it |
| // dead. |
| // |
| bool DSGraph::isNodeDead(DSNode *N) { |
| // Is it a trivially dead shadow node... |
| if (N->getReferrers().empty() && N->NodeType == 0) |
| return true; |
| |
| // Is it a function node or some other trivially unused global? |
| if ((N->NodeType & ~DSNode::GlobalNode) == 0 && N->getSize() == 0 && |
| N->getReferrers().size() == N->getGlobals().size()) { |
| |
| // Remove the globals from the ScalarMap, so that the referrer count will go |
| // down to zero. |
| removeRefsToGlobal(N, ScalarMap); |
| assert(N->getReferrers().empty() && "Referrers should all be gone now!"); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void removeIdenticalCalls(vector<DSCallSite> &Calls, |
| const std::string &where) { |
| // Remove trivially identical function calls |
| unsigned NumFns = Calls.size(); |
| std::sort(Calls.begin(), Calls.end()); |
| Calls.erase(std::unique(Calls.begin(), Calls.end()), |
| Calls.end()); |
| |
| DEBUG(if (NumFns != Calls.size()) |
| std::cerr << "Merged " << (NumFns-Calls.size()) |
| << " call nodes in " << where << "\n";); |
| } |
| |
| // removeTriviallyDeadNodes - After the graph has been constructed, this method |
| // removes all unreachable nodes that are created because they got merged with |
| // other nodes in the graph. These nodes will all be trivially unreachable, so |
| // we don't have to perform any non-trivial analysis here. |
| // |
| void DSGraph::removeTriviallyDeadNodes(bool KeepAllGlobals) { |
| for (unsigned i = 0; i != Nodes.size(); ++i) |
| if (!KeepAllGlobals || !(Nodes[i]->NodeType & DSNode::GlobalNode)) |
| if (isNodeDead(Nodes[i])) { // This node is dead! |
| delete Nodes[i]; // Free memory... |
| Nodes.erase(Nodes.begin()+i--); // Remove from node list... |
| } |
| |
| removeIdenticalCalls(FunctionCalls, Func ? Func->getName() : ""); |
| } |
| |
| |
| // markAlive - Simple graph walker that recursively traverses the graph, marking |
| // stuff to be alive. |
| // |
| static void markAlive(DSNode *N, std::set<DSNode*> &Alive) { |
| if (N == 0) return; |
| |
| Alive.insert(N); |
| // FIXME: Make more efficient by looking over Links directly |
| for (unsigned i = 0, e = N->getSize(); i != e; ++i) |
| if (DSNodeHandle *DSNH = N->getLink(i)) |
| if (!Alive.count(DSNH->getNode())) |
| markAlive(DSNH->getNode(), Alive); |
| } |
| |
| static bool checkGlobalAlive(DSNode *N, std::set<DSNode*> &Alive, |
| std::set<DSNode*> &Visiting) { |
| if (N == 0) return false; |
| |
| if (Visiting.count(N)) return false; // terminate recursion on a cycle |
| Visiting.insert(N); |
| |
| // If any immediate successor is alive, N is alive |
| for (unsigned i = 0, e = N->getSize(); i != e; ++i) |
| if (DSNodeHandle *DSNH = N->getLink(i)) |
| if (Alive.count(DSNH->getNode())) { |
| Visiting.erase(N); |
| return true; |
| } |
| |
| // Else if any successor reaches a live node, N is alive |
| for (unsigned i = 0, e = N->getSize(); i != e; ++i) |
| if (DSNodeHandle *DSNH = N->getLink(i)) |
| if (checkGlobalAlive(DSNH->getNode(), Alive, Visiting)) { |
| Visiting.erase(N); return true; |
| } |
| |
| Visiting.erase(N); |
| return false; |
| } |
| |
| |
| // markGlobalsIteration - Recursive helper function for markGlobalsAlive(). |
| // This would be unnecessary if function calls were real nodes! In that case, |
| // the simple iterative loop in the first few lines below suffice. |
| // |
| static void markGlobalsIteration(std::set<DSNode*>& GlobalNodes, |
| vector<DSCallSite> &Calls, |
| std::set<DSNode*> &Alive, |
| bool FilterCalls) { |
| |
| // Iterate, marking globals or cast nodes alive until no new live nodes |
| // are added to Alive |
| std::set<DSNode*> Visiting; // Used to identify cycles |
| std::set<DSNode*>::iterator I = GlobalNodes.begin(), E = GlobalNodes.end(); |
| for (size_t liveCount = 0; liveCount < Alive.size(); ) { |
| liveCount = Alive.size(); |
| for ( ; I != E; ++I) |
| if (Alive.count(*I) == 0) { |
| Visiting.clear(); |
| if (checkGlobalAlive(*I, Alive, Visiting)) |
| markAlive(*I, Alive); |
| } |
| } |
| |
| // Find function calls with some dead and some live nodes. |
| // Since all call nodes must be live if any one is live, we have to mark |
| // all nodes of the call as live and continue the iteration (via recursion). |
| if (FilterCalls) { |
| bool Recurse = false; |
| for (unsigned i = 0, ei = Calls.size(); i < ei; ++i) { |
| bool CallIsDead = true, CallHasDeadArg = false; |
| DSCallSite &CS = Calls[i]; |
| for (unsigned j = 0, ej = CS.getNumPtrArgs(); j != ej; ++j) |
| if (DSNode *N = CS.getPtrArg(j).getNode()) { |
| bool ArgIsDead = !Alive.count(N); |
| CallHasDeadArg |= ArgIsDead; |
| CallIsDead &= ArgIsDead; |
| } |
| |
| if (DSNode *N = CS.getRetVal().getNode()) { |
| bool RetIsDead = !Alive.count(N); |
| CallHasDeadArg |= RetIsDead; |
| CallIsDead &= RetIsDead; |
| } |
| |
| DSNode *N = CS.getCallee().getNode(); |
| bool FnIsDead = !Alive.count(N); |
| CallHasDeadArg |= FnIsDead; |
| CallIsDead &= FnIsDead; |
| |
| if (!CallIsDead && CallHasDeadArg) { |
| // Some node in this call is live and another is dead. |
| // Mark all nodes of call as live and iterate once more. |
| Recurse = true; |
| for (unsigned j = 0, ej = CS.getNumPtrArgs(); j != ej; ++j) |
| markAlive(CS.getPtrArg(j).getNode(), Alive); |
| markAlive(CS.getRetVal().getNode(), Alive); |
| markAlive(CS.getCallee().getNode(), Alive); |
| } |
| } |
| if (Recurse) |
| markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls); |
| } |
| } |
| |
| |
| // markGlobalsAlive - Mark global nodes and cast nodes alive if they |
| // can reach any other live node. Since this can produce new live nodes, |
| // we use a simple iterative algorithm. |
| // |
| static void markGlobalsAlive(DSGraph &G, std::set<DSNode*> &Alive, |
| bool FilterCalls) { |
| // Add global and cast nodes to a set so we don't walk all nodes every time |
| std::set<DSNode*> GlobalNodes; |
| for (unsigned i = 0, e = G.getNodes().size(); i != e; ++i) |
| if (G.getNodes()[i]->NodeType & DSNode::GlobalNode) |
| GlobalNodes.insert(G.getNodes()[i]); |
| |
| // Add all call nodes to the same set |
| vector<DSCallSite> &Calls = G.getFunctionCalls(); |
| if (FilterCalls) { |
| for (unsigned i = 0, e = Calls.size(); i != e; ++i) { |
| for (unsigned j = 0, e = Calls[i].getNumPtrArgs(); j != e; ++j) |
| if (DSNode *N = Calls[i].getPtrArg(j).getNode()) |
| GlobalNodes.insert(N); |
| if (DSNode *N = Calls[i].getRetVal().getNode()) |
| GlobalNodes.insert(N); |
| if (DSNode *N = Calls[i].getCallee().getNode()) |
| GlobalNodes.insert(N); |
| } |
| } |
| |
| // Iterate and recurse until no new live node are discovered. |
| // This would be a simple iterative loop if function calls were real nodes! |
| markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls); |
| |
| // Free up references to dead globals from the ScalarMap |
| std::set<DSNode*>::iterator I = GlobalNodes.begin(), E = GlobalNodes.end(); |
| for( ; I != E; ++I) |
| if (Alive.count(*I) == 0) |
| removeRefsToGlobal(*I, G.getScalarMap()); |
| |
| // Delete dead function calls |
| if (FilterCalls) |
| for (int ei = Calls.size(), i = ei-1; i >= 0; --i) { |
| bool CallIsDead = true; |
| for (unsigned j = 0, ej = Calls[i].getNumPtrArgs(); |
| CallIsDead && j != ej; ++j) |
| CallIsDead = Alive.count(Calls[i].getPtrArg(j).getNode()) == 0; |
| if (CallIsDead) |
| Calls.erase(Calls.begin() + i); // remove the call entirely |
| } |
| } |
| |
| // removeDeadNodes - Use a more powerful reachability analysis to eliminate |
| // subgraphs that are unreachable. This often occurs because the data |
| // structure doesn't "escape" into it's caller, and thus should be eliminated |
| // from the caller's graph entirely. This is only appropriate to use when |
| // inlining graphs. |
| // |
| void DSGraph::removeDeadNodes(bool KeepAllGlobals, bool KeepCalls) { |
| assert((!KeepAllGlobals || KeepCalls) && |
| "KeepAllGlobals without KeepCalls is meaningless"); |
| |
| // Reduce the amount of work we have to do... |
| removeTriviallyDeadNodes(KeepAllGlobals); |
| |
| // FIXME: Merge nontrivially identical call nodes... |
| |
| // Alive - a set that holds all nodes found to be reachable/alive. |
| std::set<DSNode*> Alive; |
| |
| // If KeepCalls, mark all nodes reachable by call nodes as alive... |
| if (KeepCalls) |
| for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) { |
| for (unsigned j = 0, e = FunctionCalls[i].getNumPtrArgs(); j != e; ++j) |
| markAlive(FunctionCalls[i].getPtrArg(j).getNode(), Alive); |
| markAlive(FunctionCalls[i].getRetVal().getNode(), Alive); |
| markAlive(FunctionCalls[i].getCallee().getNode(), Alive); |
| } |
| |
| // Mark all nodes reachable by scalar nodes as alive... |
| for (std::map<Value*, DSNodeHandle>::iterator I = ScalarMap.begin(), |
| E = ScalarMap.end(); I != E; ++I) |
| markAlive(I->second.getNode(), Alive); |
| |
| #if 0 |
| // Marge all nodes reachable by global nodes, as alive. Isn't this covered by |
| // the ScalarMap? |
| // |
| if (KeepAllGlobals) |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) |
| if (Nodes[i]->NodeType & DSNode::GlobalNode) |
| markAlive(Nodes[i], Alive); |
| #endif |
| |
| // The return value is alive as well... |
| markAlive(RetNode.getNode(), Alive); |
| |
| // Mark all globals or cast nodes that can reach a live node as alive. |
| // This also marks all nodes reachable from such nodes as alive. |
| // Of course, if KeepAllGlobals is specified, they would be live already. |
| if (!KeepAllGlobals) |
| markGlobalsAlive(*this, Alive, !KeepCalls); |
| |
| // Loop over all unreachable nodes, dropping their references... |
| vector<DSNode*> DeadNodes; |
| DeadNodes.reserve(Nodes.size()); // Only one allocation is allowed. |
| for (unsigned i = 0; i != Nodes.size(); ++i) |
| if (!Alive.count(Nodes[i])) { |
| DSNode *N = Nodes[i]; |
| Nodes.erase(Nodes.begin()+i--); // Erase node from alive list. |
| DeadNodes.push_back(N); // Add node to our list of dead nodes |
| N->dropAllReferences(); // Drop all outgoing edges |
| } |
| |
| // Delete all dead nodes... |
| std::for_each(DeadNodes.begin(), DeadNodes.end(), deleter<DSNode>); |
| } |
| |
| |
| |
| // maskNodeTypes - Apply a mask to all of the node types in the graph. This |
| // is useful for clearing out markers like Scalar or Incomplete. |
| // |
| void DSGraph::maskNodeTypes(unsigned char Mask) { |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) |
| Nodes[i]->NodeType &= Mask; |
| } |
| |
| |
| #if 0 |
| //===----------------------------------------------------------------------===// |
| // GlobalDSGraph Implementation |
| //===----------------------------------------------------------------------===// |
| |
| GlobalDSGraph::GlobalDSGraph() : DSGraph(*(Function*)0, this) { |
| } |
| |
| GlobalDSGraph::~GlobalDSGraph() { |
| assert(Referrers.size() == 0 && |
| "Deleting global graph while references from other graphs exist"); |
| } |
| |
| void GlobalDSGraph::addReference(const DSGraph* referrer) { |
| if (referrer != this) |
| Referrers.insert(referrer); |
| } |
| |
| void GlobalDSGraph::removeReference(const DSGraph* referrer) { |
| if (referrer != this) { |
| assert(Referrers.find(referrer) != Referrers.end() && "This is very bad!"); |
| Referrers.erase(referrer); |
| if (Referrers.size() == 0) |
| delete this; |
| } |
| } |
| |
| #if 0 |
| // Bits used in the next function |
| static const char ExternalTypeBits = DSNode::GlobalNode | DSNode::HeapNode; |
| |
| |
| // GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally |
| // visible target links (and recursively their such links) into this graph. |
| // NodeCache maps the node being cloned to its clone in the Globals graph, |
| // in order to track cycles. |
| // GlobalsAreFinal is a flag that says whether it is safe to assume that |
| // an existing global node is complete. This is important to avoid |
| // reinserting all globals when inserting Calls to functions. |
| // This is a helper function for cloneGlobals and cloneCalls. |
| // |
| DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode, |
| std::map<const DSNode*, DSNode*> &NodeCache, |
| bool GlobalsAreFinal) { |
| if (OldNode == 0) return 0; |
| |
| // The caller should check this is an external node. Just more efficient... |
| assert((OldNode->NodeType & ExternalTypeBits) && "Non-external node"); |
| |
| // If a clone has already been created for OldNode, return it. |
| DSNode*& CacheEntry = NodeCache[OldNode]; |
| if (CacheEntry != 0) |
| return CacheEntry; |
| |
| // The result value... |
| DSNode* NewNode = 0; |
| |
| // If nodes already exist for any of the globals of OldNode, |
| // merge all such nodes together since they are merged in OldNode. |
| // If ValueCacheIsFinal==true, look for an existing node that has |
| // an identical list of globals and return it if it exists. |
| // |
| for (unsigned j = 0, N = OldNode->getGlobals().size(); j != N; ++j) |
| if (DSNode *PrevNode = ScalarMap[OldNode->getGlobals()[j]].getNode()) { |
| if (NewNode == 0) { |
| NewNode = PrevNode; // first existing node found |
| if (GlobalsAreFinal && j == 0) |
| if (OldNode->getGlobals() == PrevNode->getGlobals()) { |
| CacheEntry = NewNode; |
| return NewNode; |
| } |
| } |
| else if (NewNode != PrevNode) { // found another, different from prev |
| // update ValMap *before* merging PrevNode into NewNode |
| for (unsigned k = 0, NK = PrevNode->getGlobals().size(); k < NK; ++k) |
| ScalarMap[PrevNode->getGlobals()[k]] = NewNode; |
| NewNode->mergeWith(PrevNode); |
| } |
| } else if (NewNode != 0) { |
| ScalarMap[OldNode->getGlobals()[j]] = NewNode; // add the merged node |
| } |
| |
| // If no existing node was found, clone the node and update the ValMap. |
| if (NewNode == 0) { |
| NewNode = new DSNode(*OldNode); |
| Nodes.push_back(NewNode); |
| for (unsigned j = 0, e = NewNode->getNumLinks(); j != e; ++j) |
| NewNode->setLink(j, 0); |
| for (unsigned j = 0, N = NewNode->getGlobals().size(); j < N; ++j) |
| ScalarMap[NewNode->getGlobals()[j]] = NewNode; |
| } |
| else |
| NewNode->NodeType |= OldNode->NodeType; // Markers may be different! |
| |
| // Add the entry to NodeCache |
| CacheEntry = NewNode; |
| |
| // Rewrite the links in the new node to point into the current graph, |
| // but only for links to external nodes. Set other links to NULL. |
| for (unsigned j = 0, e = OldNode->getNumLinks(); j != e; ++j) { |
| DSNode* OldTarget = OldNode->getLink(j); |
| if (OldTarget && (OldTarget->NodeType & ExternalTypeBits)) { |
| DSNode* NewLink = this->cloneNodeInto(OldTarget, NodeCache); |
| if (NewNode->getLink(j)) |
| NewNode->getLink(j)->mergeWith(NewLink); |
| else |
| NewNode->setLink(j, NewLink); |
| } |
| } |
| |
| // Remove all local markers |
| NewNode->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode); |
| |
| return NewNode; |
| } |
| |
| |
| // GlobalDSGraph::cloneGlobals - Clone global nodes and all their externally |
| // visible target links (and recursively their such links) into this graph. |
| // |
| void GlobalDSGraph::cloneGlobals(DSGraph& Graph, bool CloneCalls) { |
| std::map<const DSNode*, DSNode*> NodeCache; |
| #if 0 |
| for (unsigned i = 0, N = Graph.Nodes.size(); i < N; ++i) |
| if (Graph.Nodes[i]->NodeType & DSNode::GlobalNode) |
| GlobalsGraph->cloneNodeInto(Graph.Nodes[i], NodeCache, false); |
| if (CloneCalls) |
| GlobalsGraph->cloneCalls(Graph); |
| |
| GlobalsGraph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true); |
| #endif |
| } |
| |
| |
| // GlobalDSGraph::cloneCalls - Clone function calls and their visible target |
| // links (and recursively their such links) into this graph. |
| // |
| void GlobalDSGraph::cloneCalls(DSGraph& Graph) { |
| std::map<const DSNode*, DSNode*> NodeCache; |
| vector<DSCallSite >& FromCalls =Graph.FunctionCalls; |
| |
| FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size()); |
| |
| for (int i = 0, ei = FromCalls.size(); i < ei; ++i) { |
| DSCallSite& callCopy = FunctionCalls.back(); |
| callCopy.reserve(FromCalls[i].size()); |
| for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j) |
| callCopy.push_back |
| ((FromCalls[i][j] && (FromCalls[i][j]->NodeType & ExternalTypeBits)) |
| ? cloneNodeInto(FromCalls[i][j], NodeCache, true) |
| : 0); |
| } |
| |
| // remove trivially identical function calls |
| removeIdenticalCalls(FunctionCalls, "Globals Graph"); |
| } |
| #endif |
| |
| #endif |