| //===- ARMAddressingModes.h - ARM Addressing Modes --------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the ARM addressing mode implementation stuff. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H |
| #define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H |
| |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <cassert> |
| |
| namespace llvm { |
| |
| /// ARM_AM - ARM Addressing Mode Stuff |
| namespace ARM_AM { |
| enum ShiftOpc { |
| no_shift = 0, |
| asr, |
| lsl, |
| lsr, |
| ror, |
| rrx |
| }; |
| |
| enum AddrOpc { |
| add = '+', sub = '-' |
| }; |
| |
| static inline const char *getShiftOpcStr(ShiftOpc Op) { |
| switch (Op) { |
| default: assert(0 && "Unknown shift opc!"); |
| case ARM_AM::asr: return "asr"; |
| case ARM_AM::lsl: return "lsl"; |
| case ARM_AM::lsr: return "lsr"; |
| case ARM_AM::ror: return "ror"; |
| case ARM_AM::rrx: return "rrx"; |
| } |
| } |
| |
| static inline ShiftOpc getShiftOpcForNode(SDValue N) { |
| switch (N.getOpcode()) { |
| default: return ARM_AM::no_shift; |
| case ISD::SHL: return ARM_AM::lsl; |
| case ISD::SRL: return ARM_AM::lsr; |
| case ISD::SRA: return ARM_AM::asr; |
| case ISD::ROTR: return ARM_AM::ror; |
| //case ISD::ROTL: // Only if imm -> turn into ROTR. |
| // Can't handle RRX here, because it would require folding a flag into |
| // the addressing mode. :( This causes us to miss certain things. |
| //case ARMISD::RRX: return ARM_AM::rrx; |
| } |
| } |
| |
| enum AMSubMode { |
| bad_am_submode = 0, |
| ia, |
| ib, |
| da, |
| db |
| }; |
| |
| static inline const char *getAMSubModeStr(AMSubMode Mode) { |
| switch (Mode) { |
| default: assert(0 && "Unknown addressing sub-mode!"); |
| case ARM_AM::ia: return "ia"; |
| case ARM_AM::ib: return "ib"; |
| case ARM_AM::da: return "da"; |
| case ARM_AM::db: return "db"; |
| } |
| } |
| |
| static inline const char *getAMSubModeAltStr(AMSubMode Mode, bool isLD) { |
| switch (Mode) { |
| default: assert(0 && "Unknown addressing sub-mode!"); |
| case ARM_AM::ia: return isLD ? "fd" : "ea"; |
| case ARM_AM::ib: return isLD ? "ed" : "fa"; |
| case ARM_AM::da: return isLD ? "fa" : "ed"; |
| case ARM_AM::db: return isLD ? "ea" : "fd"; |
| } |
| } |
| |
| /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits. |
| /// |
| static inline unsigned rotr32(unsigned Val, unsigned Amt) { |
| assert(Amt < 32 && "Invalid rotate amount"); |
| return (Val >> Amt) | (Val << ((32-Amt)&31)); |
| } |
| |
| /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits. |
| /// |
| static inline unsigned rotl32(unsigned Val, unsigned Amt) { |
| assert(Amt < 32 && "Invalid rotate amount"); |
| return (Val << Amt) | (Val >> ((32-Amt)&31)); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Addressing Mode #1: shift_operand with registers |
| //===--------------------------------------------------------------------===// |
| // |
| // This 'addressing mode' is used for arithmetic instructions. It can |
| // represent things like: |
| // reg |
| // reg [asr|lsl|lsr|ror|rrx] reg |
| // reg [asr|lsl|lsr|ror|rrx] imm |
| // |
| // This is stored three operands [rega, regb, opc]. The first is the base |
| // reg, the second is the shift amount (or reg0 if not present or imm). The |
| // third operand encodes the shift opcode and the imm if a reg isn't present. |
| // |
| static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) { |
| return ShOp | (Imm << 3); |
| } |
| static inline unsigned getSORegOffset(unsigned Op) { |
| return Op >> 3; |
| } |
| static inline ShiftOpc getSORegShOp(unsigned Op) { |
| return (ShiftOpc)(Op & 7); |
| } |
| |
| /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return |
| /// the 8-bit imm value. |
| static inline unsigned getSOImmValImm(unsigned Imm) { |
| return Imm & 0xFF; |
| } |
| /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return |
| /// the rotate amount. |
| static inline unsigned getSOImmValRot(unsigned Imm) { |
| return (Imm >> 8) * 2; |
| } |
| |
| /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand, |
| /// computing the rotate amount to use. If this immediate value cannot be |
| /// handled with a single shifter-op, determine a good rotate amount that will |
| /// take a maximal chunk of bits out of the immediate. |
| static inline unsigned getSOImmValRotate(unsigned Imm) { |
| // 8-bit (or less) immediates are trivially shifter_operands with a rotate |
| // of zero. |
| if ((Imm & ~255U) == 0) return 0; |
| |
| // Use CTZ to compute the rotate amount. |
| unsigned TZ = CountTrailingZeros_32(Imm); |
| |
| // Rotate amount must be even. Something like 0x200 must be rotated 8 bits, |
| // not 9. |
| unsigned RotAmt = TZ & ~1; |
| |
| // If we can handle this spread, return it. |
| if ((rotr32(Imm, RotAmt) & ~255U) == 0) |
| return (32-RotAmt)&31; // HW rotates right, not left. |
| |
| // For values like 0xF000000F, we should skip the first run of ones, then |
| // retry the hunt. |
| if (Imm & 1) { |
| unsigned TrailingOnes = CountTrailingZeros_32(~Imm); |
| if (TrailingOnes != 32) { // Avoid overflow on 0xFFFFFFFF |
| // Restart the search for a high-order bit after the initial seconds of |
| // ones. |
| unsigned TZ2 = CountTrailingZeros_32(Imm & ~((1 << TrailingOnes)-1)); |
| |
| // Rotate amount must be even. |
| unsigned RotAmt2 = TZ2 & ~1; |
| |
| // If this fits, use it. |
| if (RotAmt2 != 32 && (rotr32(Imm, RotAmt2) & ~255U) == 0) |
| return (32-RotAmt2)&31; // HW rotates right, not left. |
| } |
| } |
| |
| // Otherwise, we have no way to cover this span of bits with a single |
| // shifter_op immediate. Return a chunk of bits that will be useful to |
| // handle. |
| return (32-RotAmt)&31; // HW rotates right, not left. |
| } |
| |
| /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit |
| /// into an shifter_operand immediate operand, return the 12-bit encoding for |
| /// it. If not, return -1. |
| static inline int getSOImmVal(unsigned Arg) { |
| // 8-bit (or less) immediates are trivially shifter_operands with a rotate |
| // of zero. |
| if ((Arg & ~255U) == 0) return Arg; |
| |
| unsigned RotAmt = getSOImmValRotate(Arg); |
| |
| // If this cannot be handled with a single shifter_op, bail out. |
| if (rotr32(~255U, RotAmt) & Arg) |
| return -1; |
| |
| // Encode this correctly. |
| return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8); |
| } |
| |
| /// isSOImmTwoPartVal - Return true if the specified value can be obtained by |
| /// or'ing together two SOImmVal's. |
| static inline bool isSOImmTwoPartVal(unsigned V) { |
| // If this can be handled with a single shifter_op, bail out. |
| V = rotr32(~255U, getSOImmValRotate(V)) & V; |
| if (V == 0) |
| return false; |
| |
| // If this can be handled with two shifter_op's, accept. |
| V = rotr32(~255U, getSOImmValRotate(V)) & V; |
| return V == 0; |
| } |
| |
| /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal, |
| /// return the first chunk of it. |
| static inline unsigned getSOImmTwoPartFirst(unsigned V) { |
| return rotr32(255U, getSOImmValRotate(V)) & V; |
| } |
| |
| /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal, |
| /// return the second chunk of it. |
| static inline unsigned getSOImmTwoPartSecond(unsigned V) { |
| // Mask out the first hunk. |
| V = rotr32(~255U, getSOImmValRotate(V)) & V; |
| |
| // Take what's left. |
| assert(V == (rotr32(255U, getSOImmValRotate(V)) & V)); |
| return V; |
| } |
| |
| /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed |
| /// by a left shift. Returns the shift amount to use. |
| static inline unsigned getThumbImmValShift(unsigned Imm) { |
| // 8-bit (or less) immediates are trivially immediate operand with a shift |
| // of zero. |
| if ((Imm & ~255U) == 0) return 0; |
| |
| // Use CTZ to compute the shift amount. |
| return CountTrailingZeros_32(Imm); |
| } |
| |
| /// isThumbImmShiftedVal - Return true if the specified value can be obtained |
| /// by left shifting a 8-bit immediate. |
| static inline bool isThumbImmShiftedVal(unsigned V) { |
| // If this can be handled with |
| V = (~255U << getThumbImmValShift(V)) & V; |
| return V == 0; |
| } |
| |
| /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed |
| /// by a left shift. Returns the shift amount to use. |
| static inline unsigned getThumbImm16ValShift(unsigned Imm) { |
| // 16-bit (or less) immediates are trivially immediate operand with a shift |
| // of zero. |
| if ((Imm & ~65535U) == 0) return 0; |
| |
| // Use CTZ to compute the shift amount. |
| return CountTrailingZeros_32(Imm); |
| } |
| |
| /// isThumbImm16ShiftedVal - Return true if the specified value can be |
| /// obtained by left shifting a 16-bit immediate. |
| static inline bool isThumbImm16ShiftedVal(unsigned V) { |
| // If this can be handled with |
| V = (~65535U << getThumbImm16ValShift(V)) & V; |
| return V == 0; |
| } |
| |
| /// getThumbImmNonShiftedVal - If V is a value that satisfies |
| /// isThumbImmShiftedVal, return the non-shiftd value. |
| static inline unsigned getThumbImmNonShiftedVal(unsigned V) { |
| return V >> getThumbImmValShift(V); |
| } |
| |
| /// getT2SOImmValDecode - Given a 12-bit encoded Thumb-2 modified immediate, |
| /// return the corresponding 32-bit immediate value. |
| /// See ARM Reference Manual A6.3.2. |
| static inline unsigned getT2SOImmValDecode(unsigned Imm) { |
| unsigned Base = Imm & 0xff; |
| switch ((Imm >> 8) & 0xf) { |
| case 0: |
| return Base; |
| case 1: |
| return Base | (Base << 16); |
| case 2: |
| return (Base << 8) | (Base << 24); |
| case 3: |
| return Base | (Base << 8) | (Base << 16) | (Base << 24); |
| default: |
| break; |
| } |
| |
| // shifted immediate |
| unsigned RotAmount = ((Imm >> 7) & 0x1f) - 8; |
| return (Base | 0x80) << (24 - RotAmount); |
| } |
| |
| /// getT2SOImmValSplat - Return the 12-bit encoded representation |
| /// if the specified value can be obtained by splatting the low 8 bits |
| /// into every other byte or every byte of a 32-bit value. i.e., |
| /// 00000000 00000000 00000000 abcdefgh control = 0 |
| /// 00000000 abcdefgh 00000000 abcdefgh control = 1 |
| /// abcdefgh 00000000 abcdefgh 00000000 control = 2 |
| /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3 |
| /// Return -1 if none of the above apply. |
| /// See ARM Reference Manual A6.3.2. |
| static inline int getT2SOImmValSplat(unsigned V) { |
| unsigned u, Vs, Imm; |
| // control = 0 |
| if ((V & 0xffffff00) == 0) |
| return V; |
| |
| // If the value is zeroes in the first byte, just shift those off |
| Vs = ((V & 0xff) == 0) ? V >> 8 : V; |
| // Any passing value only has 8 bits of payload, splatted across the word |
| Imm = Vs & 0xff; |
| // Likewise, any passing values have the payload splatted into the 3rd byte |
| u = Imm | (Imm << 16); |
| |
| // control = 1 or 2 |
| if (Vs == u) |
| return (((Vs == V) ? 1 : 2) << 8) | Imm; |
| |
| // control = 3 |
| if (Vs == (u | (u << 8))) |
| return (3 << 8) | Imm; |
| |
| return -1; |
| } |
| |
| /// getT2SOImmValRotate - Return the 12-bit encoded representation if the |
| /// specified value is a rotated 8-bit value. Return -1 if no rotation |
| /// encoding is possible. |
| /// See ARM Reference Manual A6.3.2. |
| static inline int getT2SOImmValRotate (unsigned V) { |
| unsigned RotAmt = CountLeadingZeros_32(V); |
| if (RotAmt >= 24) |
| return -1; |
| |
| // If 'Arg' can be handled with a single shifter_op return the value. |
| if ((rotr32(0xff000000U, RotAmt) & V) == V) |
| return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7); |
| |
| return -1; |
| } |
| |
| /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit |
| /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit |
| /// encoding for it. If not, return -1. |
| /// See ARM Reference Manual A6.3.2. |
| static inline int getT2SOImmVal(unsigned Arg) { |
| // If 'Arg' is an 8-bit splat, then get the encoded value. |
| int Splat = getT2SOImmValSplat(Arg); |
| if (Splat != -1) |
| return Splat; |
| |
| // If 'Arg' can be handled with a single shifter_op return the value. |
| int Rot = getT2SOImmValRotate(Arg); |
| if (Rot != -1) |
| return Rot; |
| |
| return -1; |
| } |
| |
| |
| //===--------------------------------------------------------------------===// |
| // Addressing Mode #2 |
| //===--------------------------------------------------------------------===// |
| // |
| // This is used for most simple load/store instructions. |
| // |
| // addrmode2 := reg +/- reg shop imm |
| // addrmode2 := reg +/- imm12 |
| // |
| // The first operand is always a Reg. The second operand is a reg if in |
| // reg/reg form, otherwise it's reg#0. The third field encodes the operation |
| // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. |
| // |
| // If this addressing mode is a frame index (before prolog/epilog insertion |
| // and code rewriting), this operand will have the form: FI#, reg0, <offs> |
| // with no shift amount for the frame offset. |
| // |
| static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO) { |
| assert(Imm12 < (1 << 12) && "Imm too large!"); |
| bool isSub = Opc == sub; |
| return Imm12 | ((int)isSub << 12) | (SO << 13); |
| } |
| static inline unsigned getAM2Offset(unsigned AM2Opc) { |
| return AM2Opc & ((1 << 12)-1); |
| } |
| static inline AddrOpc getAM2Op(unsigned AM2Opc) { |
| return ((AM2Opc >> 12) & 1) ? sub : add; |
| } |
| static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) { |
| return (ShiftOpc)(AM2Opc >> 13); |
| } |
| |
| |
| //===--------------------------------------------------------------------===// |
| // Addressing Mode #3 |
| //===--------------------------------------------------------------------===// |
| // |
| // This is used for sign-extending loads, and load/store-pair instructions. |
| // |
| // addrmode3 := reg +/- reg |
| // addrmode3 := reg +/- imm8 |
| // |
| // The first operand is always a Reg. The second operand is a reg if in |
| // reg/reg form, otherwise it's reg#0. The third field encodes the operation |
| // in bit 8, the immediate in bits 0-7. |
| |
| /// getAM3Opc - This function encodes the addrmode3 opc field. |
| static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset) { |
| bool isSub = Opc == sub; |
| return ((int)isSub << 8) | Offset; |
| } |
| static inline unsigned char getAM3Offset(unsigned AM3Opc) { |
| return AM3Opc & 0xFF; |
| } |
| static inline AddrOpc getAM3Op(unsigned AM3Opc) { |
| return ((AM3Opc >> 8) & 1) ? sub : add; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Addressing Mode #4 |
| //===--------------------------------------------------------------------===// |
| // |
| // This is used for load / store multiple instructions. |
| // |
| // addrmode4 := reg, <mode> |
| // |
| // The four modes are: |
| // IA - Increment after |
| // IB - Increment before |
| // DA - Decrement after |
| // DB - Decrement before |
| // |
| // If the 4th bit (writeback)is set, then the base register is updated after |
| // the memory transfer. |
| |
| static inline AMSubMode getAM4SubMode(unsigned Mode) { |
| return (AMSubMode)(Mode & 0x7); |
| } |
| |
| static inline unsigned getAM4ModeImm(AMSubMode SubMode, bool WB = false) { |
| return (int)SubMode | ((int)WB << 3); |
| } |
| |
| static inline bool getAM4WBFlag(unsigned Mode) { |
| return (Mode >> 3) & 1; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Addressing Mode #5 |
| //===--------------------------------------------------------------------===// |
| // |
| // This is used for coprocessor instructions, such as FP load/stores. |
| // |
| // addrmode5 := reg +/- imm8*4 |
| // |
| // The first operand is always a Reg. The third field encodes the operation |
| // in bit 8, the immediate in bits 0-7. |
| // |
| // This can also be used for FP load/store multiple ops. The third field encodes |
| // writeback mode in bit 8, the number of registers (or 2 times the number of |
| // registers for DPR ops) in bits 0-7. In addition, bit 9-11 encodes one of the |
| // following two sub-modes: |
| // |
| // IA - Increment after |
| // DB - Decrement before |
| |
| /// getAM5Opc - This function encodes the addrmode5 opc field. |
| static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) { |
| bool isSub = Opc == sub; |
| return ((int)isSub << 8) | Offset; |
| } |
| static inline unsigned char getAM5Offset(unsigned AM5Opc) { |
| return AM5Opc & 0xFF; |
| } |
| static inline AddrOpc getAM5Op(unsigned AM5Opc) { |
| return ((AM5Opc >> 8) & 1) ? sub : add; |
| } |
| |
| /// getAM5Opc - This function encodes the addrmode5 opc field for FLDM and |
| /// FSTM instructions. |
| static inline unsigned getAM5Opc(AMSubMode SubMode, bool WB, |
| unsigned char Offset) { |
| assert((SubMode == ia || SubMode == db) && |
| "Illegal addressing mode 5 sub-mode!"); |
| return ((int)SubMode << 9) | ((int)WB << 8) | Offset; |
| } |
| static inline AMSubMode getAM5SubMode(unsigned AM5Opc) { |
| return (AMSubMode)((AM5Opc >> 9) & 0x7); |
| } |
| static inline bool getAM5WBFlag(unsigned AM5Opc) { |
| return ((AM5Opc >> 8) & 1); |
| } |
| |
| } // end namespace ARM_AM |
| } // end namespace llvm |
| |
| #endif |
| |