| //===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=// |
| // |
| // This file provides a simple class to calculate the dominator set of a |
| // function. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" |
| #include "llvm/Support/CFG.h" |
| #include "Support/DepthFirstIterator.h" |
| #include "Support/STLExtras.h" |
| #include "Support/SetOperations.h" |
| #include <algorithm> |
| using std::set; |
| |
| //===----------------------------------------------------------------------===// |
| // DominatorSet Implementation |
| //===----------------------------------------------------------------------===// |
| |
| AnalysisID DominatorSet::ID(AnalysisID::create<DominatorSet>(), true); |
| AnalysisID DominatorSet::PostDomID(AnalysisID::create<DominatorSet>(), true); |
| |
| bool DominatorSet::runOnFunction(Function *F) { |
| Doms.clear(); // Reset from the last time we were run... |
| |
| if (isPostDominator()) |
| calcPostDominatorSet(F); |
| else |
| calcForwardDominatorSet(F); |
| return false; |
| } |
| |
| // dominates - Return true if A dominates B. This performs the special checks |
| // neccesary if A and B are in the same basic block. |
| // |
| bool DominatorSet::dominates(Instruction *A, Instruction *B) const { |
| BasicBlock *BBA = A->getParent(), *BBB = B->getParent(); |
| if (BBA != BBB) return dominates(BBA, BBB); |
| |
| // Loop through the basic block until we find A or B. |
| BasicBlock::iterator I = BBA->begin(); |
| for (; *I != A && *I != B; ++I) /*empty*/; |
| |
| // A dominates B if it is found first in the basic block... |
| return *I == A; |
| } |
| |
| // calcForwardDominatorSet - This method calculates the forward dominator sets |
| // for the specified function. |
| // |
| void DominatorSet::calcForwardDominatorSet(Function *M) { |
| Root = M->getEntryNode(); |
| assert(pred_begin(Root) == pred_end(Root) && |
| "Root node has predecessors in function!"); |
| |
| bool Changed; |
| do { |
| Changed = false; |
| |
| DomSetType WorkingSet; |
| df_iterator<Function*> It = df_begin(M), End = df_end(M); |
| for ( ; It != End; ++It) { |
| BasicBlock *BB = *It; |
| pred_iterator PI = pred_begin(BB), PEnd = pred_end(BB); |
| if (PI != PEnd) { // Is there SOME predecessor? |
| // Loop until we get to a predecessor that has had it's dom set filled |
| // in at least once. We are guaranteed to have this because we are |
| // traversing the graph in DFO and have handled start nodes specially. |
| // |
| while (Doms[*PI].size() == 0) ++PI; |
| WorkingSet = Doms[*PI]; |
| |
| for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets |
| DomSetType &PredSet = Doms[*PI]; |
| if (PredSet.size()) |
| set_intersect(WorkingSet, PredSet); |
| } |
| } |
| |
| WorkingSet.insert(BB); // A block always dominates itself |
| DomSetType &BBSet = Doms[BB]; |
| if (BBSet != WorkingSet) { |
| BBSet.swap(WorkingSet); // Constant time operation! |
| Changed = true; // The sets changed. |
| } |
| WorkingSet.clear(); // Clear out the set for next iteration |
| } |
| } while (Changed); |
| } |
| |
| // Postdominator set constructor. This ctor converts the specified function to |
| // only have a single exit node (return stmt), then calculates the post |
| // dominance sets for the function. |
| // |
| void DominatorSet::calcPostDominatorSet(Function *F) { |
| // Since we require that the unify all exit nodes pass has been run, we know |
| // that there can be at most one return instruction in the function left. |
| // Get it. |
| // |
| Root = getAnalysis<UnifyFunctionExitNodes>().getExitNode(); |
| |
| if (Root == 0) { // No exit node for the function? Postdomsets are all empty |
| for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) |
| Doms[*FI] = DomSetType(); |
| return; |
| } |
| |
| bool Changed; |
| do { |
| Changed = false; |
| |
| set<const BasicBlock*> Visited; |
| DomSetType WorkingSet; |
| idf_iterator<BasicBlock*> It = idf_begin(Root), End = idf_end(Root); |
| for ( ; It != End; ++It) { |
| BasicBlock *BB = *It; |
| succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB); |
| if (PI != PEnd) { // Is there SOME predecessor? |
| // Loop until we get to a successor that has had it's dom set filled |
| // in at least once. We are guaranteed to have this because we are |
| // traversing the graph in DFO and have handled start nodes specially. |
| // |
| while (Doms[*PI].size() == 0) ++PI; |
| WorkingSet = Doms[*PI]; |
| |
| for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets |
| DomSetType &PredSet = Doms[*PI]; |
| if (PredSet.size()) |
| set_intersect(WorkingSet, PredSet); |
| } |
| } |
| |
| WorkingSet.insert(BB); // A block always dominates itself |
| DomSetType &BBSet = Doms[BB]; |
| if (BBSet != WorkingSet) { |
| BBSet.swap(WorkingSet); // Constant time operation! |
| Changed = true; // The sets changed. |
| } |
| WorkingSet.clear(); // Clear out the set for next iteration |
| } |
| } while (Changed); |
| } |
| |
| // getAnalysisUsage - This obviously provides a dominator set, but it also |
| // uses the UnifyFunctionExitNodes pass if building post-dominators |
| // |
| void DominatorSet::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| if (isPostDominator()) { |
| AU.addProvided(PostDomID); |
| AU.addRequired(UnifyFunctionExitNodes::ID); |
| } else { |
| AU.addProvided(ID); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // ImmediateDominators Implementation |
| //===----------------------------------------------------------------------===// |
| |
| AnalysisID ImmediateDominators::ID(AnalysisID::create<ImmediateDominators>(), true); |
| AnalysisID ImmediateDominators::PostDomID(AnalysisID::create<ImmediateDominators>(), true); |
| |
| // calcIDoms - Calculate the immediate dominator mapping, given a set of |
| // dominators for every basic block. |
| void ImmediateDominators::calcIDoms(const DominatorSet &DS) { |
| // Loop over all of the nodes that have dominators... figuring out the IDOM |
| // for each node... |
| // |
| for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); |
| DI != DEnd; ++DI) { |
| BasicBlock *BB = DI->first; |
| const DominatorSet::DomSetType &Dominators = DI->second; |
| unsigned DomSetSize = Dominators.size(); |
| if (DomSetSize == 1) continue; // Root node... IDom = null |
| |
| // Loop over all dominators of this node. This corresponds to looping over |
| // nodes in the dominator chain, looking for a node whose dominator set is |
| // equal to the current nodes, except that the current node does not exist |
| // in it. This means that it is one level higher in the dom chain than the |
| // current node, and it is our idom! |
| // |
| DominatorSet::DomSetType::const_iterator I = Dominators.begin(); |
| DominatorSet::DomSetType::const_iterator End = Dominators.end(); |
| for (; I != End; ++I) { // Iterate over dominators... |
| // All of our dominators should form a chain, where the number of elements |
| // in the dominator set indicates what level the node is at in the chain. |
| // We want the node immediately above us, so it will have an identical |
| // dominator set, except that BB will not dominate it... therefore it's |
| // dominator set size will be one less than BB's... |
| // |
| if (DS.getDominators(*I).size() == DomSetSize - 1) { |
| IDoms[BB] = *I; |
| break; |
| } |
| } |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // DominatorTree Implementation |
| //===----------------------------------------------------------------------===// |
| |
| AnalysisID DominatorTree::ID(AnalysisID::create<DominatorTree>(), true); |
| AnalysisID DominatorTree::PostDomID(AnalysisID::create<DominatorTree>(), true); |
| |
| // DominatorTree::reset - Free all of the tree node memory. |
| // |
| void DominatorTree::reset() { |
| for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) |
| delete I->second; |
| Nodes.clear(); |
| } |
| |
| |
| #if 0 |
| // Given immediate dominators, we can also calculate the dominator tree |
| DominatorTree::DominatorTree(const ImmediateDominators &IDoms) |
| : DominatorBase(IDoms.getRoot()) { |
| const Function *M = Root->getParent(); |
| |
| Nodes[Root] = new Node(Root, 0); // Add a node for the root... |
| |
| // Iterate over all nodes in depth first order... |
| for (df_iterator<const Function*> I = df_begin(M), E = df_end(M); I!=E; ++I) { |
| const BasicBlock *BB = *I, *IDom = IDoms[*I]; |
| |
| if (IDom != 0) { // Ignore the root node and other nasty nodes |
| // We know that the immediate dominator should already have a node, |
| // because we are traversing the CFG in depth first order! |
| // |
| assert(Nodes[IDom] && "No node for IDOM?"); |
| Node *IDomNode = Nodes[IDom]; |
| |
| // Add a new tree node for this BasicBlock, and link it as a child of |
| // IDomNode |
| Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); |
| } |
| } |
| } |
| #endif |
| |
| void DominatorTree::calculate(const DominatorSet &DS) { |
| Nodes[Root] = new Node(Root, 0); // Add a node for the root... |
| |
| if (!isPostDominator()) { |
| // Iterate over all nodes in depth first order... |
| for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root); |
| I != E; ++I) { |
| BasicBlock *BB = *I; |
| const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); |
| unsigned DomSetSize = Dominators.size(); |
| if (DomSetSize == 1) continue; // Root node... IDom = null |
| |
| // Loop over all dominators of this node. This corresponds to looping over |
| // nodes in the dominator chain, looking for a node whose dominator set is |
| // equal to the current nodes, except that the current node does not exist |
| // in it. This means that it is one level higher in the dom chain than the |
| // current node, and it is our idom! We know that we have already added |
| // a DominatorTree node for our idom, because the idom must be a |
| // predecessor in the depth first order that we are iterating through the |
| // function. |
| // |
| DominatorSet::DomSetType::const_iterator I = Dominators.begin(); |
| DominatorSet::DomSetType::const_iterator End = Dominators.end(); |
| for (; I != End; ++I) { // Iterate over dominators... |
| // All of our dominators should form a chain, where the number of |
| // elements in the dominator set indicates what level the node is at in |
| // the chain. We want the node immediately above us, so it will have |
| // an identical dominator set, except that BB will not dominate it... |
| // therefore it's dominator set size will be one less than BB's... |
| // |
| if (DS.getDominators(*I).size() == DomSetSize - 1) { |
| // We know that the immediate dominator should already have a node, |
| // because we are traversing the CFG in depth first order! |
| // |
| Node *IDomNode = Nodes[*I]; |
| assert(IDomNode && "No node for IDOM?"); |
| |
| // Add a new tree node for this BasicBlock, and link it as a child of |
| // IDomNode |
| Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); |
| break; |
| } |
| } |
| } |
| } else if (Root) { |
| // Iterate over all nodes in depth first order... |
| for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root); |
| I != E; ++I) { |
| BasicBlock *BB = *I; |
| const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); |
| unsigned DomSetSize = Dominators.size(); |
| if (DomSetSize == 1) continue; // Root node... IDom = null |
| |
| // Loop over all dominators of this node. This corresponds to looping |
| // over nodes in the dominator chain, looking for a node whose dominator |
| // set is equal to the current nodes, except that the current node does |
| // not exist in it. This means that it is one level higher in the dom |
| // chain than the current node, and it is our idom! We know that we have |
| // already added a DominatorTree node for our idom, because the idom must |
| // be a predecessor in the depth first order that we are iterating through |
| // the function. |
| // |
| DominatorSet::DomSetType::const_iterator I = Dominators.begin(); |
| DominatorSet::DomSetType::const_iterator End = Dominators.end(); |
| for (; I != End; ++I) { // Iterate over dominators... |
| // All of our dominators should form a chain, where the number |
| // of elements in the dominator set indicates what level the |
| // node is at in the chain. We want the node immediately |
| // above us, so it will have an identical dominator set, |
| // except that BB will not dominate it... therefore it's |
| // dominator set size will be one less than BB's... |
| // |
| if (DS.getDominators(*I).size() == DomSetSize - 1) { |
| // We know that the immediate dominator should already have a node, |
| // because we are traversing the CFG in depth first order! |
| // |
| Node *IDomNode = Nodes[*I]; |
| assert(IDomNode && "No node for IDOM?"); |
| |
| // Add a new tree node for this BasicBlock, and link it as a child of |
| // IDomNode |
| Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // DominanceFrontier Implementation |
| //===----------------------------------------------------------------------===// |
| |
| AnalysisID DominanceFrontier::ID(AnalysisID::create<DominanceFrontier>(), true); |
| AnalysisID DominanceFrontier::PostDomID(AnalysisID::create<DominanceFrontier>(), true); |
| |
| const DominanceFrontier::DomSetType & |
| DominanceFrontier::calcDomFrontier(const DominatorTree &DT, |
| const DominatorTree::Node *Node) { |
| // Loop over CFG successors to calculate DFlocal[Node] |
| BasicBlock *BB = Node->getNode(); |
| DomSetType &S = Frontiers[BB]; // The new set to fill in... |
| |
| for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); |
| SI != SE; ++SI) { |
| // Does Node immediately dominate this successor? |
| if (DT[*SI]->getIDom() != Node) |
| S.insert(*SI); |
| } |
| |
| // At this point, S is DFlocal. Now we union in DFup's of our children... |
| // Loop through and visit the nodes that Node immediately dominates (Node's |
| // children in the IDomTree) |
| // |
| for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); |
| NI != NE; ++NI) { |
| DominatorTree::Node *IDominee = *NI; |
| const DomSetType &ChildDF = calcDomFrontier(DT, IDominee); |
| |
| DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); |
| for (; CDFI != CDFE; ++CDFI) { |
| if (!Node->dominates(DT[*CDFI])) |
| S.insert(*CDFI); |
| } |
| } |
| |
| return S; |
| } |
| |
| const DominanceFrontier::DomSetType & |
| DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT, |
| const DominatorTree::Node *Node) { |
| // Loop over CFG successors to calculate DFlocal[Node] |
| BasicBlock *BB = Node->getNode(); |
| DomSetType &S = Frontiers[BB]; // The new set to fill in... |
| if (!Root) return S; |
| |
| for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB); |
| SI != SE; ++SI) { |
| // Does Node immediately dominate this predeccessor? |
| if (DT[*SI]->getIDom() != Node) |
| S.insert(*SI); |
| } |
| |
| // At this point, S is DFlocal. Now we union in DFup's of our children... |
| // Loop through and visit the nodes that Node immediately dominates (Node's |
| // children in the IDomTree) |
| // |
| for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); |
| NI != NE; ++NI) { |
| DominatorTree::Node *IDominee = *NI; |
| const DomSetType &ChildDF = calcPostDomFrontier(DT, IDominee); |
| |
| DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); |
| for (; CDFI != CDFE; ++CDFI) { |
| if (!Node->dominates(DT[*CDFI])) |
| S.insert(*CDFI); |
| } |
| } |
| |
| return S; |
| } |