| //===-- llvmAsmParser.y - Parser for llvm assembly files ---------*- C++ -*--=// | 
 | // | 
 | //  This file implements the bison parser for LLVM assembly languages files. | 
 | // | 
 | //===------------------------------------------------------------------------=// | 
 |  | 
 | %{ | 
 | #include "ParserInternals.h" | 
 | #include "llvm/Assembly/Parser.h" | 
 | #include "llvm/SymbolTable.h" | 
 | #include "llvm/Module.h" | 
 | #include "llvm/GlobalVariable.h" | 
 | #include "llvm/Method.h" | 
 | #include "llvm/BasicBlock.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/iTerminators.h" | 
 | #include "llvm/iMemory.h" | 
 | #include "llvm/iPHINode.h" | 
 | #include "Support/STLExtras.h" | 
 | #include "Support/DepthFirstIterator.h" | 
 | #include <list> | 
 | #include <utility>            // Get definition of pair class | 
 | #include <algorithm> | 
 | #include <stdio.h>            // This embarasment is due to our flex lexer... | 
 | #include <iostream> | 
 | using std::list; | 
 | using std::vector; | 
 | using std::pair; | 
 | using std::map; | 
 | using std::pair; | 
 | using std::make_pair; | 
 | using std::cerr; | 
 | using std::string; | 
 |  | 
 | int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit | 
 | int yylex();                       // declaration" of xxx warnings. | 
 | int yyparse(); | 
 |  | 
 | static Module *ParserResult; | 
 | string CurFilename; | 
 |  | 
 | // DEBUG_UPREFS - Define this symbol if you want to enable debugging output | 
 | // relating to upreferences in the input stream. | 
 | // | 
 | //#define DEBUG_UPREFS 1 | 
 | #ifdef DEBUG_UPREFS | 
 | #define UR_OUT(X) cerr << X | 
 | #else | 
 | #define UR_OUT(X) | 
 | #endif | 
 |  | 
 | // This contains info used when building the body of a method.  It is destroyed | 
 | // when the method is completed. | 
 | // | 
 | typedef vector<Value *> ValueList;           // Numbered defs | 
 | static void ResolveDefinitions(vector<ValueList> &LateResolvers, | 
 |                                vector<ValueList> *FutureLateResolvers = 0); | 
 |  | 
 | static struct PerModuleInfo { | 
 |   Module *CurrentModule; | 
 |   vector<ValueList>    Values;     // Module level numbered definitions | 
 |   vector<ValueList>    LateResolveValues; | 
 |   vector<PATypeHolder<Type> > Types; | 
 |   map<ValID, PATypeHolder<Type> > LateResolveTypes; | 
 |  | 
 |   // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward | 
 |   // references to global values.  Global values may be referenced before they | 
 |   // are defined, and if so, the temporary object that they represent is held | 
 |   // here.  This is used for forward references of ConstantPointerRefs. | 
 |   // | 
 |   typedef map<pair<const PointerType *, ValID>, GlobalVariable*> GlobalRefsType; | 
 |   GlobalRefsType GlobalRefs; | 
 |  | 
 |   void ModuleDone() { | 
 |     // If we could not resolve some methods at method compilation time (calls to | 
 |     // methods before they are defined), resolve them now...  Types are resolved | 
 |     // when the constant pool has been completely parsed. | 
 |     // | 
 |     ResolveDefinitions(LateResolveValues); | 
 |  | 
 |     // Check to make sure that all global value forward references have been | 
 |     // resolved! | 
 |     // | 
 |     if (!GlobalRefs.empty()) { | 
 |       // TODO: Make this more detailed! Loop over each undef value and print | 
 |       // info | 
 |       ThrowException("TODO: Make better error - Unresolved forward constant " | 
 |                      "references exist!"); | 
 |     } | 
 |  | 
 |     Values.clear();         // Clear out method local definitions | 
 |     Types.clear(); | 
 |     CurrentModule = 0; | 
 |   } | 
 |  | 
 |  | 
 |   // DeclareNewGlobalValue - Called every type a new GV has been defined.  This | 
 |   // is used to remove things from the forward declaration map, resolving them | 
 |   // to the correct thing as needed. | 
 |   // | 
 |   void DeclareNewGlobalValue(GlobalValue *GV, ValID D) { | 
 |     // Check to see if there is a forward reference to this global variable... | 
 |     // if there is, eliminate it and patch the reference to use the new def'n. | 
 |     GlobalRefsType::iterator I = GlobalRefs.find(make_pair(GV->getType(), D)); | 
 |  | 
 |     if (I != GlobalRefs.end()) { | 
 |       GlobalVariable *OldGV = I->second;   // Get the placeholder... | 
 |       I->first.second.destroy();  // Free string memory if neccesary | 
 |        | 
 |       // Loop over all of the uses of the GlobalValue.  The only thing they are | 
 |       // allowed to be at this point is ConstantPointerRef's. | 
 |       assert(OldGV->use_size() == 1 && "Only one reference should exist!"); | 
 |       while (!OldGV->use_empty()) { | 
 | 	User *U = OldGV->use_back();  // Must be a ConstantPointerRef... | 
 | 	ConstantPointerRef *CPPR = cast<ConstantPointerRef>(U); | 
 | 	assert(CPPR->getValue() == OldGV && "Something isn't happy"); | 
 | 	 | 
 | 	// Change the const pool reference to point to the real global variable | 
 | 	// now.  This should drop a use from the OldGV. | 
 | 	CPPR->mutateReference(GV); | 
 |       } | 
 |      | 
 |       // Remove GV from the module... | 
 |       CurrentModule->getGlobalList().remove(OldGV); | 
 |       delete OldGV;                        // Delete the old placeholder | 
 |  | 
 |       // Remove the map entry for the global now that it has been created... | 
 |       GlobalRefs.erase(I); | 
 |     } | 
 |   } | 
 |  | 
 | } CurModule; | 
 |  | 
 | static struct PerMethodInfo { | 
 |   Method *CurrentMethod;         // Pointer to current method being created | 
 |  | 
 |   vector<ValueList> Values;      // Keep track of numbered definitions | 
 |   vector<ValueList> LateResolveValues; | 
 |   vector<PATypeHolder<Type> > Types; | 
 |   map<ValID, PATypeHolder<Type> > LateResolveTypes; | 
 |   bool isDeclare;                // Is this method a forward declararation? | 
 |  | 
 |   inline PerMethodInfo() { | 
 |     CurrentMethod = 0; | 
 |     isDeclare = false; | 
 |   } | 
 |  | 
 |   inline ~PerMethodInfo() {} | 
 |  | 
 |   inline void MethodStart(Method *M) { | 
 |     CurrentMethod = M; | 
 |   } | 
 |  | 
 |   void MethodDone() { | 
 |     // If we could not resolve some blocks at parsing time (forward branches) | 
 |     // resolve the branches now... | 
 |     ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues); | 
 |  | 
 |     Values.clear();         // Clear out method local definitions | 
 |     Types.clear(); | 
 |     CurrentMethod = 0; | 
 |     isDeclare = false; | 
 |   } | 
 | } CurMeth;  // Info for the current method... | 
 |  | 
 | static bool inMethodScope() { return CurMeth.CurrentMethod != 0; } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //               Code to handle definitions of all the types | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static int InsertValue(Value *D, vector<ValueList> &ValueTab = CurMeth.Values) { | 
 |   if (D->hasName()) return -1;           // Is this a numbered definition? | 
 |  | 
 |   // Yes, insert the value into the value table... | 
 |   unsigned type = D->getType()->getUniqueID(); | 
 |   if (ValueTab.size() <= type) | 
 |     ValueTab.resize(type+1, ValueList()); | 
 |   //printf("Values[%d][%d] = %d\n", type, ValueTab[type].size(), D); | 
 |   ValueTab[type].push_back(D); | 
 |   return ValueTab[type].size()-1; | 
 | } | 
 |  | 
 | // TODO: FIXME when Type are not const | 
 | static void InsertType(const Type *Ty, vector<PATypeHolder<Type> > &Types) { | 
 |   Types.push_back(Ty); | 
 | } | 
 |  | 
 | static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) { | 
 |   switch (D.Type) { | 
 |   case 0: {                 // Is it a numbered definition? | 
 |     unsigned Num = (unsigned)D.Num; | 
 |  | 
 |     // Module constants occupy the lowest numbered slots... | 
 |     if (Num < CurModule.Types.size())  | 
 |       return CurModule.Types[Num]; | 
 |  | 
 |     Num -= CurModule.Types.size(); | 
 |  | 
 |     // Check that the number is within bounds... | 
 |     if (Num <= CurMeth.Types.size()) | 
 |       return CurMeth.Types[Num]; | 
 |     break; | 
 |   } | 
 |   case 1: {                // Is it a named definition? | 
 |     string Name(D.Name); | 
 |     SymbolTable *SymTab = 0; | 
 |     if (inMethodScope()) SymTab = CurMeth.CurrentMethod->getSymbolTable(); | 
 |     Value *N = SymTab ? SymTab->lookup(Type::TypeTy, Name) : 0; | 
 |  | 
 |     if (N == 0) { | 
 |       // Symbol table doesn't automatically chain yet... because the method | 
 |       // hasn't been added to the module... | 
 |       // | 
 |       SymTab = CurModule.CurrentModule->getSymbolTable(); | 
 |       if (SymTab) | 
 |         N = SymTab->lookup(Type::TypeTy, Name); | 
 |       if (N == 0) break; | 
 |     } | 
 |  | 
 |     D.destroy();  // Free old strdup'd memory... | 
 |     return cast<const Type>(N); | 
 |   } | 
 |   default: | 
 |     ThrowException("Invalid symbol type reference!"); | 
 |   } | 
 |  | 
 |   // If we reached here, we referenced either a symbol that we don't know about | 
 |   // or an id number that hasn't been read yet.  We may be referencing something | 
 |   // forward, so just create an entry to be resolved later and get to it... | 
 |   // | 
 |   if (DoNotImprovise) return 0;  // Do we just want a null to be returned? | 
 |  | 
 |   map<ValID, PATypeHolder<Type> > &LateResolver = inMethodScope() ?  | 
 |     CurMeth.LateResolveTypes : CurModule.LateResolveTypes; | 
 |    | 
 |   map<ValID, PATypeHolder<Type> >::iterator I = LateResolver.find(D); | 
 |   if (I != LateResolver.end()) { | 
 |     return I->second; | 
 |   } | 
 |  | 
 |   Type *Typ = OpaqueType::get(); | 
 |   LateResolver.insert(make_pair(D, Typ)); | 
 |   return Typ; | 
 | } | 
 |  | 
 | static Value *lookupInSymbolTable(const Type *Ty, const string &Name) { | 
 |   SymbolTable *SymTab =  | 
 |     inMethodScope() ? CurMeth.CurrentMethod->getSymbolTable() : 0; | 
 |   Value *N = SymTab ? SymTab->lookup(Ty, Name) : 0; | 
 |  | 
 |   if (N == 0) { | 
 |     // Symbol table doesn't automatically chain yet... because the method | 
 |     // hasn't been added to the module... | 
 |     // | 
 |     SymTab = CurModule.CurrentModule->getSymbolTable(); | 
 |     if (SymTab) | 
 |       N = SymTab->lookup(Ty, Name); | 
 |   } | 
 |  | 
 |   return N; | 
 | } | 
 |  | 
 | // getValNonImprovising - Look up the value specified by the provided type and | 
 | // the provided ValID.  If the value exists and has already been defined, return | 
 | // it.  Otherwise return null. | 
 | // | 
 | static Value *getValNonImprovising(const Type *Ty, const ValID &D) { | 
 |   if (isa<MethodType>(Ty)) | 
 |     ThrowException("Methods are not values and must be referenced as pointers"); | 
 |  | 
 |   switch (D.Type) { | 
 |   case ValID::NumberVal: {                 // Is it a numbered definition? | 
 |     unsigned type = Ty->getUniqueID(); | 
 |     unsigned Num = (unsigned)D.Num; | 
 |  | 
 |     // Module constants occupy the lowest numbered slots... | 
 |     if (type < CurModule.Values.size()) { | 
 |       if (Num < CurModule.Values[type].size())  | 
 |         return CurModule.Values[type][Num]; | 
 |  | 
 |       Num -= CurModule.Values[type].size(); | 
 |     } | 
 |  | 
 |     // Make sure that our type is within bounds | 
 |     if (CurMeth.Values.size() <= type) return 0; | 
 |  | 
 |     // Check that the number is within bounds... | 
 |     if (CurMeth.Values[type].size() <= Num) return 0; | 
 |    | 
 |     return CurMeth.Values[type][Num]; | 
 |   } | 
 |  | 
 |   case ValID::NameVal: {                // Is it a named definition? | 
 |     Value *N = lookupInSymbolTable(Ty, string(D.Name)); | 
 |     if (N == 0) return 0; | 
 |  | 
 |     D.destroy();  // Free old strdup'd memory... | 
 |     return N; | 
 |   } | 
 |  | 
 |   // Check to make sure that "Ty" is an integral type, and that our  | 
 |   // value will fit into the specified type... | 
 |   case ValID::ConstSIntVal:    // Is it a constant pool reference?? | 
 |     if (Ty == Type::BoolTy) {  // Special handling for boolean data | 
 |       return ConstantBool::get(D.ConstPool64 != 0); | 
 |     } else { | 
 |       if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) | 
 | 	ThrowException("Symbolic constant pool value '" + | 
 | 		       itostr(D.ConstPool64) + "' is invalid for type '" +  | 
 | 		       Ty->getDescription() + "'!"); | 
 |       return ConstantSInt::get(Ty, D.ConstPool64); | 
 |     } | 
 |  | 
 |   case ValID::ConstUIntVal:     // Is it an unsigned const pool reference? | 
 |     if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) { | 
 |       if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) { | 
 | 	ThrowException("Integral constant pool reference is invalid!"); | 
 |       } else {     // This is really a signed reference.  Transmogrify. | 
 | 	return ConstantSInt::get(Ty, D.ConstPool64); | 
 |       } | 
 |     } else { | 
 |       return ConstantUInt::get(Ty, D.UConstPool64); | 
 |     } | 
 |  | 
 |   case ValID::ConstStringVal:    // Is it a string const pool reference? | 
 |     cerr << "FIXME: TODO: String constants [sbyte] not implemented yet!\n"; | 
 |     abort(); | 
 |     return 0; | 
 |  | 
 |   case ValID::ConstFPVal:        // Is it a floating point const pool reference? | 
 |     if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) | 
 |       ThrowException("FP constant invalid for type!!"); | 
 |     return ConstantFP::get(Ty, D.ConstPoolFP); | 
 |      | 
 |   case ValID::ConstNullVal:      // Is it a null value? | 
 |     if (!Ty->isPointerType()) | 
 |       ThrowException("Cannot create a a non pointer null!"); | 
 |     return ConstantPointerNull::get(cast<PointerType>(Ty)); | 
 |      | 
 |   default: | 
 |     assert(0 && "Unhandled case!"); | 
 |     return 0; | 
 |   }   // End of switch | 
 |  | 
 |   assert(0 && "Unhandled case!"); | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | // getVal - This function is identical to getValNonImprovising, except that if a | 
 | // value is not already defined, it "improvises" by creating a placeholder var | 
 | // that looks and acts just like the requested variable.  When the value is | 
 | // defined later, all uses of the placeholder variable are replaced with the | 
 | // real thing. | 
 | // | 
 | static Value *getVal(const Type *Ty, const ValID &D) { | 
 |   assert(Ty != Type::TypeTy && "Should use getTypeVal for types!"); | 
 |  | 
 |   // See if the value has already been defined... | 
 |   Value *V = getValNonImprovising(Ty, D); | 
 |   if (V) return V; | 
 |  | 
 |   // If we reached here, we referenced either a symbol that we don't know about | 
 |   // or an id number that hasn't been read yet.  We may be referencing something | 
 |   // forward, so just create an entry to be resolved later and get to it... | 
 |   // | 
 |   Value *d = 0; | 
 |   switch (Ty->getPrimitiveID()) { | 
 |   case Type::LabelTyID:  d = new   BBPlaceHolder(Ty, D); break; | 
 |   default:               d = new ValuePlaceHolder(Ty, D); break; | 
 |   } | 
 |  | 
 |   assert(d != 0 && "How did we not make something?"); | 
 |   if (inMethodScope()) | 
 |     InsertValue(d, CurMeth.LateResolveValues); | 
 |   else  | 
 |     InsertValue(d, CurModule.LateResolveValues); | 
 |   return d; | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //              Code to handle forward references in instructions | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This code handles the late binding needed with statements that reference | 
 | // values not defined yet... for example, a forward branch, or the PHI node for | 
 | // a loop body. | 
 | // | 
 | // This keeps a table (CurMeth.LateResolveValues) of all such forward references | 
 | // and back patchs after we are done. | 
 | // | 
 |  | 
 | // ResolveDefinitions - If we could not resolve some defs at parsing  | 
 | // time (forward branches, phi functions for loops, etc...) resolve the  | 
 | // defs now... | 
 | // | 
 | static void ResolveDefinitions(vector<ValueList> &LateResolvers, | 
 |                                vector<ValueList> *FutureLateResolvers = 0) { | 
 |   // Loop over LateResolveDefs fixing up stuff that couldn't be resolved | 
 |   for (unsigned ty = 0; ty < LateResolvers.size(); ty++) { | 
 |     while (!LateResolvers[ty].empty()) { | 
 |       Value *V = LateResolvers[ty].back(); | 
 |       assert(!isa<Type>(V) && "Types should be in LateResolveTypes!"); | 
 |  | 
 |       LateResolvers[ty].pop_back(); | 
 |       ValID &DID = getValIDFromPlaceHolder(V); | 
 |  | 
 |       Value *TheRealValue = getValNonImprovising(Type::getUniqueIDType(ty),DID); | 
 |       if (TheRealValue) { | 
 |         V->replaceAllUsesWith(TheRealValue); | 
 |         delete V; | 
 |       } else if (FutureLateResolvers) { | 
 |         // Methods have their unresolved items forwarded to the module late | 
 |         // resolver table | 
 |         InsertValue(V, *FutureLateResolvers); | 
 |       } else { | 
 | 	if (DID.Type == 1) | 
 | 	  ThrowException("Reference to an invalid definition: '" +DID.getName()+ | 
 | 			 "' of type '" + V->getType()->getDescription() + "'", | 
 | 			 getLineNumFromPlaceHolder(V)); | 
 | 	else | 
 | 	  ThrowException("Reference to an invalid definition: #" + | 
 | 			 itostr(DID.Num) + " of type '" +  | 
 | 			 V->getType()->getDescription() + "'", | 
 | 			 getLineNumFromPlaceHolder(V)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   LateResolvers.clear(); | 
 | } | 
 |  | 
 | // ResolveTypeTo - A brand new type was just declared.  This means that (if | 
 | // name is not null) things referencing Name can be resolved.  Otherwise, things | 
 | // refering to the number can be resolved.  Do this now. | 
 | // | 
 | static void ResolveTypeTo(char *Name, const Type *ToTy) { | 
 |   vector<PATypeHolder<Type> > &Types = inMethodScope() ?  | 
 |      CurMeth.Types : CurModule.Types; | 
 |  | 
 |    ValID D; | 
 |    if (Name) D = ValID::create(Name); | 
 |    else      D = ValID::create((int)Types.size()); | 
 |  | 
 |    map<ValID, PATypeHolder<Type> > &LateResolver = inMethodScope() ?  | 
 |      CurMeth.LateResolveTypes : CurModule.LateResolveTypes; | 
 |    | 
 |    map<ValID, PATypeHolder<Type> >::iterator I = LateResolver.find(D); | 
 |    if (I != LateResolver.end()) { | 
 |      cast<DerivedType>(I->second.get())->refineAbstractTypeTo(ToTy); | 
 |      LateResolver.erase(I); | 
 |    } | 
 | } | 
 |  | 
 | // ResolveTypes - At this point, all types should be resolved.  Any that aren't | 
 | // are errors. | 
 | // | 
 | static void ResolveTypes(map<ValID, PATypeHolder<Type> > &LateResolveTypes) { | 
 |   if (!LateResolveTypes.empty()) { | 
 |     const ValID &DID = LateResolveTypes.begin()->first; | 
 |  | 
 |     if (DID.Type == ValID::NameVal) | 
 |       ThrowException("Reference to an invalid type: '" +DID.getName() + "'"); | 
 |     else | 
 |       ThrowException("Reference to an invalid type: #" + itostr(DID.Num)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // setValueName - Set the specified value to the name given.  The name may be | 
 | // null potentially, in which case this is a noop.  The string passed in is | 
 | // assumed to be a malloc'd string buffer, and is freed by this function. | 
 | // | 
 | // This function returns true if the value has already been defined, but is | 
 | // allowed to be redefined in the specified context.  If the name is a new name | 
 | // for the typeplane, false is returned. | 
 | // | 
 | static bool setValueName(Value *V, char *NameStr) { | 
 |   if (NameStr == 0) return false; | 
 |    | 
 |   string Name(NameStr);           // Copy string | 
 |   free(NameStr);                  // Free old string | 
 |  | 
 |   if (V->getType() == Type::VoidTy)  | 
 |     ThrowException("Can't assign name '" + Name +  | 
 | 		   "' to a null valued instruction!"); | 
 |  | 
 |   SymbolTable *ST = inMethodScope() ?  | 
 |     CurMeth.CurrentMethod->getSymbolTableSure() :  | 
 |     CurModule.CurrentModule->getSymbolTableSure(); | 
 |  | 
 |   Value *Existing = ST->lookup(V->getType(), Name); | 
 |   if (Existing) {    // Inserting a name that is already defined??? | 
 |     // There is only one case where this is allowed: when we are refining an | 
 |     // opaque type.  In this case, Existing will be an opaque type. | 
 |     if (const Type *Ty = dyn_cast<const Type>(Existing)) { | 
 |       if (OpaqueType *OpTy = dyn_cast<OpaqueType>(Ty)) { | 
 | 	// We ARE replacing an opaque type! | 
 | 	OpTy->refineAbstractTypeTo(cast<Type>(V)); | 
 | 	return true; | 
 |       } | 
 |     } | 
 |  | 
 |     // Otherwise, we are a simple redefinition of a value, check to see if it | 
 |     // is defined the same as the old one... | 
 |     if (const Type *Ty = dyn_cast<const Type>(Existing)) { | 
 |       if (Ty == cast<const Type>(V)) return true;  // Yes, it's equal. | 
 |       // cerr << "Type: " << Ty->getDescription() << " != " | 
 |       //      << cast<const Type>(V)->getDescription() << "!\n"; | 
 |     } else if (GlobalVariable *EGV = dyn_cast<GlobalVariable>(Existing)) { | 
 |       // We are allowed to redefine a global variable in two circumstances: | 
 |       // 1. If at least one of the globals is uninitialized or  | 
 |       // 2. If both initializers have the same value. | 
 |       // | 
 |       // This can only be done if the const'ness of the vars is the same. | 
 |       // | 
 |       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { | 
 |         if (EGV->isConstant() == GV->isConstant() && | 
 |             (!EGV->hasInitializer() || !GV->hasInitializer() || | 
 |              EGV->getInitializer() == GV->getInitializer())) { | 
 |  | 
 |           // Make sure the existing global version gets the initializer! | 
 |           if (GV->hasInitializer() && !EGV->hasInitializer()) | 
 |             EGV->setInitializer(GV->getInitializer()); | 
 |            | 
 | 	  delete GV;     // Destroy the duplicate! | 
 |           return true;   // They are equivalent! | 
 |         } | 
 |       } | 
 |     } | 
 |     ThrowException("Redefinition of value named '" + Name + "' in the '" + | 
 | 		   V->getType()->getDescription() + "' type plane!"); | 
 |   } | 
 |  | 
 |   V->setName(Name, ST); | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Code for handling upreferences in type names... | 
 | // | 
 |  | 
 | // TypeContains - Returns true if Ty contains E in it. | 
 | // | 
 | static bool TypeContains(const Type *Ty, const Type *E) { | 
 |   return find(df_begin(Ty), df_end(Ty), E) != df_end(Ty); | 
 | } | 
 |  | 
 |  | 
 | static vector<pair<unsigned, OpaqueType *> > UpRefs; | 
 |  | 
 | static PATypeHolder<Type> HandleUpRefs(const Type *ty) { | 
 |   PATypeHolder<Type> Ty(ty); | 
 |   UR_OUT("Type '" << ty->getDescription() <<  | 
 |          "' newly formed.  Resolving upreferences.\n" << | 
 |          UpRefs.size() << " upreferences active!\n"); | 
 |   for (unsigned i = 0; i < UpRefs.size(); ) { | 
 |     UR_OUT("  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "  | 
 | 	   << UpRefs[i].second->getDescription() << ") = "  | 
 | 	   << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << endl); | 
 |     if (TypeContains(Ty, UpRefs[i].second)) { | 
 |       unsigned Level = --UpRefs[i].first;   // Decrement level of upreference | 
 |       UR_OUT("  Uplevel Ref Level = " << Level << endl); | 
 |       if (Level == 0) {                     // Upreference should be resolved!  | 
 | 	UR_OUT("  * Resolving upreference for " | 
 |                << UpRefs[i].second->getDescription() << endl; | 
 | 	       string OldName = UpRefs[i].second->getDescription()); | 
 | 	UpRefs[i].second->refineAbstractTypeTo(Ty); | 
 | 	UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list... | 
 | 	UR_OUT("  * Type '" << OldName << "' refined upreference to: " | 
 | 	       << (const void*)Ty << ", " << Ty->getDescription() << endl); | 
 | 	continue; | 
 |       } | 
 |     } | 
 |  | 
 |     ++i;                                  // Otherwise, no resolve, move on... | 
 |   } | 
 |   // FIXME: TODO: this should return the updated type | 
 |   return Ty; | 
 | } | 
 |  | 
 | template <class TypeTy> | 
 | inline static void TypeDone(PATypeHolder<TypeTy> *Ty) { | 
 |   if (UpRefs.size()) | 
 |     ThrowException("Invalid upreference in type: " + (*Ty)->getDescription()); | 
 | } | 
 |  | 
 | // newTH - Allocate a new type holder for the specified type | 
 | template <class TypeTy> | 
 | inline static PATypeHolder<TypeTy> *newTH(const TypeTy *Ty) { | 
 |   return new PATypeHolder<TypeTy>(Ty); | 
 | } | 
 | template <class TypeTy> | 
 | inline static PATypeHolder<TypeTy> *newTH(const PATypeHolder<TypeTy> &TH) { | 
 |   return new PATypeHolder<TypeTy>(TH); | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //            RunVMAsmParser - Define an interface to this parser | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | Module *RunVMAsmParser(const string &Filename, FILE *F) { | 
 |   llvmAsmin = F; | 
 |   CurFilename = Filename; | 
 |   llvmAsmlineno = 1;      // Reset the current line number... | 
 |  | 
 |   CurModule.CurrentModule = new Module();  // Allocate a new module to read | 
 |   yyparse();       // Parse the file. | 
 |   Module *Result = ParserResult; | 
 |   llvmAsmin = stdin;    // F is about to go away, don't use it anymore... | 
 |   ParserResult = 0; | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | %} | 
 |  | 
 | %union { | 
 |   Module                           *ModuleVal; | 
 |   Method                           *MethodVal; | 
 |   MethodArgument                   *MethArgVal; | 
 |   BasicBlock                       *BasicBlockVal; | 
 |   TerminatorInst                   *TermInstVal; | 
 |   Instruction                      *InstVal; | 
 |   Constant                         *ConstVal; | 
 |  | 
 |   const Type                       *PrimType; | 
 |   PATypeHolder<Type>               *TypeVal; | 
 |   Value                            *ValueVal; | 
 |  | 
 |   std::list<MethodArgument*>       *MethodArgList; | 
 |   std::vector<Value*>              *ValueList; | 
 |   std::list<PATypeHolder<Type> >   *TypeList; | 
 |   std::list<std::pair<Value*, | 
 |                       BasicBlock*> > *PHIList; // Represent the RHS of PHI node | 
 |   std::list<std::pair<Constant*, BasicBlock*> > *JumpTable; | 
 |   std::vector<Constant*>           *ConstVector; | 
 |  | 
 |   int64_t                           SInt64Val; | 
 |   uint64_t                          UInt64Val; | 
 |   int                               SIntVal; | 
 |   unsigned                          UIntVal; | 
 |   double                            FPVal; | 
 |   bool                              BoolVal; | 
 |  | 
 |   char                             *StrVal;   // This memory is strdup'd! | 
 |   ValID                             ValIDVal; // strdup'd memory maybe! | 
 |  | 
 |   Instruction::UnaryOps             UnaryOpVal; | 
 |   Instruction::BinaryOps            BinaryOpVal; | 
 |   Instruction::TermOps              TermOpVal; | 
 |   Instruction::MemoryOps            MemOpVal; | 
 |   Instruction::OtherOps             OtherOpVal; | 
 | } | 
 |  | 
 | %type <ModuleVal>     Module MethodList | 
 | %type <MethodVal>     Method MethodProto MethodHeader BasicBlockList | 
 | %type <BasicBlockVal> BasicBlock InstructionList | 
 | %type <TermInstVal>   BBTerminatorInst | 
 | %type <InstVal>       Inst InstVal MemoryInst | 
 | %type <ConstVal>      ConstVal | 
 | %type <ConstVector>   ConstVector | 
 | %type <MethodArgList> ArgList ArgListH | 
 | %type <MethArgVal>    ArgVal | 
 | %type <PHIList>       PHIList | 
 | %type <ValueList>     ValueRefList ValueRefListE  // For call param lists | 
 | %type <ValueList>     IndexList                   // For GEP derived indices | 
 | %type <TypeList>      TypeListI ArgTypeListI | 
 | %type <JumpTable>     JumpTable | 
 | %type <BoolVal>       GlobalType OptInternal      // GLOBAL or CONSTANT? Intern? | 
 |  | 
 | // ValueRef - Unresolved reference to a definition or BB | 
 | %type <ValIDVal>      ValueRef ConstValueRef SymbolicValueRef | 
 | %type <ValueVal>      ResolvedVal            // <type> <valref> pair | 
 | // Tokens and types for handling constant integer values | 
 | // | 
 | // ESINT64VAL - A negative number within long long range | 
 | %token <SInt64Val> ESINT64VAL | 
 |  | 
 | // EUINT64VAL - A positive number within uns. long long range | 
 | %token <UInt64Val> EUINT64VAL | 
 | %type  <SInt64Val> EINT64VAL | 
 |  | 
 | %token  <SIntVal>   SINTVAL   // Signed 32 bit ints... | 
 | %token  <UIntVal>   UINTVAL   // Unsigned 32 bit ints... | 
 | %type   <SIntVal>   INTVAL | 
 | %token  <FPVal>     FPVAL     // Float or Double constant | 
 |  | 
 | // Built in types... | 
 | %type  <TypeVal> Types TypesV UpRTypes UpRTypesV | 
 | %type  <PrimType> SIntType UIntType IntType FPType PrimType   // Classifications | 
 | %token <TypeVal>  OPAQUE | 
 | %token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG | 
 | %token <PrimType> FLOAT DOUBLE TYPE LABEL | 
 |  | 
 | %token <StrVal>     VAR_ID LABELSTR STRINGCONSTANT | 
 | %type  <StrVal>  OptVAR_ID OptAssign | 
 |  | 
 |  | 
 | %token IMPLEMENTATION TRUE FALSE BEGINTOK END DECLARE GLOBAL CONSTANT UNINIT | 
 | %token TO EXCEPT DOTDOTDOT STRING NULL_TOK CONST INTERNAL | 
 |  | 
 | // Basic Block Terminating Operators  | 
 | %token <TermOpVal> RET BR SWITCH | 
 |  | 
 | // Unary Operators  | 
 | %type  <UnaryOpVal> UnaryOps  // all the unary operators | 
 | %token <UnaryOpVal> NOT | 
 |  | 
 | // Binary Operators  | 
 | %type  <BinaryOpVal> BinaryOps  // all the binary operators | 
 | %token <BinaryOpVal> ADD SUB MUL DIV REM AND OR XOR | 
 | %token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE  // Binary Comarators | 
 |  | 
 | // Memory Instructions | 
 | %token <MemoryOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR | 
 |  | 
 | // Other Operators | 
 | %type  <OtherOpVal> ShiftOps | 
 | %token <OtherOpVal> PHI CALL INVOKE CAST SHL SHR | 
 |  | 
 | %start Module | 
 | %% | 
 |  | 
 | // Handle constant integer size restriction and conversion... | 
 | // | 
 |  | 
 | INTVAL : SINTVAL | 
 | INTVAL : UINTVAL { | 
 |   if ($1 > (uint32_t)INT32_MAX)     // Outside of my range! | 
 |     ThrowException("Value too large for type!"); | 
 |   $$ = (int32_t)$1; | 
 | } | 
 |  | 
 |  | 
 | EINT64VAL : ESINT64VAL       // These have same type and can't cause problems... | 
 | EINT64VAL : EUINT64VAL { | 
 |   if ($1 > (uint64_t)INT64_MAX)     // Outside of my range! | 
 |     ThrowException("Value too large for type!"); | 
 |   $$ = (int64_t)$1; | 
 | } | 
 |  | 
 | // Operations that are notably excluded from this list include:  | 
 | // RET, BR, & SWITCH because they end basic blocks and are treated specially. | 
 | // | 
 | UnaryOps  : NOT | 
 | BinaryOps : ADD | SUB | MUL | DIV | REM | AND | OR | XOR | 
 | BinaryOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE | 
 | ShiftOps  : SHL | SHR | 
 |  | 
 | // These are some types that allow classification if we only want a particular  | 
 | // thing... for example, only a signed, unsigned, or integral type. | 
 | SIntType :  LONG |  INT |  SHORT | SBYTE | 
 | UIntType : ULONG | UINT | USHORT | UBYTE | 
 | IntType  : SIntType | UIntType | 
 | FPType   : FLOAT | DOUBLE | 
 |  | 
 | // OptAssign - Value producing statements have an optional assignment component | 
 | OptAssign : VAR_ID '=' { | 
 |     $$ = $1; | 
 |   } | 
 |   | /*empty*/ {  | 
 |     $$ = 0;  | 
 |   } | 
 |  | 
 | OptInternal : INTERNAL { $$ = true; } | /*empty*/ { $$ = false; } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Types includes all predefined types... except void, because it can only be | 
 | // used in specific contexts (method returning void for example).  To have | 
 | // access to it, a user must explicitly use TypesV. | 
 | // | 
 |  | 
 | // TypesV includes all of 'Types', but it also includes the void type. | 
 | TypesV    : Types    | VOID { $$ = newTH($1); } | 
 | UpRTypesV : UpRTypes | VOID { $$ = newTH($1); } | 
 |  | 
 | Types     : UpRTypes { | 
 |     TypeDone($$ = $1); | 
 |   } | 
 |  | 
 |  | 
 | // Derived types are added later... | 
 | // | 
 | PrimType : BOOL | SBYTE | UBYTE | SHORT  | USHORT | INT   | UINT  | 
 | PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE   | LABEL | 
 | UpRTypes : OPAQUE | PrimType { $$ = newTH($1); } | 
 | UpRTypes : ValueRef {                    // Named types are also simple types... | 
 |   $$ = newTH(getTypeVal($1)); | 
 | } | 
 |  | 
 | // Include derived types in the Types production. | 
 | // | 
 | UpRTypes : '\\' EUINT64VAL {                   // Type UpReference | 
 |     if ($2 > (uint64_t)INT64_MAX) ThrowException("Value out of range!"); | 
 |     OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder | 
 |     UpRefs.push_back(make_pair((unsigned)$2, OT));  // Add to vector... | 
 |     $$ = newTH<Type>(OT); | 
 |     UR_OUT("New Upreference!\n"); | 
 |   } | 
 |   | UpRTypesV '(' ArgTypeListI ')' {           // Method derived type? | 
 |     vector<const Type*> Params; | 
 |     mapto($3->begin(), $3->end(), std::back_inserter(Params),  | 
 | 	  std::mem_fun_ref(&PATypeHandle<Type>::get)); | 
 |     bool isVarArg = Params.size() && Params.back() == Type::VoidTy; | 
 |     if (isVarArg) Params.pop_back(); | 
 |  | 
 |     $$ = newTH(HandleUpRefs(MethodType::get(*$1, Params, isVarArg))); | 
 |     delete $3;      // Delete the argument list | 
 |     delete $1;      // Delete the old type handle | 
 |   } | 
 |   | '[' EUINT64VAL 'x' UpRTypes ']' {          // Sized array type? | 
 |     $$ = newTH<Type>(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2))); | 
 |     delete $4; | 
 |   } | 
 |   | '{' TypeListI '}' {                        // Structure type? | 
 |     vector<const Type*> Elements; | 
 |     mapto($2->begin(), $2->end(), std::back_inserter(Elements),  | 
 | 	std::mem_fun_ref(&PATypeHandle<Type>::get)); | 
 |  | 
 |     $$ = newTH<Type>(HandleUpRefs(StructType::get(Elements))); | 
 |     delete $2; | 
 |   } | 
 |   | '{' '}' {                                  // Empty structure type? | 
 |     $$ = newTH<Type>(StructType::get(vector<const Type*>())); | 
 |   } | 
 |   | UpRTypes '*' {                             // Pointer type? | 
 |     $$ = newTH<Type>(HandleUpRefs(PointerType::get(*$1))); | 
 |     delete $1; | 
 |   } | 
 |  | 
 | // TypeList - Used for struct declarations and as a basis for method type  | 
 | // declaration type lists | 
 | // | 
 | TypeListI : UpRTypes { | 
 |     $$ = new list<PATypeHolder<Type> >(); | 
 |     $$->push_back(*$1); delete $1; | 
 |   } | 
 |   | TypeListI ',' UpRTypes { | 
 |     ($$=$1)->push_back(*$3); delete $3; | 
 |   } | 
 |  | 
 | // ArgTypeList - List of types for a method type declaration... | 
 | ArgTypeListI : TypeListI | 
 |   | TypeListI ',' DOTDOTDOT { | 
 |     ($$=$1)->push_back(Type::VoidTy); | 
 |   } | 
 |   | DOTDOTDOT { | 
 |     ($$ = new list<PATypeHolder<Type> >())->push_back(Type::VoidTy); | 
 |   } | 
 |   | /*empty*/ { | 
 |     $$ = new list<PATypeHolder<Type> >(); | 
 |   } | 
 |  | 
 |  | 
 | // ConstVal - The various declarations that go into the constant pool.  This | 
 | // includes all forward declarations of types, constants, and functions. | 
 | // | 
 | ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr | 
 |     const ArrayType *ATy = dyn_cast<const ArrayType>($1->get()); | 
 |     if (ATy == 0) | 
 |       ThrowException("Cannot make array constant with type: '" +  | 
 |                      (*$1)->getDescription() + "'!"); | 
 |     const Type *ETy = ATy->getElementType(); | 
 |     int NumElements = ATy->getNumElements(); | 
 |  | 
 |     // Verify that we have the correct size... | 
 |     if (NumElements != -1 && NumElements != (int)$3->size()) | 
 |       ThrowException("Type mismatch: constant sized array initialized with " + | 
 | 		     utostr($3->size()) +  " arguments, but has size of " +  | 
 | 		     itostr(NumElements) + "!"); | 
 |  | 
 |     // Verify all elements are correct type! | 
 |     for (unsigned i = 0; i < $3->size(); i++) { | 
 |       if (ETy != (*$3)[i]->getType()) | 
 | 	ThrowException("Element #" + utostr(i) + " is not of type '" +  | 
 | 		       ETy->getDescription() +"' as required!\nIt is of type '"+ | 
 | 		       (*$3)[i]->getType()->getDescription() + "'."); | 
 |     } | 
 |  | 
 |     $$ = ConstantArray::get(ATy, *$3); | 
 |     delete $1; delete $3; | 
 |   } | 
 |   | Types '[' ']' { | 
 |     const ArrayType *ATy = dyn_cast<const ArrayType>($1->get()); | 
 |     if (ATy == 0) | 
 |       ThrowException("Cannot make array constant with type: '" +  | 
 |                      (*$1)->getDescription() + "'!"); | 
 |  | 
 |     int NumElements = ATy->getNumElements(); | 
 |     if (NumElements != -1 && NumElements != 0)  | 
 |       ThrowException("Type mismatch: constant sized array initialized with 0" | 
 | 		     " arguments, but has size of " + itostr(NumElements) +"!"); | 
 |     $$ = ConstantArray::get(ATy, vector<Constant*>()); | 
 |     delete $1; | 
 |   } | 
 |   | Types 'c' STRINGCONSTANT { | 
 |     const ArrayType *ATy = dyn_cast<const ArrayType>($1->get()); | 
 |     if (ATy == 0) | 
 |       ThrowException("Cannot make array constant with type: '" +  | 
 |                      (*$1)->getDescription() + "'!"); | 
 |  | 
 |     int NumElements = ATy->getNumElements(); | 
 |     const Type *ETy = ATy->getElementType(); | 
 |     char *EndStr = UnEscapeLexed($3, true); | 
 |     if (NumElements != -1 && NumElements != (EndStr-$3)) | 
 |       ThrowException("Can't build string constant of size " +  | 
 | 		     itostr((int)(EndStr-$3)) + | 
 | 		     " when array has size " + itostr(NumElements) + "!"); | 
 |     vector<Constant*> Vals; | 
 |     if (ETy == Type::SByteTy) { | 
 |       for (char *C = $3; C != EndStr; ++C) | 
 | 	Vals.push_back(ConstantSInt::get(ETy, *C)); | 
 |     } else if (ETy == Type::UByteTy) { | 
 |       for (char *C = $3; C != EndStr; ++C) | 
 | 	Vals.push_back(ConstantUInt::get(ETy, *C)); | 
 |     } else { | 
 |       free($3); | 
 |       ThrowException("Cannot build string arrays of non byte sized elements!"); | 
 |     } | 
 |     free($3); | 
 |     $$ = ConstantArray::get(ATy, Vals); | 
 |     delete $1; | 
 |   } | 
 |   | Types '{' ConstVector '}' { | 
 |     const StructType *STy = dyn_cast<const StructType>($1->get()); | 
 |     if (STy == 0) | 
 |       ThrowException("Cannot make struct constant with type: '" +  | 
 |                      (*$1)->getDescription() + "'!"); | 
 |     // FIXME: TODO: Check to see that the constants are compatible with the type | 
 |     // initializer! | 
 |     $$ = ConstantStruct::get(STy, *$3); | 
 |     delete $1; delete $3; | 
 |   } | 
 |   | Types NULL_TOK { | 
 |     const PointerType *PTy = dyn_cast<const PointerType>($1->get()); | 
 |     if (PTy == 0) | 
 |       ThrowException("Cannot make null pointer constant with type: '" +  | 
 |                      (*$1)->getDescription() + "'!"); | 
 |  | 
 |     $$ = ConstantPointerNull::get(PTy); | 
 |     delete $1; | 
 |   } | 
 |   | Types SymbolicValueRef { | 
 |     const PointerType *Ty = dyn_cast<const PointerType>($1->get()); | 
 |     if (Ty == 0) | 
 |       ThrowException("Global const reference must be a pointer type!"); | 
 |  | 
 |     Value *V = getValNonImprovising(Ty, $2); | 
 |  | 
 |     // If this is an initializer for a constant pointer, which is referencing a | 
 |     // (currently) undefined variable, create a stub now that shall be replaced | 
 |     // in the future with the right type of variable. | 
 |     // | 
 |     if (V == 0) { | 
 |       assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!"); | 
 |       const PointerType *PT = cast<PointerType>(Ty); | 
 |  | 
 |       // First check to see if the forward references value is already created! | 
 |       PerModuleInfo::GlobalRefsType::iterator I = | 
 | 	CurModule.GlobalRefs.find(make_pair(PT, $2)); | 
 |      | 
 |       if (I != CurModule.GlobalRefs.end()) { | 
 | 	V = I->second;             // Placeholder already exists, use it... | 
 |       } else { | 
 | 	// TODO: Include line number info by creating a subclass of | 
 | 	// TODO: GlobalVariable here that includes the said information! | 
 | 	 | 
 | 	// Create a placeholder for the global variable reference... | 
 | 	GlobalVariable *GV = new GlobalVariable(PT->getElementType(), | 
 |                                                 false, true); | 
 | 	// Keep track of the fact that we have a forward ref to recycle it | 
 | 	CurModule.GlobalRefs.insert(make_pair(make_pair(PT, $2), GV)); | 
 |  | 
 | 	// Must temporarily push this value into the module table... | 
 | 	CurModule.CurrentModule->getGlobalList().push_back(GV); | 
 | 	V = GV; | 
 |       } | 
 |     } | 
 |  | 
 |     GlobalValue *GV = cast<GlobalValue>(V); | 
 |     $$ = ConstantPointerRef::get(GV); | 
 |     delete $1;            // Free the type handle | 
 |   } | 
 |  | 
 |  | 
 | ConstVal : SIntType EINT64VAL {     // integral constants | 
 |     if (!ConstantSInt::isValueValidForType($1, $2)) | 
 |       ThrowException("Constant value doesn't fit in type!"); | 
 |     $$ = ConstantSInt::get($1, $2); | 
 |   }  | 
 |   | UIntType EUINT64VAL {           // integral constants | 
 |     if (!ConstantUInt::isValueValidForType($1, $2)) | 
 |       ThrowException("Constant value doesn't fit in type!"); | 
 |     $$ = ConstantUInt::get($1, $2); | 
 |   }  | 
 |   | BOOL TRUE {                     // Boolean constants | 
 |     $$ = ConstantBool::True; | 
 |   } | 
 |   | BOOL FALSE {                    // Boolean constants | 
 |     $$ = ConstantBool::False; | 
 |   } | 
 |   | FPType FPVAL {                   // Float & Double constants | 
 |     $$ = ConstantFP::get($1, $2); | 
 |   } | 
 |  | 
 | // ConstVector - A list of comma seperated constants. | 
 | ConstVector : ConstVector ',' ConstVal { | 
 |     ($$ = $1)->push_back($3); | 
 |   } | 
 |   | ConstVal { | 
 |     $$ = new vector<Constant*>(); | 
 |     $$->push_back($1); | 
 |   } | 
 |  | 
 |  | 
 | // GlobalType - Match either GLOBAL or CONSTANT for global declarations... | 
 | GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; } | 
 |  | 
 |  | 
 | // ConstPool - Constants with optional names assigned to them. | 
 | ConstPool : ConstPool OptAssign CONST ConstVal {  | 
 |     if (setValueName($4, $2)) { assert(0 && "No redefinitions allowed!"); } | 
 |     InsertValue($4); | 
 |   } | 
 |   | ConstPool OptAssign TYPE TypesV {  // Types can be defined in the const pool | 
 |     // Eagerly resolve types.  This is not an optimization, this is a | 
 |     // requirement that is due to the fact that we could have this: | 
 |     // | 
 |     // %list = type { %list * } | 
 |     // %list = type { %list * }    ; repeated type decl | 
 |     // | 
 |     // If types are not resolved eagerly, then the two types will not be | 
 |     // determined to be the same type! | 
 |     // | 
 |     ResolveTypeTo($2, $4->get()); | 
 |  | 
 |     // TODO: FIXME when Type are not const | 
 |     if (!setValueName(const_cast<Type*>($4->get()), $2)) { | 
 |       // If this is not a redefinition of a type... | 
 |       if (!$2) { | 
 |         InsertType($4->get(), | 
 |                    inMethodScope() ? CurMeth.Types : CurModule.Types); | 
 |       } | 
 |     } | 
 |  | 
 |     delete $4; | 
 |   } | 
 |   | ConstPool MethodProto {            // Method prototypes can be in const pool | 
 |   } | 
 |   | ConstPool OptAssign OptInternal GlobalType ConstVal { | 
 |     const Type *Ty = $5->getType(); | 
 |     // Global declarations appear in Constant Pool | 
 |     Constant *Initializer = $5; | 
 |     if (Initializer == 0) | 
 |       ThrowException("Global value initializer is not a constant!"); | 
 | 	  | 
 |     GlobalVariable *GV = new GlobalVariable(Ty, $4, $3, Initializer); | 
 |     if (!setValueName(GV, $2)) {   // If not redefining... | 
 |       CurModule.CurrentModule->getGlobalList().push_back(GV); | 
 |       int Slot = InsertValue(GV, CurModule.Values); | 
 |  | 
 |       if (Slot != -1) { | 
 | 	CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot)); | 
 |       } else { | 
 | 	CurModule.DeclareNewGlobalValue(GV, ValID::create( | 
 | 				                (char*)GV->getName().c_str())); | 
 |       } | 
 |     } | 
 |   } | 
 |   | ConstPool OptAssign OptInternal UNINIT GlobalType Types { | 
 |     const Type *Ty = *$6; | 
 |     // Global declarations appear in Constant Pool | 
 |     GlobalVariable *GV = new GlobalVariable(Ty, $5, $3); | 
 |     if (!setValueName(GV, $2)) {   // If not redefining... | 
 |       CurModule.CurrentModule->getGlobalList().push_back(GV); | 
 |       int Slot = InsertValue(GV, CurModule.Values); | 
 |  | 
 |       if (Slot != -1) { | 
 | 	CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot)); | 
 |       } else { | 
 | 	assert(GV->hasName() && "Not named and not numbered!?"); | 
 | 	CurModule.DeclareNewGlobalValue(GV, ValID::create( | 
 | 				                (char*)GV->getName().c_str())); | 
 |       } | 
 |     } | 
 |   } | 
 |   | /* empty: end of list */ {  | 
 |   } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                             Rules to match Modules | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Module rule: Capture the result of parsing the whole file into a result | 
 | // variable... | 
 | // | 
 | Module : MethodList { | 
 |   $$ = ParserResult = $1; | 
 |   CurModule.ModuleDone(); | 
 | } | 
 |  | 
 | // MethodList - A list of methods, preceeded by a constant pool. | 
 | // | 
 | MethodList : MethodList Method { | 
 |     $$ = $1; | 
 |     if (!$2->getParent()) | 
 |       $1->getMethodList().push_back($2); | 
 |     CurMeth.MethodDone(); | 
 |   }  | 
 |   | MethodList MethodProto { | 
 |     $$ = $1; | 
 |   } | 
 |   | ConstPool IMPLEMENTATION { | 
 |     $$ = CurModule.CurrentModule; | 
 |     // Resolve circular types before we parse the body of the module | 
 |     ResolveTypes(CurModule.LateResolveTypes); | 
 |   } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                       Rules to match Method Headers | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | OptVAR_ID : VAR_ID | /*empty*/ { $$ = 0; } | 
 |  | 
 | ArgVal : Types OptVAR_ID { | 
 |   $$ = new MethodArgument(*$1); delete $1; | 
 |   if (setValueName($$, $2)) { assert(0 && "No arg redef allowed!"); } | 
 | } | 
 |  | 
 | ArgListH : ArgVal ',' ArgListH { | 
 |     $$ = $3; | 
 |     $3->push_front($1); | 
 |   } | 
 |   | ArgVal { | 
 |     $$ = new list<MethodArgument*>(); | 
 |     $$->push_front($1); | 
 |   } | 
 |   | DOTDOTDOT { | 
 |     $$ = new list<MethodArgument*>(); | 
 |     $$->push_front(new MethodArgument(Type::VoidTy)); | 
 |   } | 
 |  | 
 | ArgList : ArgListH { | 
 |     $$ = $1; | 
 |   } | 
 |   | /* empty */ { | 
 |     $$ = 0; | 
 |   } | 
 |  | 
 | MethodHeaderH : OptInternal TypesV STRINGCONSTANT '(' ArgList ')' { | 
 |   UnEscapeLexed($3); | 
 |   string MethodName($3); | 
 |    | 
 |   vector<const Type*> ParamTypeList; | 
 |   if ($5) | 
 |     for (list<MethodArgument*>::iterator I = $5->begin(); I != $5->end(); ++I) | 
 |       ParamTypeList.push_back((*I)->getType()); | 
 |  | 
 |   bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy; | 
 |   if (isVarArg) ParamTypeList.pop_back(); | 
 |  | 
 |   const MethodType  *MT  = MethodType::get(*$2, ParamTypeList, isVarArg); | 
 |   const PointerType *PMT = PointerType::get(MT); | 
 |   delete $2; | 
 |  | 
 |   Method *M = 0; | 
 |   if (SymbolTable *ST = CurModule.CurrentModule->getSymbolTable()) { | 
 |     if (Value *V = ST->lookup(PMT, MethodName)) {  // Method already in symtab? | 
 |       M = cast<Method>(V); | 
 |  | 
 |       // Yes it is.  If this is the case, either we need to be a forward decl, | 
 |       // or it needs to be. | 
 |       if (!CurMeth.isDeclare && !M->isExternal()) | 
 | 	ThrowException("Redefinition of method '" + MethodName + "'!");       | 
 |     } | 
 |   } | 
 |  | 
 |   if (M == 0) {  // Not already defined? | 
 |     M = new Method(MT, $1, MethodName); | 
 |     InsertValue(M, CurModule.Values); | 
 |     CurModule.DeclareNewGlobalValue(M, ValID::create($3)); | 
 |   } | 
 |   free($3);  // Free strdup'd memory! | 
 |  | 
 |   CurMeth.MethodStart(M); | 
 |  | 
 |   // Add all of the arguments we parsed to the method... | 
 |   if ($5 && !CurMeth.isDeclare) {        // Is null if empty... | 
 |     Method::ArgumentListType &ArgList = M->getArgumentList(); | 
 |  | 
 |     for (list<MethodArgument*>::iterator I = $5->begin(); I != $5->end(); ++I) { | 
 |       InsertValue(*I); | 
 |       ArgList.push_back(*I); | 
 |     } | 
 |     delete $5;                     // We're now done with the argument list | 
 |   } | 
 | } | 
 |  | 
 | MethodHeader : MethodHeaderH ConstPool BEGINTOK { | 
 |   $$ = CurMeth.CurrentMethod; | 
 |  | 
 |   // Resolve circular types before we parse the body of the method. | 
 |   ResolveTypes(CurMeth.LateResolveTypes); | 
 | } | 
 |  | 
 | Method : BasicBlockList END { | 
 |   $$ = $1; | 
 | } | 
 |  | 
 | MethodProto : DECLARE { CurMeth.isDeclare = true; } MethodHeaderH { | 
 |   $$ = CurMeth.CurrentMethod; | 
 |   if (!$$->getParent()) | 
 |     CurModule.CurrentModule->getMethodList().push_back($$); | 
 |   CurMeth.MethodDone(); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                        Rules to match Basic Blocks | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | ConstValueRef : ESINT64VAL {    // A reference to a direct constant | 
 |     $$ = ValID::create($1); | 
 |   } | 
 |   | EUINT64VAL { | 
 |     $$ = ValID::create($1); | 
 |   } | 
 |   | FPVAL {                     // Perhaps it's an FP constant? | 
 |     $$ = ValID::create($1); | 
 |   } | 
 |   | TRUE { | 
 |     $$ = ValID::create((int64_t)1); | 
 |   }  | 
 |   | FALSE { | 
 |     $$ = ValID::create((int64_t)0); | 
 |   } | 
 |   | NULL_TOK { | 
 |     $$ = ValID::createNull(); | 
 |   } | 
 |  | 
 | /* | 
 |   | STRINGCONSTANT {        // Quoted strings work too... especially for methods | 
 |     $$ = ValID::create_conststr($1); | 
 |   } | 
 | */ | 
 |  | 
 | // SymbolicValueRef - Reference to one of two ways of symbolically refering to | 
 | // another value. | 
 | // | 
 | SymbolicValueRef : INTVAL {  // Is it an integer reference...? | 
 |     $$ = ValID::create($1); | 
 |   } | 
 |   | VAR_ID {                 // Is it a named reference...? | 
 |     $$ = ValID::create($1); | 
 |   } | 
 |  | 
 | // ValueRef - A reference to a definition... either constant or symbolic | 
 | ValueRef : SymbolicValueRef | ConstValueRef | 
 |  | 
 |  | 
 | // ResolvedVal - a <type> <value> pair.  This is used only in cases where the | 
 | // type immediately preceeds the value reference, and allows complex constant | 
 | // pool references (for things like: 'ret [2 x int] [ int 12, int 42]') | 
 | ResolvedVal : Types ValueRef { | 
 |     $$ = getVal(*$1, $2); delete $1; | 
 |   } | 
 |  | 
 |  | 
 | BasicBlockList : BasicBlockList BasicBlock { | 
 |     ($$ = $1)->getBasicBlocks().push_back($2); | 
 |   } | 
 |   | MethodHeader BasicBlock { // Do not allow methods with 0 basic blocks    | 
 |     ($$ = $1)->getBasicBlocks().push_back($2); | 
 |   } | 
 |  | 
 |  | 
 | // Basic blocks are terminated by branching instructions:  | 
 | // br, br/cc, switch, ret | 
 | // | 
 | BasicBlock : InstructionList OptAssign BBTerminatorInst  { | 
 |     if (setValueName($3, $2)) { assert(0 && "No redefn allowed!"); } | 
 |     InsertValue($3); | 
 |  | 
 |     $1->getInstList().push_back($3); | 
 |     InsertValue($1); | 
 |     $$ = $1; | 
 |   } | 
 |   | LABELSTR InstructionList OptAssign BBTerminatorInst  { | 
 |     if (setValueName($4, $3)) { assert(0 && "No redefn allowed!"); } | 
 |     InsertValue($4); | 
 |  | 
 |     $2->getInstList().push_back($4); | 
 |     if (setValueName($2, $1)) { assert(0 && "No label redef allowed!"); } | 
 |  | 
 |     InsertValue($2); | 
 |     $$ = $2; | 
 |   } | 
 |  | 
 | InstructionList : InstructionList Inst { | 
 |     $1->getInstList().push_back($2); | 
 |     $$ = $1; | 
 |   } | 
 |   | /* empty */ { | 
 |     $$ = new BasicBlock(); | 
 |   } | 
 |  | 
 | BBTerminatorInst : RET ResolvedVal {              // Return with a result... | 
 |     $$ = new ReturnInst($2); | 
 |   } | 
 |   | RET VOID {                                       // Return with no result... | 
 |     $$ = new ReturnInst(); | 
 |   } | 
 |   | BR LABEL ValueRef {                         // Unconditional Branch... | 
 |     $$ = new BranchInst(cast<BasicBlock>(getVal(Type::LabelTy, $3))); | 
 |   }                                                  // Conditional Branch... | 
 |   | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {   | 
 |     $$ = new BranchInst(cast<BasicBlock>(getVal(Type::LabelTy, $6)),  | 
 | 			cast<BasicBlock>(getVal(Type::LabelTy, $9)), | 
 | 			getVal(Type::BoolTy, $3)); | 
 |   } | 
 |   | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' { | 
 |     SwitchInst *S = new SwitchInst(getVal($2, $3),  | 
 |                                    cast<BasicBlock>(getVal(Type::LabelTy, $6))); | 
 |     $$ = S; | 
 |  | 
 |     list<pair<Constant*, BasicBlock*> >::iterator I = $8->begin(),  | 
 |                                                       end = $8->end(); | 
 |     for (; I != end; ++I) | 
 |       S->dest_push_back(I->first, I->second); | 
 |   } | 
 |   | INVOKE TypesV ValueRef '(' ValueRefListE ')' TO ResolvedVal  | 
 |     EXCEPT ResolvedVal { | 
 |     const PointerType *PMTy; | 
 |     const MethodType *Ty; | 
 |  | 
 |     if (!(PMTy = dyn_cast<PointerType>($2->get())) || | 
 |         !(Ty = dyn_cast<MethodType>(PMTy->getElementType()))) { | 
 |       // Pull out the types of all of the arguments... | 
 |       vector<const Type*> ParamTypes; | 
 |       if ($5) { | 
 |         for (vector<Value*>::iterator I = $5->begin(), E = $5->end(); I!=E; ++I) | 
 |           ParamTypes.push_back((*I)->getType()); | 
 |       } | 
 |  | 
 |       bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy; | 
 |       if (isVarArg) ParamTypes.pop_back(); | 
 |  | 
 |       Ty = MethodType::get($2->get(), ParamTypes, isVarArg); | 
 |       PMTy = PointerType::get(Ty); | 
 |     } | 
 |     delete $2; | 
 |  | 
 |     Value *V = getVal(PMTy, $3);   // Get the method we're calling... | 
 |  | 
 |     BasicBlock *Normal = dyn_cast<BasicBlock>($8); | 
 |     BasicBlock *Except = dyn_cast<BasicBlock>($10); | 
 |  | 
 |     if (Normal == 0 || Except == 0) | 
 |       ThrowException("Invoke instruction without label destinations!"); | 
 |  | 
 |     // Create the call node... | 
 |     if (!$5) {                                   // Has no arguments? | 
 |       $$ = new InvokeInst(V, Normal, Except, vector<Value*>()); | 
 |     } else {                                     // Has arguments? | 
 |       // Loop through MethodType's arguments and ensure they are specified | 
 |       // correctly! | 
 |       // | 
 |       MethodType::ParamTypes::const_iterator I = Ty->getParamTypes().begin(); | 
 |       MethodType::ParamTypes::const_iterator E = Ty->getParamTypes().end(); | 
 |       vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end(); | 
 |  | 
 |       for (; ArgI != ArgE && I != E; ++ArgI, ++I) | 
 | 	if ((*ArgI)->getType() != *I) | 
 | 	  ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" + | 
 | 			 (*I)->getDescription() + "'!"); | 
 |  | 
 |       if (I != E || (ArgI != ArgE && !Ty->isVarArg())) | 
 | 	ThrowException("Invalid number of parameters detected!"); | 
 |  | 
 |       $$ = new InvokeInst(V, Normal, Except, *$5); | 
 |     } | 
 |     delete $5; | 
 |   } | 
 |  | 
 |  | 
 |  | 
 | JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef { | 
 |     $$ = $1; | 
 |     Constant *V = cast<Constant>(getValNonImprovising($2, $3)); | 
 |     if (V == 0) | 
 |       ThrowException("May only switch on a constant pool value!"); | 
 |  | 
 |     $$->push_back(make_pair(V, cast<BasicBlock>(getVal($5, $6)))); | 
 |   } | 
 |   | IntType ConstValueRef ',' LABEL ValueRef { | 
 |     $$ = new list<pair<Constant*, BasicBlock*> >(); | 
 |     Constant *V = cast<Constant>(getValNonImprovising($1, $2)); | 
 |  | 
 |     if (V == 0) | 
 |       ThrowException("May only switch on a constant pool value!"); | 
 |  | 
 |     $$->push_back(make_pair(V, cast<BasicBlock>(getVal($4, $5)))); | 
 |   } | 
 |  | 
 | Inst : OptAssign InstVal { | 
 |   // Is this definition named?? if so, assign the name... | 
 |   if (setValueName($2, $1)) { assert(0 && "No redefin allowed!"); } | 
 |   InsertValue($2); | 
 |   $$ = $2; | 
 | } | 
 |  | 
 | PHIList : Types '[' ValueRef ',' ValueRef ']' {    // Used for PHI nodes | 
 |     $$ = new list<pair<Value*, BasicBlock*> >(); | 
 |     $$->push_back(make_pair(getVal(*$1, $3),  | 
 |                             cast<BasicBlock>(getVal(Type::LabelTy, $5)))); | 
 |     delete $1; | 
 |   } | 
 |   | PHIList ',' '[' ValueRef ',' ValueRef ']' { | 
 |     $$ = $1; | 
 |     $1->push_back(make_pair(getVal($1->front().first->getType(), $4), | 
 |                             cast<BasicBlock>(getVal(Type::LabelTy, $6)))); | 
 |   } | 
 |  | 
 |  | 
 | ValueRefList : ResolvedVal {    // Used for call statements, and memory insts... | 
 |     $$ = new vector<Value*>(); | 
 |     $$->push_back($1); | 
 |   } | 
 |   | ValueRefList ',' ResolvedVal { | 
 |     $$ = $1; | 
 |     $1->push_back($3); | 
 |   } | 
 |  | 
 | // ValueRefListE - Just like ValueRefList, except that it may also be empty! | 
 | ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; } | 
 |  | 
 | InstVal : BinaryOps Types ValueRef ',' ValueRef { | 
 |     $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5)); | 
 |     if ($$ == 0) | 
 |       ThrowException("binary operator returned null!"); | 
 |     delete $2; | 
 |   } | 
 |   | UnaryOps ResolvedVal { | 
 |     $$ = UnaryOperator::create($1, $2); | 
 |     if ($$ == 0) | 
 |       ThrowException("unary operator returned null!"); | 
 |   } | 
 |   | ShiftOps ResolvedVal ',' ResolvedVal { | 
 |     if ($4->getType() != Type::UByteTy) | 
 |       ThrowException("Shift amount must be ubyte!"); | 
 |     $$ = new ShiftInst($1, $2, $4); | 
 |   } | 
 |   | CAST ResolvedVal TO Types { | 
 |     $$ = new CastInst($2, *$4); | 
 |     delete $4; | 
 |   } | 
 |   | PHI PHIList { | 
 |     const Type *Ty = $2->front().first->getType(); | 
 |     $$ = new PHINode(Ty); | 
 |     while ($2->begin() != $2->end()) { | 
 |       if ($2->front().first->getType() != Ty)  | 
 | 	ThrowException("All elements of a PHI node must be of the same type!"); | 
 |       cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second); | 
 |       $2->pop_front(); | 
 |     } | 
 |     delete $2;  // Free the list... | 
 |   }  | 
 |   | CALL TypesV ValueRef '(' ValueRefListE ')' { | 
 |     const PointerType *PMTy; | 
 |     const MethodType *Ty; | 
 |  | 
 |     if (!(PMTy = dyn_cast<PointerType>($2->get())) || | 
 |         !(Ty = dyn_cast<MethodType>(PMTy->getElementType()))) { | 
 |       // Pull out the types of all of the arguments... | 
 |       vector<const Type*> ParamTypes; | 
 |       if ($5) { | 
 |         for (vector<Value*>::iterator I = $5->begin(), E = $5->end(); I!=E; ++I) | 
 |           ParamTypes.push_back((*I)->getType()); | 
 |       } | 
 |  | 
 |       bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy; | 
 |       if (isVarArg) ParamTypes.pop_back(); | 
 |  | 
 |       Ty = MethodType::get($2->get(), ParamTypes, isVarArg); | 
 |       PMTy = PointerType::get(Ty); | 
 |     } | 
 |     delete $2; | 
 |  | 
 |     Value *V = getVal(PMTy, $3);   // Get the method we're calling... | 
 |  | 
 |     // Create the call node... | 
 |     if (!$5) {                                   // Has no arguments? | 
 |       $$ = new CallInst(V, vector<Value*>()); | 
 |     } else {                                     // Has arguments? | 
 |       // Loop through MethodType's arguments and ensure they are specified | 
 |       // correctly! | 
 |       // | 
 |       MethodType::ParamTypes::const_iterator I = Ty->getParamTypes().begin(); | 
 |       MethodType::ParamTypes::const_iterator E = Ty->getParamTypes().end(); | 
 |       vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end(); | 
 |  | 
 |       for (; ArgI != ArgE && I != E; ++ArgI, ++I) | 
 | 	if ((*ArgI)->getType() != *I) | 
 | 	  ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" + | 
 | 			 (*I)->getDescription() + "'!"); | 
 |  | 
 |       if (I != E || (ArgI != ArgE && !Ty->isVarArg())) | 
 | 	ThrowException("Invalid number of parameters detected!"); | 
 |  | 
 |       $$ = new CallInst(V, *$5); | 
 |     } | 
 |     delete $5; | 
 |   } | 
 |   | MemoryInst { | 
 |     $$ = $1; | 
 |   } | 
 |  | 
 |  | 
 | // IndexList - List of indices for GEP based instructions... | 
 | IndexList : ',' ValueRefList {  | 
 |   $$ = $2;  | 
 | } | /* empty */ {  | 
 |   $$ = new vector<Value*>();  | 
 | } | 
 |  | 
 | MemoryInst : MALLOC Types { | 
 |     $$ = new MallocInst(PointerType::get(*$2)); | 
 |     delete $2; | 
 |   } | 
 |   | MALLOC Types ',' UINT ValueRef { | 
 |     const Type *Ty = PointerType::get(*$2); | 
 |     $$ = new MallocInst(Ty, getVal($4, $5)); | 
 |     delete $2; | 
 |   } | 
 |   | ALLOCA Types { | 
 |     $$ = new AllocaInst(PointerType::get(*$2)); | 
 |     delete $2; | 
 |   } | 
 |   | ALLOCA Types ',' UINT ValueRef { | 
 |     const Type *Ty = PointerType::get(*$2); | 
 |     Value *ArrSize = getVal($4, $5); | 
 |     $$ = new AllocaInst(Ty, ArrSize); | 
 |     delete $2; | 
 |   } | 
 |   | FREE ResolvedVal { | 
 |     if (!$2->getType()->isPointerType()) | 
 |       ThrowException("Trying to free nonpointer type " +  | 
 |                      $2->getType()->getDescription() + "!"); | 
 |     $$ = new FreeInst($2); | 
 |   } | 
 |  | 
 |   | LOAD Types ValueRef IndexList { | 
 |     if (!(*$2)->isPointerType()) | 
 |       ThrowException("Can't load from nonpointer type: " + | 
 | 		     (*$2)->getDescription()); | 
 |     if (LoadInst::getIndexedType(*$2, *$4) == 0) | 
 |       ThrowException("Invalid indices for load instruction!"); | 
 |  | 
 |     $$ = new LoadInst(getVal(*$2, $3), *$4); | 
 |     delete $4;   // Free the vector... | 
 |     delete $2; | 
 |   } | 
 |   | STORE ResolvedVal ',' Types ValueRef IndexList { | 
 |     if (!(*$4)->isPointerType()) | 
 |       ThrowException("Can't store to a nonpointer type: " + | 
 |                      (*$4)->getDescription()); | 
 |     const Type *ElTy = StoreInst::getIndexedType(*$4, *$6); | 
 |     if (ElTy == 0) | 
 |       ThrowException("Can't store into that field list!"); | 
 |     if (ElTy != $2->getType()) | 
 |       ThrowException("Can't store '" + $2->getType()->getDescription() + | 
 |                      "' into space of type '" + ElTy->getDescription() + "'!"); | 
 |     $$ = new StoreInst($2, getVal(*$4, $5), *$6); | 
 |     delete $4; delete $6; | 
 |   } | 
 |   | GETELEMENTPTR Types ValueRef IndexList { | 
 |     if (!(*$2)->isPointerType()) | 
 |       ThrowException("getelementptr insn requires pointer operand!"); | 
 |     if (!GetElementPtrInst::getIndexedType(*$2, *$4, true)) | 
 |       ThrowException("Can't get element ptr '" + (*$2)->getDescription()+ "'!"); | 
 |     $$ = new GetElementPtrInst(getVal(*$2, $3), *$4); | 
 |     delete $2; delete $4; | 
 |   } | 
 |  | 
 | %% | 
 | int yyerror(const char *ErrorMsg) { | 
 |   ThrowException(string("Parse error: ") + ErrorMsg); | 
 |   return 0; | 
 | } |