| //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// | 
 | //  | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file was developed by the LLVM research group and is distributed under | 
 | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
 | //  | 
 | //===----------------------------------------------------------------------===// | 
 | //  | 
 | // This file implements the LiveVariable analysis pass.  For each machine | 
 | // instruction in the function, this pass calculates the set of registers that | 
 | // are immediately dead after the instruction (i.e., the instruction calculates | 
 | // the value, but it is never used) and the set of registers that are used by | 
 | // the instruction, but are never used after the instruction (i.e., they are | 
 | // killed). | 
 | // | 
 | // This class computes live variables using are sparse implementation based on | 
 | // the machine code SSA form.  This class computes live variable information for | 
 | // each virtual and _register allocatable_ physical register in a function.  It | 
 | // uses the dominance properties of SSA form to efficiently compute live | 
 | // variables for virtual registers, and assumes that physical registers are only | 
 | // live within a single basic block (allowing it to do a single local analysis | 
 | // to resolve physical register lifetimes in each basic block).  If a physical | 
 | // register is not register allocatable, it is not tracked.  This is useful for | 
 | // things like the stack pointer and condition codes. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/CodeGen/LiveVariables.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/Target/MRegisterInfo.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Support/CFG.h" | 
 | #include "Support/DepthFirstIterator.h" | 
 | #include "Support/STLExtras.h" | 
 | using namespace llvm; | 
 |  | 
 | static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis"); | 
 |  | 
 | const std::pair<MachineBasicBlock*, unsigned> & | 
 | LiveVariables::getMachineBasicBlockInfo(MachineBasicBlock *MBB) const{ | 
 |   return BBMap.find(MBB->getBasicBlock())->second; | 
 | } | 
 |    | 
 | /// getIndexMachineBasicBlock() - Given a block index, return the | 
 | /// MachineBasicBlock corresponding to it. | 
 | MachineBasicBlock *LiveVariables::getIndexMachineBasicBlock(unsigned Idx) { | 
 |   if (BBIdxMap.empty()) { | 
 |     BBIdxMap.resize(BBMap.size()); | 
 |     for (std::map<const BasicBlock*, std::pair<MachineBasicBlock*, unsigned> > | 
 |            ::iterator I = BBMap.begin(), E = BBMap.end(); I != E; ++I) { | 
 |       assert(BBIdxMap.size() > I->second.second &&"Indices are not sequential"); | 
 |       assert(BBIdxMap[I->second.second] == 0 && "Multiple idx collision!"); | 
 |       BBIdxMap[I->second.second] = I->second.first; | 
 |     } | 
 |   } | 
 |   assert(Idx < BBIdxMap.size() && "BB Index out of range!"); | 
 |   return BBIdxMap[Idx]; | 
 | } | 
 |  | 
 | LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { | 
 |   assert(MRegisterInfo::isVirtualRegister(RegIdx) && | 
 |          "getVarInfo: not a virtual register!"); | 
 |   RegIdx -= MRegisterInfo::FirstVirtualRegister; | 
 |   if (RegIdx >= VirtRegInfo.size()) { | 
 |     if (RegIdx >= 2*VirtRegInfo.size()) | 
 |       VirtRegInfo.resize(RegIdx*2); | 
 |     else | 
 |       VirtRegInfo.resize(2*VirtRegInfo.size()); | 
 |   } | 
 |   return VirtRegInfo[RegIdx]; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, | 
 | 					    const BasicBlock *BB) { | 
 |   const std::pair<MachineBasicBlock*,unsigned> &Info = BBMap.find(BB)->second; | 
 |   MachineBasicBlock *MBB = Info.first; | 
 |   unsigned BBNum = Info.second; | 
 |  | 
 |   // Check to see if this basic block is one of the killing blocks.  If so, | 
 |   // remove it... | 
 |   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) | 
 |     if (VRInfo.Kills[i].first == MBB) { | 
 |       VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry | 
 |       break; | 
 |     } | 
 |  | 
 |   if (MBB == VRInfo.DefBlock) return;  // Terminate recursion | 
 |  | 
 |   if (VRInfo.AliveBlocks.size() <= BBNum) | 
 |     VRInfo.AliveBlocks.resize(BBNum+1);  // Make space... | 
 |  | 
 |   if (VRInfo.AliveBlocks[BBNum]) | 
 |     return;  // We already know the block is live | 
 |  | 
 |   // Mark the variable known alive in this bb | 
 |   VRInfo.AliveBlocks[BBNum] = true; | 
 |  | 
 |   for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) | 
 |     MarkVirtRegAliveInBlock(VRInfo, *PI); | 
 | } | 
 |  | 
 | void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, | 
 | 				     MachineInstr *MI) { | 
 |   // Check to see if this basic block is already a kill block... | 
 |   if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) { | 
 |     // Yes, this register is killed in this basic block already.  Increase the | 
 |     // live range by updating the kill instruction. | 
 |     VRInfo.Kills.back().second = MI; | 
 |     return; | 
 |   } | 
 |  | 
 | #ifndef NDEBUG | 
 |   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) | 
 |     assert(VRInfo.Kills[i].first != MBB && "entry should be at end!"); | 
 | #endif | 
 |  | 
 |   assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!"); | 
 |  | 
 |   // Add a new kill entry for this basic block. | 
 |   VRInfo.Kills.push_back(std::make_pair(MBB, MI)); | 
 |  | 
 |   // Update all dominating blocks to mark them known live. | 
 |   const BasicBlock *BB = MBB->getBasicBlock(); | 
 |   for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); | 
 |        PI != E; ++PI) | 
 |     MarkVirtRegAliveInBlock(VRInfo, *PI); | 
 | } | 
 |  | 
 | void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { | 
 |   PhysRegInfo[Reg] = MI; | 
 |   PhysRegUsed[Reg] = true; | 
 | } | 
 |  | 
 | void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { | 
 |   // Does this kill a previous version of this register? | 
 |   if (MachineInstr *LastUse = PhysRegInfo[Reg]) { | 
 |     if (PhysRegUsed[Reg]) | 
 |       RegistersKilled.insert(std::make_pair(LastUse, Reg)); | 
 |     else | 
 |       RegistersDead.insert(std::make_pair(LastUse, Reg)); | 
 |   } | 
 |   PhysRegInfo[Reg] = MI; | 
 |   PhysRegUsed[Reg] = false; | 
 |  | 
 |   for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); | 
 |        *AliasSet; ++AliasSet) { | 
 |     unsigned Alias = *AliasSet; | 
 |     if (MachineInstr *LastUse = PhysRegInfo[Alias]) { | 
 |       if (PhysRegUsed[Alias]) | 
 | 	RegistersKilled.insert(std::make_pair(LastUse, Alias)); | 
 |       else | 
 | 	RegistersDead.insert(std::make_pair(LastUse, Alias)); | 
 |     } | 
 |     PhysRegInfo[Alias] = MI; | 
 |     PhysRegUsed[Alias] = false; | 
 |   } | 
 | } | 
 |  | 
 | bool LiveVariables::runOnMachineFunction(MachineFunction &MF) { | 
 |   const TargetInstrInfo &TII = MF.getTarget().getInstrInfo(); | 
 |   RegInfo = MF.getTarget().getRegisterInfo(); | 
 |   assert(RegInfo && "Target doesn't have register information?"); | 
 |  | 
 |   // First time though, initialize AllocatablePhysicalRegisters for the target | 
 |   if (AllocatablePhysicalRegisters.empty()) { | 
 |     // Make space, initializing to false... | 
 |     AllocatablePhysicalRegisters.resize(RegInfo->getNumRegs()); | 
 |  | 
 |     // Loop over all of the register classes... | 
 |     for (MRegisterInfo::regclass_iterator RCI = RegInfo->regclass_begin(), | 
 |            E = RegInfo->regclass_end(); RCI != E; ++RCI) | 
 |       // Loop over all of the allocatable registers in the function... | 
 |       for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF), | 
 |              E = (*RCI)->allocation_order_end(MF); I != E; ++I) | 
 |         AllocatablePhysicalRegisters[*I] = true;  // The reg is allocatable! | 
 |   } | 
 |  | 
 |   // Build BBMap...  | 
 |   unsigned BBNum = 0; | 
 |   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) | 
 |     BBMap[I->getBasicBlock()] = std::make_pair(I, BBNum++); | 
 |  | 
 |   // PhysRegInfo - Keep track of which instruction was the last use of a | 
 |   // physical register.  This is a purely local property, because all physical | 
 |   // register references as presumed dead across basic blocks. | 
 |   // | 
 |   MachineInstr *PhysRegInfoA[RegInfo->getNumRegs()]; | 
 |   bool          PhysRegUsedA[RegInfo->getNumRegs()]; | 
 |   std::fill(PhysRegInfoA, PhysRegInfoA+RegInfo->getNumRegs(), (MachineInstr*)0); | 
 |   PhysRegInfo = PhysRegInfoA; | 
 |   PhysRegUsed = PhysRegUsedA; | 
 |  | 
 |   /// Get some space for a respectable number of registers... | 
 |   VirtRegInfo.resize(64); | 
 |    | 
 |   // Calculate live variable information in depth first order on the CFG of the | 
 |   // function.  This guarantees that we will see the definition of a virtual | 
 |   // register before its uses due to dominance properties of SSA (except for PHI | 
 |   // nodes, which are treated as a special case). | 
 |   // | 
 |   const BasicBlock *Entry = MF.getFunction()->begin(); | 
 |   for (df_iterator<const BasicBlock*> DFI = df_begin(Entry), E = df_end(Entry); | 
 |        DFI != E; ++DFI) { | 
 |     const BasicBlock *BB = *DFI; | 
 |     std::pair<MachineBasicBlock*, unsigned> &BBRec = BBMap.find(BB)->second; | 
 |     MachineBasicBlock *MBB = BBRec.first; | 
 |     unsigned BBNum = BBRec.second; | 
 |  | 
 |     // Loop over all of the instructions, processing them. | 
 |     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); | 
 | 	 I != E; ++I) { | 
 |       MachineInstr *MI = I; | 
 |       const TargetInstrDescriptor &MID = TII.get(MI->getOpcode()); | 
 |  | 
 |       // Process all of the operands of the instruction... | 
 |       unsigned NumOperandsToProcess = MI->getNumOperands(); | 
 |  | 
 |       // Unless it is a PHI node.  In this case, ONLY process the DEF, not any | 
 |       // of the uses.  They will be handled in other basic blocks. | 
 |       if (MI->getOpcode() == TargetInstrInfo::PHI)       | 
 | 	NumOperandsToProcess = 1; | 
 |  | 
 |       // Loop over implicit uses, using them. | 
 |       for (const unsigned *ImplicitUses = MID.ImplicitUses; | 
 |            *ImplicitUses; ++ImplicitUses) | 
 | 	HandlePhysRegUse(*ImplicitUses, MI); | 
 |  | 
 |       // Process all explicit uses... | 
 |       for (unsigned i = 0; i != NumOperandsToProcess; ++i) { | 
 | 	MachineOperand &MO = MI->getOperand(i); | 
 | 	if (MO.isUse() && MO.isRegister()) { | 
 | 	  if (MRegisterInfo::isVirtualRegister(MO.getReg())){ | 
 | 	    HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); | 
 | 	  } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && | 
 |                      AllocatablePhysicalRegisters[MO.getReg()]) { | 
 | 	    HandlePhysRegUse(MO.getReg(), MI); | 
 | 	  } | 
 | 	} | 
 |       } | 
 |  | 
 |       // Loop over implicit defs, defining them. | 
 |       for (const unsigned *ImplicitDefs = MID.ImplicitDefs; | 
 |            *ImplicitDefs; ++ImplicitDefs) | 
 |         HandlePhysRegDef(*ImplicitDefs, MI); | 
 |  | 
 |       // Process all explicit defs... | 
 |       for (unsigned i = 0; i != NumOperandsToProcess; ++i) { | 
 | 	MachineOperand &MO = MI->getOperand(i); | 
 | 	if (MO.isDef() && MO.isRegister()) { | 
 | 	  if (MRegisterInfo::isVirtualRegister(MO.getReg())) { | 
 | 	    VarInfo &VRInfo = getVarInfo(MO.getReg()); | 
 |  | 
 | 	    assert(VRInfo.DefBlock == 0 && "Variable multiply defined!"); | 
 | 	    VRInfo.DefBlock = MBB;                           // Created here... | 
 | 	    VRInfo.DefInst = MI; | 
 | 	    VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead | 
 | 	  } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && | 
 |                      AllocatablePhysicalRegisters[MO.getReg()]) { | 
 | 	    HandlePhysRegDef(MO.getReg(), MI); | 
 | 	  } | 
 | 	} | 
 |       } | 
 |     } | 
 |  | 
 |     // Handle any virtual assignments from PHI nodes which might be at the | 
 |     // bottom of this basic block.  We check all of our successor blocks to see | 
 |     // if they have PHI nodes, and if so, we simulate an assignment at the end | 
 |     // of the current block. | 
 |     for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); | 
 |          SI != E; ++SI) { | 
 |       MachineBasicBlock *Succ = BBMap.find(*SI)->second.first; | 
 |        | 
 |       // PHI nodes are guaranteed to be at the top of the block... | 
 |       for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end(); | 
 | 	   MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) { | 
 | 	for (unsigned i = 1; ; i += 2) | 
 | 	  if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) { | 
 | 	    MachineOperand &MO = MI->getOperand(i); | 
 | 	    if (!MO.getVRegValueOrNull()) { | 
 | 	      VarInfo &VRInfo = getVarInfo(MO.getReg()); | 
 |  | 
 | 	      // Only mark it alive only in the block we are representing... | 
 | 	      MarkVirtRegAliveInBlock(VRInfo, BB); | 
 | 	      break;   // Found the PHI entry for this block... | 
 | 	    } | 
 | 	  } | 
 |       } | 
 |     } | 
 |      | 
 |     // Loop over PhysRegInfo, killing any registers that are available at the | 
 |     // end of the basic block.  This also resets the PhysRegInfo map. | 
 |     for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) | 
 |       if (PhysRegInfo[i]) | 
 | 	HandlePhysRegDef(i, 0); | 
 |   } | 
 |  | 
 |   // Convert the information we have gathered into VirtRegInfo and transform it | 
 |   // into a form usable by RegistersKilled. | 
 |   // | 
 |   for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i) | 
 |     for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) { | 
 |       if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst) | 
 | 	RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second, | 
 | 		    i + MRegisterInfo::FirstVirtualRegister)); | 
 |  | 
 |       else | 
 | 	RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second, | 
 | 		    i + MRegisterInfo::FirstVirtualRegister)); | 
 |     } | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | /// instructionChanged - When the address of an instruction changes, this | 
 | /// method should be called so that live variables can update its internal | 
 | /// data structures.  This removes the records for OldMI, transfering them to | 
 | /// the records for NewMI. | 
 | void LiveVariables::instructionChanged(MachineInstr *OldMI, | 
 |                                        MachineInstr *NewMI) { | 
 |   // If the instruction defines any virtual registers, update the VarInfo for | 
 |   // the instruction. | 
 |   for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = NewMI->getOperand(i); | 
 |     if (MO.isRegister() && MO.isDef() && | 
 |         MRegisterInfo::isVirtualRegister(MO.getReg())) { | 
 |       unsigned Reg = MO.getReg(); | 
 |       VarInfo &VI = getVarInfo(Reg); | 
 |       if (VI.DefInst == OldMI) | 
 |         VI.DefInst = NewMI;  | 
 |     } | 
 |   } | 
 |  | 
 |   // Move the killed information over... | 
 |   killed_iterator I, E; | 
 |   tie(I, E) = killed_range(OldMI); | 
 |   std::vector<unsigned> Regs; | 
 |   for (killed_iterator A = I; A != E; ++A) | 
 |     Regs.push_back(A->second); | 
 |   RegistersKilled.erase(I, E); | 
 |  | 
 |   for (unsigned i = 0, e = Regs.size(); i != e; ++i) | 
 |     RegistersKilled.insert(std::make_pair(NewMI, Regs[i])); | 
 |   Regs.clear(); | 
 |  | 
 |  | 
 |   // Move the dead information over... | 
 |   tie(I, E) = dead_range(OldMI); | 
 |   for (killed_iterator A = I; A != E; ++A) | 
 |     Regs.push_back(A->second); | 
 |   RegistersDead.erase(I, E); | 
 |  | 
 |   for (unsigned i = 0, e = Regs.size(); i != e; ++i) | 
 |     RegistersDead.insert(std::make_pair(NewMI, Regs[i])); | 
 | } |