| //===-- X86AsmPrinter.cpp - Convert X86 LLVM code to Intel assembly -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a printer that converts from our internal representation |
| // of machine-dependent LLVM code to Intel-format assembly language. This |
| // printer is the output mechanism used by `llc' and `lli -print-machineinstrs' |
| // on X86. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "X86TargetMachine.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Module.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/CodeGen/AsmPrinter.h" |
| #include "llvm/CodeGen/MachineCodeEmitter.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/Mangler.h" |
| #include "Support/Statistic.h" |
| #include "Support/StringExtras.h" |
| #include "Support/CommandLine.h" |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed"); |
| |
| struct GasBugWorkaroundEmitter : public MachineCodeEmitter { |
| GasBugWorkaroundEmitter(std::ostream& o) |
| : O(o), OldFlags(O.flags()), firstByte(true) { |
| O << std::hex; |
| } |
| |
| ~GasBugWorkaroundEmitter() { |
| O.flags(OldFlags); |
| } |
| |
| virtual void emitByte(unsigned char B) { |
| if (!firstByte) O << "\n\t"; |
| firstByte = false; |
| O << ".byte 0x" << (unsigned) B; |
| } |
| |
| // These should never be called |
| virtual void emitWord(unsigned W) { assert(0); } |
| virtual uint64_t getGlobalValueAddress(GlobalValue *V) { abort(); } |
| virtual uint64_t getGlobalValueAddress(const std::string &Name) { abort(); } |
| virtual uint64_t getConstantPoolEntryAddress(unsigned Index) { abort(); } |
| virtual uint64_t getCurrentPCValue() { abort(); } |
| virtual uint64_t forceCompilationOf(Function *F) { abort(); } |
| |
| private: |
| std::ostream& O; |
| std::ios::fmtflags OldFlags; |
| bool firstByte; |
| }; |
| |
| struct X86AsmPrinter : public AsmPrinter { |
| X86AsmPrinter(std::ostream &O, TargetMachine &TM) : AsmPrinter(O, TM) { } |
| |
| virtual const char *getPassName() const { |
| return "X86 Assembly Printer"; |
| } |
| |
| /// printInstruction - This method is automatically generated by tablegen |
| /// from the instruction set description. This method returns true if the |
| /// machine instruction was sufficiently described to print it, otherwise it |
| /// returns false. |
| bool printInstruction(const MachineInstr *MI); |
| |
| // This method is used by the tablegen'erated instruction printer. |
| void printOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT){ |
| const MachineOperand &MO = MI->getOperand(OpNo); |
| if (MO.getType() == MachineOperand::MO_MachineRegister) { |
| assert(MRegisterInfo::isPhysicalRegister(MO.getReg())&&"Not physref??"); |
| // Bug Workaround: See note in Printer::doInitialization about %. |
| O << "%" << TM.getRegisterInfo()->get(MO.getReg()).Name; |
| } else { |
| printOp(MO); |
| } |
| } |
| |
| void printCallOperand(const MachineInstr *MI, unsigned OpNo, |
| MVT::ValueType VT) { |
| printOp(MI->getOperand(OpNo), true); // Don't print "OFFSET". |
| } |
| |
| void printMemoryOperand(const MachineInstr *MI, unsigned OpNo, |
| MVT::ValueType VT) { |
| switch (VT) { |
| default: assert(0 && "Unknown arg size!"); |
| case MVT::i8: O << "BYTE PTR "; break; |
| case MVT::i16: O << "WORD PTR "; break; |
| case MVT::i32: |
| case MVT::f32: O << "DWORD PTR "; break; |
| case MVT::i64: |
| case MVT::f64: O << "QWORD PTR "; break; |
| case MVT::f80: O << "XWORD PTR "; break; |
| } |
| printMemReference(MI, OpNo); |
| } |
| |
| void printMachineInstruction(const MachineInstr *MI); |
| void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false); |
| void printMemReference(const MachineInstr *MI, unsigned Op); |
| void printConstantPool(MachineConstantPool *MCP); |
| bool runOnMachineFunction(MachineFunction &F); |
| bool doInitialization(Module &M); |
| bool doFinalization(Module &M); |
| void emitGlobalConstant(const Constant* CV); |
| }; |
| } // end of anonymous namespace |
| |
| /// createX86CodePrinterPass - Returns a pass that prints the X86 |
| /// assembly code for a MachineFunction to the given output stream, |
| /// using the given target machine description. This should work |
| /// regardless of whether the function is in SSA form. |
| /// |
| FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){ |
| return new X86AsmPrinter(o, tm); |
| } |
| |
| |
| // Include the auto-generated portion of the assembly writer. |
| #include "X86GenAsmWriter.inc" |
| |
| |
| /// toOctal - Convert the low order bits of X into an octal digit. |
| /// |
| static inline char toOctal(int X) { |
| return (X&7)+'0'; |
| } |
| |
| /// getAsCString - Return the specified array as a C compatible |
| /// string, only if the predicate isStringCompatible is true. |
| /// |
| static void printAsCString(std::ostream &O, const ConstantArray *CVA) { |
| assert(CVA->isString() && "Array is not string compatible!"); |
| |
| O << "\""; |
| for (unsigned i = 0; i != CVA->getNumOperands(); ++i) { |
| unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue(); |
| |
| if (C == '"') { |
| O << "\\\""; |
| } else if (C == '\\') { |
| O << "\\\\"; |
| } else if (isprint(C)) { |
| O << C; |
| } else { |
| switch(C) { |
| case '\b': O << "\\b"; break; |
| case '\f': O << "\\f"; break; |
| case '\n': O << "\\n"; break; |
| case '\r': O << "\\r"; break; |
| case '\t': O << "\\t"; break; |
| default: |
| O << '\\'; |
| O << toOctal(C >> 6); |
| O << toOctal(C >> 3); |
| O << toOctal(C >> 0); |
| break; |
| } |
| } |
| } |
| O << "\""; |
| } |
| |
| // Print a constant value or values, with the appropriate storage class as a |
| // prefix. |
| void X86AsmPrinter::emitGlobalConstant(const Constant *CV) { |
| const TargetData &TD = TM.getTargetData(); |
| |
| if (CV->isNullValue()) { |
| O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n"; |
| return; |
| } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { |
| if (CVA->isString()) { |
| O << "\t.ascii\t"; |
| printAsCString(O, CVA); |
| O << "\n"; |
| } else { // Not a string. Print the values in successive locations |
| for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) |
| emitGlobalConstant(CVA->getOperand(i)); |
| } |
| return; |
| } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { |
| // Print the fields in successive locations. Pad to align if needed! |
| const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType()); |
| unsigned sizeSoFar = 0; |
| for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { |
| const Constant* field = CVS->getOperand(i); |
| |
| // Check if padding is needed and insert one or more 0s. |
| unsigned fieldSize = TD.getTypeSize(field->getType()); |
| unsigned padSize = ((i == e-1? cvsLayout->StructSize |
| : cvsLayout->MemberOffsets[i+1]) |
| - cvsLayout->MemberOffsets[i]) - fieldSize; |
| sizeSoFar += fieldSize + padSize; |
| |
| // Now print the actual field value |
| emitGlobalConstant(field); |
| |
| // Insert the field padding unless it's zero bytes... |
| if (padSize) |
| O << "\t.zero\t " << padSize << "\n"; |
| } |
| assert(sizeSoFar == cvsLayout->StructSize && |
| "Layout of constant struct may be incorrect!"); |
| return; |
| } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { |
| // FP Constants are printed as integer constants to avoid losing |
| // precision... |
| double Val = CFP->getValue(); |
| switch (CFP->getType()->getTypeID()) { |
| default: assert(0 && "Unknown floating point type!"); |
| case Type::FloatTyID: { |
| union FU { // Abide by C TBAA rules |
| float FVal; |
| unsigned UVal; |
| } U; |
| U.FVal = Val; |
| O << ".long\t" << U.UVal << "\t# float " << Val << "\n"; |
| return; |
| } |
| case Type::DoubleTyID: { |
| union DU { // Abide by C TBAA rules |
| double FVal; |
| uint64_t UVal; |
| } U; |
| U.FVal = Val; |
| O << ".quad\t" << U.UVal << "\t# double " << Val << "\n"; |
| return; |
| } |
| } |
| } |
| |
| const Type *type = CV->getType(); |
| O << "\t"; |
| switch (type->getTypeID()) { |
| case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: |
| O << ".byte"; |
| break; |
| case Type::UShortTyID: case Type::ShortTyID: |
| O << ".word"; |
| break; |
| case Type::FloatTyID: case Type::PointerTyID: |
| case Type::UIntTyID: case Type::IntTyID: |
| O << ".long"; |
| break; |
| case Type::DoubleTyID: |
| case Type::ULongTyID: case Type::LongTyID: |
| O << ".quad"; |
| break; |
| default: |
| assert (0 && "Can't handle printing this type of thing"); |
| break; |
| } |
| O << "\t"; |
| emitConstantValueOnly(CV); |
| O << "\n"; |
| } |
| |
| /// printConstantPool - Print to the current output stream assembly |
| /// representations of the constants in the constant pool MCP. This is |
| /// used to print out constants which have been "spilled to memory" by |
| /// the code generator. |
| /// |
| void X86AsmPrinter::printConstantPool(MachineConstantPool *MCP) { |
| const std::vector<Constant*> &CP = MCP->getConstants(); |
| const TargetData &TD = TM.getTargetData(); |
| |
| if (CP.empty()) return; |
| |
| for (unsigned i = 0, e = CP.size(); i != e; ++i) { |
| O << "\t.section .rodata\n"; |
| O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType()) |
| << "\n"; |
| O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#" |
| << *CP[i] << "\n"; |
| emitGlobalConstant(CP[i]); |
| } |
| } |
| |
| /// runOnMachineFunction - This uses the printMachineInstruction() |
| /// method to print assembly for each instruction. |
| /// |
| bool X86AsmPrinter::runOnMachineFunction(MachineFunction &MF) { |
| setupMachineFunction(MF); |
| O << "\n\n"; |
| |
| // Print out constants referenced by the function |
| printConstantPool(MF.getConstantPool()); |
| |
| // Print out labels for the function. |
| O << "\t.text\n"; |
| O << "\t.align 16\n"; |
| O << "\t.globl\t" << CurrentFnName << "\n"; |
| O << "\t.type\t" << CurrentFnName << ", @function\n"; |
| O << CurrentFnName << ":\n"; |
| |
| // Print out code for the function. |
| for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); |
| I != E; ++I) { |
| // Print a label for the basic block. |
| O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t# " |
| << I->getBasicBlock()->getName() << "\n"; |
| for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); |
| II != E; ++II) { |
| // Print the assembly for the instruction. |
| O << "\t"; |
| printMachineInstruction(II); |
| } |
| } |
| |
| // We didn't modify anything. |
| return false; |
| } |
| |
| static bool isScale(const MachineOperand &MO) { |
| return MO.isImmediate() && |
| (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 || |
| MO.getImmedValue() == 4 || MO.getImmedValue() == 8); |
| } |
| |
| static bool isMem(const MachineInstr *MI, unsigned Op) { |
| if (MI->getOperand(Op).isFrameIndex()) return true; |
| if (MI->getOperand(Op).isConstantPoolIndex()) return true; |
| return Op+4 <= MI->getNumOperands() && |
| MI->getOperand(Op ).isRegister() && isScale(MI->getOperand(Op+1)) && |
| MI->getOperand(Op+2).isRegister() && MI->getOperand(Op+3).isImmediate(); |
| } |
| |
| |
| |
| void X86AsmPrinter::printOp(const MachineOperand &MO, |
| bool elideOffsetKeyword /* = false */) { |
| const MRegisterInfo &RI = *TM.getRegisterInfo(); |
| switch (MO.getType()) { |
| case MachineOperand::MO_VirtualRegister: |
| if (Value *V = MO.getVRegValueOrNull()) { |
| O << "<" << V->getName() << ">"; |
| return; |
| } |
| // FALLTHROUGH |
| case MachineOperand::MO_MachineRegister: |
| if (MRegisterInfo::isPhysicalRegister(MO.getReg())) |
| // Bug Workaround: See note in Printer::doInitialization about %. |
| O << "%" << RI.get(MO.getReg()).Name; |
| else |
| O << "%reg" << MO.getReg(); |
| return; |
| |
| case MachineOperand::MO_SignExtendedImmed: |
| case MachineOperand::MO_UnextendedImmed: |
| O << (int)MO.getImmedValue(); |
| return; |
| case MachineOperand::MO_MachineBasicBlock: { |
| MachineBasicBlock *MBBOp = MO.getMachineBasicBlock(); |
| O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction()) |
| << "_" << MBBOp->getNumber () << "\t# " |
| << MBBOp->getBasicBlock ()->getName (); |
| return; |
| } |
| case MachineOperand::MO_PCRelativeDisp: |
| std::cerr << "Shouldn't use addPCDisp() when building X86 MachineInstrs"; |
| abort (); |
| return; |
| case MachineOperand::MO_GlobalAddress: |
| if (!elideOffsetKeyword) |
| O << "OFFSET "; |
| O << Mang->getValueName(MO.getGlobal()); |
| return; |
| case MachineOperand::MO_ExternalSymbol: |
| O << MO.getSymbolName(); |
| return; |
| default: |
| O << "<unknown operand type>"; return; |
| } |
| } |
| |
| void X86AsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op) { |
| assert(isMem(MI, Op) && "Invalid memory reference!"); |
| |
| if (MI->getOperand(Op).isFrameIndex()) { |
| O << "[frame slot #" << MI->getOperand(Op).getFrameIndex(); |
| if (MI->getOperand(Op+3).getImmedValue()) |
| O << " + " << MI->getOperand(Op+3).getImmedValue(); |
| O << "]"; |
| return; |
| } else if (MI->getOperand(Op).isConstantPoolIndex()) { |
| O << "[.CPI" << CurrentFnName << "_" |
| << MI->getOperand(Op).getConstantPoolIndex(); |
| if (MI->getOperand(Op+3).getImmedValue()) |
| O << " + " << MI->getOperand(Op+3).getImmedValue(); |
| O << "]"; |
| return; |
| } |
| |
| const MachineOperand &BaseReg = MI->getOperand(Op); |
| int ScaleVal = MI->getOperand(Op+1).getImmedValue(); |
| const MachineOperand &IndexReg = MI->getOperand(Op+2); |
| int DispVal = MI->getOperand(Op+3).getImmedValue(); |
| |
| O << "["; |
| bool NeedPlus = false; |
| if (BaseReg.getReg()) { |
| printOp(BaseReg); |
| NeedPlus = true; |
| } |
| |
| if (IndexReg.getReg()) { |
| if (NeedPlus) O << " + "; |
| if (ScaleVal != 1) |
| O << ScaleVal << "*"; |
| printOp(IndexReg); |
| NeedPlus = true; |
| } |
| |
| if (DispVal) { |
| if (NeedPlus) |
| if (DispVal > 0) |
| O << " + "; |
| else { |
| O << " - "; |
| DispVal = -DispVal; |
| } |
| O << DispVal; |
| } |
| O << "]"; |
| } |
| |
| |
| /// printMachineInstruction -- Print out a single X86 LLVM instruction |
| /// MI in Intel syntax to the current output stream. |
| /// |
| void X86AsmPrinter::printMachineInstruction(const MachineInstr *MI) { |
| ++EmittedInsts; |
| |
| // gas bugs: |
| // |
| // The 80-bit FP store-pop instruction "fstp XWORD PTR [...]" is misassembled |
| // by gas in intel_syntax mode as its 32-bit equivalent "fstp DWORD PTR |
| // [...]". Workaround: Output the raw opcode bytes instead of the instruction. |
| // |
| // The 80-bit FP load instruction "fld XWORD PTR [...]" is misassembled by gas |
| // in intel_syntax mode as its 32-bit equivalent "fld DWORD PTR |
| // [...]". Workaround: Output the raw opcode bytes instead of the instruction. |
| // |
| // gas intel_syntax mode treats "fild QWORD PTR [...]" as an invalid opcode, |
| // saying "64 bit operations are only supported in 64 bit modes." libopcodes |
| // disassembles it as "fild DWORD PTR [...]", which is wrong. Workaround: |
| // Output the raw opcode bytes instead of the instruction. |
| // |
| // gas intel_syntax mode treats "fistp QWORD PTR [...]" as an invalid opcode, |
| // saying "64 bit operations are only supported in 64 bit modes." libopcodes |
| // disassembles it as "fistpll DWORD PTR [...]", which is wrong. Workaround: |
| // Output the raw opcode bytes instead of the instruction. |
| switch (MI->getOpcode()) { |
| case X86::FSTP80m: |
| case X86::FLD80m: |
| case X86::FILD64m: |
| case X86::FISTP64m: |
| GasBugWorkaroundEmitter gwe(O); |
| X86::emitInstruction(gwe, (X86InstrInfo&)*TM.getInstrInfo(), *MI); |
| O << "\t# "; |
| } |
| |
| // Call the autogenerated instruction printer routines. |
| bool Handled = printInstruction(MI); |
| if (!Handled) { |
| MI->dump(); |
| assert(0 && "Do not know how to print this instruction!"); |
| abort(); |
| } |
| } |
| |
| bool X86AsmPrinter::doInitialization(Module &M) { |
| AsmPrinter::doInitialization(M); |
| // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly. |
| // |
| // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an |
| // instruction as a reference to the register named sp, and if you try to |
| // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased |
| // before being looked up in the symbol table. This creates spurious |
| // `undefined symbol' errors when linking. Workaround: Do not use `noprefix' |
| // mode, and decorate all register names with percent signs. |
| O << "\t.intel_syntax\n"; |
| return false; |
| } |
| |
| // SwitchSection - Switch to the specified section of the executable if we are |
| // not already in it! |
| // |
| static void SwitchSection(std::ostream &OS, std::string &CurSection, |
| const char *NewSection) { |
| if (CurSection != NewSection) { |
| CurSection = NewSection; |
| if (!CurSection.empty()) |
| OS << "\t" << NewSection << "\n"; |
| } |
| } |
| |
| bool X86AsmPrinter::doFinalization(Module &M) { |
| const TargetData &TD = TM.getTargetData(); |
| std::string CurSection; |
| |
| // Print out module-level global variables here. |
| for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) |
| if (I->hasInitializer()) { // External global require no code |
| O << "\n\n"; |
| std::string name = Mang->getValueName(I); |
| Constant *C = I->getInitializer(); |
| unsigned Size = TD.getTypeSize(C->getType()); |
| unsigned Align = TD.getTypeAlignment(C->getType()); |
| |
| if (C->isNullValue() && |
| (I->hasLinkOnceLinkage() || I->hasInternalLinkage() || |
| I->hasWeakLinkage() /* FIXME: Verify correct */)) { |
| SwitchSection(O, CurSection, ".data"); |
| if (I->hasInternalLinkage()) |
| O << "\t.local " << name << "\n"; |
| |
| O << "\t.comm " << name << "," << TD.getTypeSize(C->getType()) |
| << "," << (unsigned)TD.getTypeAlignment(C->getType()); |
| O << "\t\t# "; |
| WriteAsOperand(O, I, true, true, &M); |
| O << "\n"; |
| } else { |
| switch (I->getLinkage()) { |
| case GlobalValue::LinkOnceLinkage: |
| case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak. |
| // Nonnull linkonce -> weak |
| O << "\t.weak " << name << "\n"; |
| SwitchSection(O, CurSection, ""); |
| O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n"; |
| break; |
| |
| case GlobalValue::AppendingLinkage: |
| // FIXME: appending linkage variables should go into a section of |
| // their name or something. For now, just emit them as external. |
| case GlobalValue::ExternalLinkage: |
| // If external or appending, declare as a global symbol |
| O << "\t.globl " << name << "\n"; |
| // FALL THROUGH |
| case GlobalValue::InternalLinkage: |
| if (C->isNullValue()) |
| SwitchSection(O, CurSection, ".bss"); |
| else |
| SwitchSection(O, CurSection, ".data"); |
| break; |
| } |
| |
| O << "\t.align " << Align << "\n"; |
| O << "\t.type " << name << ",@object\n"; |
| O << "\t.size " << name << "," << Size << "\n"; |
| O << name << ":\t\t\t\t# "; |
| WriteAsOperand(O, I, true, true, &M); |
| O << " = "; |
| WriteAsOperand(O, C, false, false, &M); |
| O << "\n"; |
| emitGlobalConstant(C); |
| } |
| } |
| |
| AsmPrinter::doFinalization(M); |
| return false; // success |
| } |