| //===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of the MC-JIT runtime dynamic linker. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "dyld" |
| #include "llvm/ADT/OwningPtr.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "RuntimeDyldImpl.h" |
| using namespace llvm; |
| using namespace llvm::object; |
| |
| namespace llvm { |
| |
| bool RuntimeDyldMachO:: |
| resolveRelocation(uint8_t *Address, uint64_t Value, bool isPCRel, |
| unsigned Type, unsigned Size, int64_t Addend) { |
| // This just dispatches to the proper target specific routine. |
| switch (CPUType) { |
| default: assert(0 && "Unsupported CPU type!"); |
| case mach::CTM_x86_64: |
| return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value, |
| isPCRel, Type, Size, Addend); |
| case mach::CTM_ARM: |
| return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value, |
| isPCRel, Type, Size, Addend); |
| } |
| llvm_unreachable(""); |
| } |
| |
| bool RuntimeDyldMachO:: |
| resolveX86_64Relocation(uintptr_t Address, uintptr_t Value, bool isPCRel, |
| unsigned Type, unsigned Size, int64_t Addend) { |
| // If the relocation is PC-relative, the value to be encoded is the |
| // pointer difference. |
| if (isPCRel) |
| // FIXME: It seems this value needs to be adjusted by 4 for an effective PC |
| // address. Is that expected? Only for branches, perhaps? |
| Value -= Address + 4; |
| |
| switch(Type) { |
| default: |
| llvm_unreachable("Invalid relocation type!"); |
| case macho::RIT_X86_64_Signed1: |
| case macho::RIT_X86_64_Signed2: |
| case macho::RIT_X86_64_Signed4: |
| case macho::RIT_X86_64_Signed: |
| case macho::RIT_X86_64_Unsigned: |
| case macho::RIT_X86_64_Branch: { |
| Value += Addend; |
| // Mask in the target value a byte at a time (we don't have an alignment |
| // guarantee for the target address, so this is safest). |
| uint8_t *p = (uint8_t*)Address; |
| for (unsigned i = 0; i < Size; ++i) { |
| *p++ = (uint8_t)Value; |
| Value >>= 8; |
| } |
| return false; |
| } |
| case macho::RIT_X86_64_GOTLoad: |
| case macho::RIT_X86_64_GOT: |
| case macho::RIT_X86_64_Subtractor: |
| case macho::RIT_X86_64_TLV: |
| return Error("Relocation type not implemented yet!"); |
| } |
| } |
| |
| bool RuntimeDyldMachO:: |
| resolveARMRelocation(uintptr_t Address, uintptr_t Value, bool isPCRel, |
| unsigned Type, unsigned Size, int64_t Addend) { |
| // If the relocation is PC-relative, the value to be encoded is the |
| // pointer difference. |
| if (isPCRel) { |
| Value -= Address; |
| // ARM PCRel relocations have an effective-PC offset of two instructions |
| // (four bytes in Thumb mode, 8 bytes in ARM mode). |
| // FIXME: For now, assume ARM mode. |
| Value -= 8; |
| } |
| |
| switch(Type) { |
| default: |
| llvm_unreachable("Invalid relocation type!"); |
| case macho::RIT_Vanilla: { |
| llvm_unreachable("Invalid relocation type!"); |
| // Mask in the target value a byte at a time (we don't have an alignment |
| // guarantee for the target address, so this is safest). |
| uint8_t *p = (uint8_t*)Address; |
| for (unsigned i = 0; i < Size; ++i) { |
| *p++ = (uint8_t)Value; |
| Value >>= 8; |
| } |
| break; |
| } |
| case macho::RIT_ARM_Branch24Bit: { |
| // Mask the value into the target address. We know instructions are |
| // 32-bit aligned, so we can do it all at once. |
| uint32_t *p = (uint32_t*)Address; |
| // The low two bits of the value are not encoded. |
| Value >>= 2; |
| // Mask the value to 24 bits. |
| Value &= 0xffffff; |
| // FIXME: If the destination is a Thumb function (and the instruction |
| // is a non-predicated BL instruction), we need to change it to a BLX |
| // instruction instead. |
| |
| // Insert the value into the instruction. |
| *p = (*p & ~0xffffff) | Value; |
| break; |
| } |
| case macho::RIT_ARM_ThumbBranch22Bit: |
| case macho::RIT_ARM_ThumbBranch32Bit: |
| case macho::RIT_ARM_Half: |
| case macho::RIT_ARM_HalfDifference: |
| case macho::RIT_Pair: |
| case macho::RIT_Difference: |
| case macho::RIT_ARM_LocalDifference: |
| case macho::RIT_ARM_PreboundLazyPointer: |
| return Error("Relocation type not implemented yet!"); |
| } |
| return false; |
| } |
| |
| bool RuntimeDyldMachO:: |
| loadSegment32(const MachOObject *Obj, |
| const MachOObject::LoadCommandInfo *SegmentLCI, |
| const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) { |
| // FIXME: This should really be combined w/ loadSegment64. Templatized |
| // function on the 32/64 datatypes maybe? |
| InMemoryStruct<macho::SegmentLoadCommand> SegmentLC; |
| Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC); |
| if (!SegmentLC) |
| return Error("unable to load segment load command"); |
| |
| |
| SmallVector<unsigned, 16> SectionMap; |
| for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) { |
| InMemoryStruct<macho::Section> Sect; |
| Obj->ReadSection(*SegmentLCI, SectNum, Sect); |
| if (!Sect) |
| return Error("unable to load section: '" + Twine(SectNum) + "'"); |
| |
| // Allocate memory via the MM for the section. |
| uint8_t *Buffer; |
| uint32_t SectionID = Sections.size(); |
| if (Sect->Flags != 0x80000400) |
| Buffer = MemMgr->allocateCodeSection(Sect->Size, Sect->Align, SectionID); |
| else |
| Buffer = MemMgr->allocateDataSection(Sect->Size, Sect->Align, SectionID); |
| |
| DEBUG(dbgs() << "Loading " |
| << ((Sect->Flags == 0x80000400) ? "text" : "data") |
| << " (ID #" << SectionID << ")" |
| << " '" << Sect->SegmentName << "," |
| << Sect->Name << "' of size " << Sect->Size |
| << " to address " << Buffer << ".\n"); |
| |
| // Copy the payload from the object file into the allocated buffer. |
| uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset, |
| SegmentLC->FileSize).data(); |
| memcpy(Buffer, Base + Sect->Address, Sect->Size); |
| |
| // Remember what got allocated for this SectionID. |
| Sections.push_back(sys::MemoryBlock(Buffer, Sect->Size)); |
| SectionLocalMemToID[Buffer] = SectionID; |
| |
| // By default, the load address of a section is its memory buffer. |
| SectionLoadAddress.push_back((uint64_t)Buffer); |
| |
| // Keep a map of object file section numbers to corresponding SectionIDs |
| // while processing the file. |
| SectionMap.push_back(SectionID); |
| } |
| |
| // Process the symbol table. |
| SmallVector<StringRef, 64> SymbolNames; |
| processSymbols32(Obj, SectionMap, SymbolNames, SymtabLC); |
| |
| // Process the relocations for each section we're loading. |
| Relocations.grow(Relocations.size() + SegmentLC->NumSections); |
| for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) { |
| InMemoryStruct<macho::Section> Sect; |
| Obj->ReadSection(*SegmentLCI, SectNum, Sect); |
| if (!Sect) |
| return Error("unable to load section: '" + Twine(SectNum) + "'"); |
| for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { |
| InMemoryStruct<macho::RelocationEntry> RE; |
| Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); |
| if (RE->Word0 & macho::RF_Scattered) |
| return Error("NOT YET IMPLEMENTED: scattered relocations."); |
| // Word0 of the relocation is the offset into the section where the |
| // relocation should be applied. We need to translate that into an |
| // offset into a function since that's our atom. |
| uint32_t Offset = RE->Word0; |
| bool isExtern = (RE->Word1 >> 27) & 1; |
| |
| // FIXME: Get the relocation addend from the target address. |
| // FIXME: VERY imporant for internal relocations. |
| |
| // Figure out the source symbol of the relocation. If isExtern is true, |
| // this relocation references the symbol table, otherwise it references |
| // a section in the same object, numbered from 1 through NumSections |
| // (SectionBases is [0, NumSections-1]). |
| uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value |
| if (!isExtern) { |
| assert(SourceNum > 0 && "Invalid relocation section number!"); |
| unsigned SectionID = SectionMap[SourceNum - 1]; |
| unsigned TargetID = SectionMap[SectNum]; |
| DEBUG(dbgs() << "Internal relocation at Section #" |
| << TargetID << " + " << Offset |
| << " from Section #" |
| << SectionID << " (Word1: " |
| << format("0x%x", RE->Word1) << ")\n"); |
| |
| // Store the relocation information. It will get resolved when |
| // the section addresses are assigned. |
| Relocations[SectionID].push_back(RelocationEntry(TargetID, |
| Offset, |
| RE->Word1, |
| 0 /*Addend*/)); |
| } else { |
| StringRef SourceName = SymbolNames[SourceNum]; |
| |
| // Now store the relocation information. Associate it with the source |
| // symbol. Just add it to the unresolved list and let the general |
| // path post-load resolve it if we know where the symbol is. |
| UnresolvedRelocations[SourceName].push_back(RelocationEntry(SectNum, |
| Offset, |
| RE->Word1, |
| 0 /*Addend*/)); |
| DEBUG(dbgs() << "Relocation at Section #" << SectNum << " + " << Offset |
| << " from '" << SourceName << "(Word1: " |
| << format("0x%x", RE->Word1) << ")\n"); |
| } |
| } |
| } |
| |
| // Resolve the addresses of any symbols that were defined in this segment. |
| for (int i = 0, e = SymbolNames.size(); i != e; ++i) |
| resolveSymbol(SymbolNames[i]); |
| |
| return false; |
| } |
| |
| |
| bool RuntimeDyldMachO:: |
| loadSegment64(const MachOObject *Obj, |
| const MachOObject::LoadCommandInfo *SegmentLCI, |
| const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) { |
| InMemoryStruct<macho::Segment64LoadCommand> Segment64LC; |
| Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC); |
| if (!Segment64LC) |
| return Error("unable to load segment load command"); |
| |
| |
| SmallVector<unsigned, 16> SectionMap; |
| for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) { |
| InMemoryStruct<macho::Section64> Sect; |
| Obj->ReadSection64(*SegmentLCI, SectNum, Sect); |
| if (!Sect) |
| return Error("unable to load section: '" + Twine(SectNum) + "'"); |
| |
| // Allocate memory via the MM for the section. |
| uint8_t *Buffer; |
| uint32_t SectionID = Sections.size(); |
| unsigned Align = 1 << Sect->Align; // .o file has log2 alignment. |
| if (Sect->Flags == 0x80000400) |
| Buffer = MemMgr->allocateCodeSection(Sect->Size, Align, SectionID); |
| else |
| Buffer = MemMgr->allocateDataSection(Sect->Size, Align, SectionID); |
| |
| DEBUG(dbgs() << "Loading " |
| << ((Sect->Flags == 0x80000400) ? "text" : "data") |
| << " (ID #" << SectionID << ")" |
| << " '" << Sect->SegmentName << "," |
| << Sect->Name << "' of size " << Sect->Size |
| << " (align " << Align << ")" |
| << " to address " << Buffer << ".\n"); |
| |
| // Copy the payload from the object file into the allocated buffer. |
| uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset, |
| Segment64LC->FileSize).data(); |
| memcpy(Buffer, Base + Sect->Address, Sect->Size); |
| |
| // Remember what got allocated for this SectionID. |
| Sections.push_back(sys::MemoryBlock(Buffer, Sect->Size)); |
| SectionLocalMemToID[Buffer] = SectionID; |
| |
| // By default, the load address of a section is its memory buffer. |
| SectionLoadAddress.push_back((uint64_t)Buffer); |
| |
| // Keep a map of object file section numbers to corresponding SectionIDs |
| // while processing the file. |
| SectionMap.push_back(SectionID); |
| } |
| |
| // Process the symbol table. |
| SmallVector<StringRef, 64> SymbolNames; |
| processSymbols64(Obj, SectionMap, SymbolNames, SymtabLC); |
| |
| // Process the relocations for each section we're loading. |
| Relocations.grow(Relocations.size() + Segment64LC->NumSections); |
| for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) { |
| InMemoryStruct<macho::Section64> Sect; |
| Obj->ReadSection64(*SegmentLCI, SectNum, Sect); |
| if (!Sect) |
| return Error("unable to load section: '" + Twine(SectNum) + "'"); |
| for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { |
| InMemoryStruct<macho::RelocationEntry> RE; |
| Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); |
| if (RE->Word0 & macho::RF_Scattered) |
| return Error("NOT YET IMPLEMENTED: scattered relocations."); |
| // Word0 of the relocation is the offset into the section where the |
| // relocation should be applied. We need to translate that into an |
| // offset into a function since that's our atom. |
| uint32_t Offset = RE->Word0; |
| bool isExtern = (RE->Word1 >> 27) & 1; |
| |
| // FIXME: Get the relocation addend from the target address. |
| // FIXME: VERY imporant for internal relocations. |
| |
| // Figure out the source symbol of the relocation. If isExtern is true, |
| // this relocation references the symbol table, otherwise it references |
| // a section in the same object, numbered from 1 through NumSections |
| // (SectionBases is [0, NumSections-1]). |
| uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value |
| if (!isExtern) { |
| assert(SourceNum > 0 && "Invalid relocation section number!"); |
| unsigned SectionID = SectionMap[SourceNum - 1]; |
| unsigned TargetID = SectionMap[SectNum]; |
| DEBUG(dbgs() << "Internal relocation at Section #" |
| << TargetID << " + " << Offset |
| << " from Section #" |
| << SectionID << " (Word1: " |
| << format("0x%x", RE->Word1) << ")\n"); |
| |
| // Store the relocation information. It will get resolved when |
| // the section addresses are assigned. |
| Relocations[SectionID].push_back(RelocationEntry(TargetID, |
| Offset, |
| RE->Word1, |
| 0 /*Addend*/)); |
| } else { |
| StringRef SourceName = SymbolNames[SourceNum]; |
| |
| // Now store the relocation information. Associate it with the source |
| // symbol. Just add it to the unresolved list and let the general |
| // path post-load resolve it if we know where the symbol is. |
| UnresolvedRelocations[SourceName].push_back(RelocationEntry(SectNum, |
| Offset, |
| RE->Word1, |
| 0 /*Addend*/)); |
| DEBUG(dbgs() << "Relocation at Section #" << SectNum << " + " << Offset |
| << " from '" << SourceName << "(Word1: " |
| << format("0x%x", RE->Word1) << ")\n"); |
| } |
| } |
| } |
| |
| // Resolve the addresses of any symbols that were defined in this segment. |
| for (int i = 0, e = SymbolNames.size(); i != e; ++i) |
| resolveSymbol(SymbolNames[i]); |
| |
| return false; |
| } |
| |
| bool RuntimeDyldMachO:: |
| processSymbols32(const MachOObject *Obj, |
| SmallVectorImpl<unsigned> &SectionMap, |
| SmallVectorImpl<StringRef> &SymbolNames, |
| const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) { |
| // FIXME: Combine w/ processSymbols64. Factor 64/32 datatype and such. |
| for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { |
| InMemoryStruct<macho::SymbolTableEntry> STE; |
| Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE); |
| if (!STE) |
| return Error("unable to read symbol: '" + Twine(i) + "'"); |
| // Get the symbol name. |
| StringRef Name = Obj->getStringAtIndex(STE->StringIndex); |
| SymbolNames.push_back(Name); |
| |
| // FIXME: Check the symbol type and flags. |
| if (STE->Type != 0xF) // external, defined in this segment. |
| continue; |
| // Flags in the upper nibble we don't care about. |
| if ((STE->Flags & 0xf) != 0x0) |
| continue; |
| |
| // Remember the symbol. |
| uint32_t SectionID = SectionMap[STE->SectionIndex - 1]; |
| SymbolTable[Name] = SymbolLoc(SectionID, STE->Value); |
| |
| DEBUG(dbgs() << "Symbol: '" << Name << "' @ " |
| << (getSectionAddress(SectionID) + STE->Value) |
| << "\n"); |
| } |
| return false; |
| } |
| |
| bool RuntimeDyldMachO:: |
| processSymbols64(const MachOObject *Obj, |
| SmallVectorImpl<unsigned> &SectionMap, |
| SmallVectorImpl<StringRef> &SymbolNames, |
| const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) { |
| for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { |
| InMemoryStruct<macho::Symbol64TableEntry> STE; |
| Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE); |
| if (!STE) |
| return Error("unable to read symbol: '" + Twine(i) + "'"); |
| // Get the symbol name. |
| StringRef Name = Obj->getStringAtIndex(STE->StringIndex); |
| SymbolNames.push_back(Name); |
| |
| // FIXME: Check the symbol type and flags. |
| if (STE->Type != 0xF) // external, defined in this segment. |
| continue; |
| // Flags in the upper nibble we don't care about. |
| if ((STE->Flags & 0xf) != 0x0) |
| continue; |
| |
| // Remember the symbol. |
| uint32_t SectionID = SectionMap[STE->SectionIndex - 1]; |
| SymbolTable[Name] = SymbolLoc(SectionID, STE->Value); |
| |
| DEBUG(dbgs() << "Symbol: '" << Name << "' @ " |
| << (getSectionAddress(SectionID) + STE->Value) |
| << "\n"); |
| } |
| return false; |
| } |
| |
| // resolveSymbol - Resolve any relocations to the specified symbol if |
| // we know where it lives. |
| void RuntimeDyldMachO::resolveSymbol(StringRef Name) { |
| StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(Name); |
| if (Loc == SymbolTable.end()) |
| return; |
| |
| RelocationList &Relocs = UnresolvedRelocations[Name]; |
| DEBUG(dbgs() << "Resolving symbol '" << Name << "'\n"); |
| for (int i = 0, e = Relocs.size(); i != e; ++i) { |
| // Change the relocation to be section relative rather than symbol |
| // relative and move it to the resolved relocation list. |
| RelocationEntry Entry = Relocs[i]; |
| Entry.Addend += Loc->second.second; |
| Relocations[Loc->second.first].push_back(Entry); |
| } |
| // FIXME: Keep a worklist of the relocations we've added so that we can |
| // resolve more selectively later. |
| Relocs.clear(); |
| } |
| |
| bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) { |
| // If the linker is in an error state, don't do anything. |
| if (hasError()) |
| return true; |
| // Load the Mach-O wrapper object. |
| std::string ErrorStr; |
| OwningPtr<MachOObject> Obj( |
| MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr)); |
| if (!Obj) |
| return Error("unable to load object: '" + ErrorStr + "'"); |
| |
| // Get the CPU type information from the header. |
| const macho::Header &Header = Obj->getHeader(); |
| |
| // FIXME: Error checking that the loaded object is compatible with |
| // the system we're running on. |
| CPUType = Header.CPUType; |
| CPUSubtype = Header.CPUSubtype; |
| |
| // Validate that the load commands match what we expect. |
| const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0, |
| *DysymtabLCI = 0; |
| for (unsigned i = 0; i != Header.NumLoadCommands; ++i) { |
| const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i); |
| switch (LCI.Command.Type) { |
| case macho::LCT_Segment: |
| case macho::LCT_Segment64: |
| if (SegmentLCI) |
| return Error("unexpected input object (multiple segments)"); |
| SegmentLCI = &LCI; |
| break; |
| case macho::LCT_Symtab: |
| if (SymtabLCI) |
| return Error("unexpected input object (multiple symbol tables)"); |
| SymtabLCI = &LCI; |
| break; |
| case macho::LCT_Dysymtab: |
| if (DysymtabLCI) |
| return Error("unexpected input object (multiple symbol tables)"); |
| DysymtabLCI = &LCI; |
| break; |
| default: |
| return Error("unexpected input object (unexpected load command"); |
| } |
| } |
| |
| if (!SymtabLCI) |
| return Error("no symbol table found in object"); |
| if (!SegmentLCI) |
| return Error("no segments found in object"); |
| |
| // Read and register the symbol table data. |
| InMemoryStruct<macho::SymtabLoadCommand> SymtabLC; |
| Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC); |
| if (!SymtabLC) |
| return Error("unable to load symbol table load command"); |
| Obj->RegisterStringTable(*SymtabLC); |
| |
| // Read the dynamic link-edit information, if present (not present in static |
| // objects). |
| if (DysymtabLCI) { |
| InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC; |
| Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC); |
| if (!DysymtabLC) |
| return Error("unable to load dynamic link-exit load command"); |
| |
| // FIXME: We don't support anything interesting yet. |
| // if (DysymtabLC->LocalSymbolsIndex != 0) |
| // return Error("NOT YET IMPLEMENTED: local symbol entries"); |
| // if (DysymtabLC->ExternalSymbolsIndex != 0) |
| // return Error("NOT YET IMPLEMENTED: non-external symbol entries"); |
| // if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries) |
| // return Error("NOT YET IMPLEMENTED: undefined symbol entries"); |
| } |
| |
| // Load the segment load command. |
| if (SegmentLCI->Command.Type == macho::LCT_Segment) { |
| if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC)) |
| return true; |
| } else { |
| if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC)) |
| return true; |
| } |
| |
| // Assign the addresses of the sections from the object so that any |
| // relocations to them get set properly. |
| // FIXME: This is done directly from the client at the moment. We should |
| // default the values to the local storage, at least when the target arch |
| // is the same as the host arch. |
| |
| return false; |
| } |
| |
| // Assign an address to a symbol name and resolve all the relocations |
| // associated with it. |
| void RuntimeDyldMachO::reassignSectionAddress(unsigned SectionID, |
| uint64_t Addr) { |
| // The address to use for relocation resolution is not |
| // the address of the local section buffer. We must be doing |
| // a remote execution environment of some sort. Re-apply any |
| // relocations referencing this section with the given address. |
| // |
| // Addr is a uint64_t because we can't assume the pointer width |
| // of the target is the same as that of the host. Just use a generic |
| // "big enough" type. |
| |
| SectionLoadAddress[SectionID] = Addr; |
| |
| RelocationList &Relocs = Relocations[SectionID]; |
| for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { |
| RelocationEntry &RE = Relocs[i]; |
| uint8_t *Target = (uint8_t*)Sections[RE.SectionID].base() + RE.Offset; |
| bool isPCRel = (RE.Data >> 24) & 1; |
| unsigned Type = (RE.Data >> 28) & 0xf; |
| unsigned Size = 1 << ((RE.Data >> 25) & 3); |
| |
| DEBUG(dbgs() << "Resolving relocation at Section #" << RE.SectionID |
| << " + " << RE.Offset << " (" << format("%p", Target) << ")" |
| << " from Section #" << SectionID << " (" << format("%p", Addr) << ")" |
| << "(" << (isPCRel ? "pcrel" : "absolute") |
| << ", type: " << Type << ", Size: " << Size << ", Addend: " |
| << RE.Addend << ").\n"); |
| |
| resolveRelocation(Target, Addr, isPCRel, Type, Size, RE.Addend); |
| } |
| } |
| |
| bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) { |
| StringRef Magic = InputBuffer->getBuffer().slice(0, 4); |
| if (Magic == "\xFE\xED\xFA\xCE") return true; |
| if (Magic == "\xCE\xFA\xED\xFE") return true; |
| if (Magic == "\xFE\xED\xFA\xCF") return true; |
| if (Magic == "\xCF\xFA\xED\xFE") return true; |
| return false; |
| } |
| |
| } // end namespace llvm |