| //===-- WriteInst.cpp - Functions for writing instructions -------*- C++ -*--=// |
| // |
| // This file implements the routines for encoding instruction opcodes to a |
| // bytecode stream. |
| // |
| // Note that the performance of this library is not terribly important, because |
| // it shouldn't be used by JIT type applications... so it is not a huge focus |
| // at least. :) |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "WriterInternals.h" |
| #include "llvm/Module.h" |
| #include "llvm/Method.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/Instruction.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/iOther.h" |
| #include <algorithm> |
| |
| typedef unsigned char uchar; |
| |
| // outputInstructionFormat0 - Output those wierd instructions that have a large |
| // number of operands or have large operands themselves... |
| // |
| // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>] |
| // |
| static void outputInstructionFormat0(const Instruction *I, |
| const SlotCalculator &Table, |
| unsigned Type, deque<uchar> &Out) { |
| // Opcode must have top two bits clear... |
| output_vbr(I->getOpcode(), Out); // Instruction Opcode ID |
| output_vbr(Type, Out); // Result type |
| |
| unsigned NumArgs = I->getNumOperands(); |
| output_vbr(NumArgs, Out); |
| |
| for (unsigned i = 0; i < NumArgs; ++i) { |
| int Slot = Table.getValSlot(I->getOperand(i)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr((unsigned)Slot, Out); |
| } |
| align32(Out); // We must maintain correct alignment! |
| } |
| |
| |
| // outputInstrVarArgsCall - Output the obsurdly annoying varargs method calls. |
| // This are more annoying than most because the signature of the call does not |
| // tell us anything about the types of the arguments in the varargs portion. |
| // Because of this, we encode (as type 0) all of the argument types explicitly |
| // before the argument value. This really sucks, but you shouldn't be using |
| // varargs functions in your code! *death to printf*! |
| // |
| // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>] |
| // |
| static void outputInstrVarArgsCall(const Instruction *I, |
| const SlotCalculator &Table, unsigned Type, |
| deque<uchar> &Out) { |
| assert(I->getOpcode() == Instruction::Call /*|| |
| I->getOpcode() == Instruction::ICall */); |
| // Opcode must have top two bits clear... |
| output_vbr(I->getOpcode(), Out); // Instruction Opcode ID |
| output_vbr(Type, Out); // Result type (varargs type) |
| |
| unsigned NumArgs = I->getNumOperands(); |
| output_vbr((NumArgs-2)*2+2, Out); // Don't duplicate method & Arg1 types |
| |
| // Output the method type without an extra type argument. |
| int Slot = Table.getValSlot(I->getOperand(0)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr((unsigned)Slot, Out); |
| |
| // VarArgs methods must have at least one specified operand |
| Slot = Table.getValSlot(I->getOperand(1)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr((unsigned)Slot, Out); |
| |
| for (unsigned i = 2; i < NumArgs; ++i) { |
| // Output Arg Type ID |
| Slot = Table.getValSlot(I->getOperand(i)->getType()); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr((unsigned)Slot, Out); |
| |
| // Output arg ID itself |
| Slot = Table.getValSlot(I->getOperand(i)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr((unsigned)Slot, Out); |
| } |
| align32(Out); // We must maintain correct alignment! |
| } |
| |
| |
| // outputInstructionFormat1 - Output one operand instructions, knowing that no |
| // operand index is >= 2^12. |
| // |
| static void outputInstructionFormat1(const Instruction *I, |
| const SlotCalculator &Table, int *Slots, |
| unsigned Type, deque<uchar> &Out) { |
| unsigned IType = I->getOpcode(); // Instruction Opcode ID |
| |
| // bits Instruction format: |
| // -------------------------- |
| // 31-30: Opcode type, fixed to 1. |
| // 29-24: Opcode |
| // 23-12: Resulting type plane |
| // 11- 0: Operand #1 (if set to (2^12-1), then zero operands) |
| // |
| unsigned Opcode = (1 << 30) | (IType << 24) | (Type << 12) | Slots[0]; |
| // cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl; |
| output(Opcode, Out); |
| } |
| |
| |
| // outputInstructionFormat2 - Output two operand instructions, knowing that no |
| // operand index is >= 2^8. |
| // |
| static void outputInstructionFormat2(const Instruction *I, |
| const SlotCalculator &Table, int *Slots, |
| unsigned Type, deque<uchar> &Out) { |
| unsigned IType = I->getOpcode(); // Instruction Opcode ID |
| |
| // bits Instruction format: |
| // -------------------------- |
| // 31-30: Opcode type, fixed to 2. |
| // 29-24: Opcode |
| // 23-16: Resulting type plane |
| // 15- 8: Operand #1 |
| // 7- 0: Operand #2 |
| // |
| unsigned Opcode = (2 << 30) | (IType << 24) | (Type << 16) | |
| (Slots[0] << 8) | (Slots[1] << 0); |
| // cerr << "2 " << IType << " " << Type << " " << Slots[0] << " " |
| // << Slots[1] << endl; |
| output(Opcode, Out); |
| } |
| |
| |
| // outputInstructionFormat3 - Output three operand instructions, knowing that no |
| // operand index is >= 2^6. |
| // |
| static void outputInstructionFormat3(const Instruction *I, |
| const SlotCalculator &Table, int *Slots, |
| unsigned Type, deque<uchar> &Out) { |
| unsigned IType = I->getOpcode(); // Instruction Opcode ID |
| |
| // bits Instruction format: |
| // -------------------------- |
| // 31-30: Opcode type, fixed to 3 |
| // 29-24: Opcode |
| // 23-18: Resulting type plane |
| // 17-12: Operand #1 |
| // 11- 6: Operand #2 |
| // 5- 0: Operand #3 |
| // |
| unsigned Opcode = (3 << 30) | (IType << 24) | (Type << 18) | |
| (Slots[0] << 12) | (Slots[1] << 6) | (Slots[2] << 0); |
| //cerr << "3 " << IType << " " << Type << " " << Slots[0] << " " |
| // << Slots[1] << " " << Slots[2] << endl; |
| output(Opcode, Out); |
| } |
| |
| #include "llvm/Assembly/Writer.h" |
| |
| void BytecodeWriter::processInstruction(const Instruction *I) { |
| assert(I->getOpcode() < 64 && "Opcode too big???"); |
| |
| unsigned NumOperands = I->getNumOperands(); |
| int MaxOpSlot = 0; |
| int Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands |
| |
| for (unsigned i = 0; i < NumOperands; ++i) { |
| const Value *Def = I->getOperand(i); |
| int slot = Table.getValSlot(Def); |
| assert(slot != -1 && "Broken bytecode!"); |
| if (slot > MaxOpSlot) MaxOpSlot = slot; |
| if (i < 3) Slots[i] = slot; |
| } |
| |
| // Figure out which type to encode with the instruction. Typically we want |
| // the type of the first parameter, as opposed to the type of the instruction |
| // (for example, with setcc, we always know it returns bool, but the type of |
| // the first param is actually interesting). But if we have no arguments |
| // we take the type of the instruction itself. |
| // |
| const Type *Ty; |
| switch (I->getOpcode()) { |
| case Instruction::Malloc: |
| case Instruction::Alloca: |
| Ty = I->getType(); // Malloc & Alloca ALWAYS want to encode the return type |
| break; |
| case Instruction::Store: |
| Ty = I->getOperand(1)->getType(); // Encode the pointer type... |
| assert(Ty->isPointerType() && "Store to nonpointer type!?!?"); |
| break; |
| default: // Otherwise use the default behavior... |
| Ty = NumOperands ? I->getOperand(0)->getType() : I->getType(); |
| break; |
| } |
| |
| unsigned Type; |
| int Slot = Table.getValSlot(Ty); |
| assert(Slot != -1 && "Type not available!!?!"); |
| Type = (unsigned)Slot; |
| |
| // Make sure that we take the type number into consideration. We don't want |
| // to overflow the field size for the instruction format we select. |
| // |
| if (Slot > MaxOpSlot) MaxOpSlot = Slot; |
| |
| // Handle the special case for cast... |
| if (I->getOpcode() == Instruction::Cast) { |
| // Cast has to encode the destination type as the second argument in the |
| // packet, or else we won't know what type to cast to! |
| Slots[1] = Table.getValSlot(I->getType()); |
| assert(Slots[1] != -1 && "Cast return type unknown?"); |
| if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1]; |
| NumOperands++; |
| } else if (const CallInst *CI = dyn_cast<CallInst>(I)) {// Handle VarArg calls |
| if (CI->getCalledMethod()->getMethodType()->isVarArg()) { |
| outputInstrVarArgsCall(I, Table, Type, Out); |
| return; |
| } |
| } |
| |
| // Decide which instruction encoding to use. This is determined primarily by |
| // the number of operands, and secondarily by whether or not the max operand |
| // will fit into the instruction encoding. More operands == fewer bits per |
| // operand. |
| // |
| switch (NumOperands) { |
| case 0: |
| case 1: |
| if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops |
| outputInstructionFormat1(I, Table, Slots, Type, Out); |
| return; |
| } |
| break; |
| |
| case 2: |
| if (MaxOpSlot < (1 << 8)) { |
| outputInstructionFormat2(I, Table, Slots, Type, Out); |
| return; |
| } |
| break; |
| |
| case 3: |
| if (MaxOpSlot < (1 << 6)) { |
| outputInstructionFormat3(I, Table, Slots, Type, Out); |
| return; |
| } |
| break; |
| } |
| |
| // If we weren't handled before here, we either have a large number of |
| // operands or a large operand index that we are refering to. |
| outputInstructionFormat0(I, Table, Type, Out); |
| } |