| //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This implements the ScheduleDAG class, which is a base class used by | 
 | // scheduling implementation classes. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "pre-RA-sched" | 
 | #include "llvm/CodeGen/ScheduleDAG.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetRegisterInfo.h" | 
 | #include "llvm/Support/Debug.h" | 
 | using namespace llvm; | 
 |  | 
 | ScheduleDAG::ScheduleDAG(SelectionDAG &dag, MachineBasicBlock *bb, | 
 |                          const TargetMachine &tm) | 
 |   : DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) { | 
 |   TII = TM.getInstrInfo(); | 
 |   MF  = &DAG.getMachineFunction(); | 
 |   TRI = TM.getRegisterInfo(); | 
 |   TLI = &DAG.getTargetLoweringInfo(); | 
 |   ConstPool = BB->getParent()->getConstantPool(); | 
 | } | 
 |  | 
 | /// CheckForPhysRegDependency - Check if the dependency between def and use of | 
 | /// a specified operand is a physical register dependency. If so, returns the | 
 | /// register and the cost of copying the register. | 
 | static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, | 
 |                                       const TargetRegisterInfo *TRI,  | 
 |                                       const TargetInstrInfo *TII, | 
 |                                       unsigned &PhysReg, int &Cost) { | 
 |   if (Op != 2 || User->getOpcode() != ISD::CopyToReg) | 
 |     return; | 
 |  | 
 |   unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); | 
 |   if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
 |     return; | 
 |  | 
 |   unsigned ResNo = User->getOperand(2).getResNo(); | 
 |   if (Def->isMachineOpcode()) { | 
 |     const TargetInstrDesc &II = TII->get(Def->getMachineOpcode()); | 
 |     if (ResNo >= II.getNumDefs() && | 
 |         II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) { | 
 |       PhysReg = Reg; | 
 |       const TargetRegisterClass *RC = | 
 |         TRI->getPhysicalRegisterRegClass(Reg, Def->getValueType(ResNo)); | 
 |       Cost = RC->getCopyCost(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | SUnit *ScheduleDAG::Clone(SUnit *Old) { | 
 |   SUnit *SU = NewSUnit(Old->Node); | 
 |   SU->OrigNode = Old->OrigNode; | 
 |   SU->FlaggedNodes = Old->FlaggedNodes; | 
 |   SU->Latency = Old->Latency; | 
 |   SU->isTwoAddress = Old->isTwoAddress; | 
 |   SU->isCommutable = Old->isCommutable; | 
 |   SU->hasPhysRegDefs = Old->hasPhysRegDefs; | 
 |   return SU; | 
 | } | 
 |  | 
 |  | 
 | /// BuildSchedUnits - Build SUnits from the selection dag that we are input. | 
 | /// This SUnit graph is similar to the SelectionDAG, but represents flagged | 
 | /// together nodes with a single SUnit. | 
 | void ScheduleDAG::BuildSchedUnits() { | 
 |   // Reserve entries in the vector for each of the SUnits we are creating.  This | 
 |   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get | 
 |   // invalidated. | 
 |   SUnits.reserve(DAG.allnodes_size()); | 
 |    | 
 |   // During scheduling, the NodeId field of SDNode is used to map SDNodes | 
 |   // to their associated SUnits by holding SUnits table indices. A value | 
 |   // of -1 means the SDNode does not yet have an associated SUnit. | 
 |   for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(), | 
 |        E = DAG.allnodes_end(); NI != E; ++NI) | 
 |     NI->setNodeId(-1); | 
 |  | 
 |   for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(), | 
 |        E = DAG.allnodes_end(); NI != E; ++NI) { | 
 |     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate. | 
 |       continue; | 
 |      | 
 |     // If this node has already been processed, stop now. | 
 |     if (NI->getNodeId() != -1) continue; | 
 |      | 
 |     SUnit *NodeSUnit = NewSUnit(NI); | 
 |      | 
 |     // See if anything is flagged to this node, if so, add them to flagged | 
 |     // nodes.  Nodes can have at most one flag input and one flag output.  Flags | 
 |     // are required the be the last operand and result of a node. | 
 |      | 
 |     // Scan up, adding flagged preds to FlaggedNodes. | 
 |     SDNode *N = NI; | 
 |     if (N->getNumOperands() && | 
 |         N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) { | 
 |       do { | 
 |         N = N->getOperand(N->getNumOperands()-1).getNode(); | 
 |         NodeSUnit->FlaggedNodes.push_back(N); | 
 |         assert(N->getNodeId() == -1 && "Node already inserted!"); | 
 |         N->setNodeId(NodeSUnit->NodeNum); | 
 |       } while (N->getNumOperands() && | 
 |                N->getOperand(N->getNumOperands()-1).getValueType()== MVT::Flag); | 
 |       std::reverse(NodeSUnit->FlaggedNodes.begin(), | 
 |                    NodeSUnit->FlaggedNodes.end()); | 
 |     } | 
 |      | 
 |     // Scan down, adding this node and any flagged succs to FlaggedNodes if they | 
 |     // have a user of the flag operand. | 
 |     N = NI; | 
 |     while (N->getValueType(N->getNumValues()-1) == MVT::Flag) { | 
 |       SDValue FlagVal(N, N->getNumValues()-1); | 
 |        | 
 |       // There are either zero or one users of the Flag result. | 
 |       bool HasFlagUse = false; | 
 |       for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();  | 
 |            UI != E; ++UI) | 
 |         if (FlagVal.isOperandOf(*UI)) { | 
 |           HasFlagUse = true; | 
 |           NodeSUnit->FlaggedNodes.push_back(N); | 
 |           assert(N->getNodeId() == -1 && "Node already inserted!"); | 
 |           N->setNodeId(NodeSUnit->NodeNum); | 
 |           N = *UI; | 
 |           break; | 
 |         } | 
 |       if (!HasFlagUse) break; | 
 |     } | 
 |      | 
 |     // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node. | 
 |     // Update the SUnit | 
 |     NodeSUnit->Node = N; | 
 |     assert(N->getNodeId() == -1 && "Node already inserted!"); | 
 |     N->setNodeId(NodeSUnit->NodeNum); | 
 |  | 
 |     ComputeLatency(NodeSUnit); | 
 |   } | 
 |    | 
 |   // Pass 2: add the preds, succs, etc. | 
 |   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { | 
 |     SUnit *SU = &SUnits[su]; | 
 |     SDNode *MainNode = SU->Node; | 
 |      | 
 |     if (MainNode->isMachineOpcode()) { | 
 |       unsigned Opc = MainNode->getMachineOpcode(); | 
 |       const TargetInstrDesc &TID = TII->get(Opc); | 
 |       for (unsigned i = 0; i != TID.getNumOperands(); ++i) { | 
 |         if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) { | 
 |           SU->isTwoAddress = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |       if (TID.isCommutable()) | 
 |         SU->isCommutable = true; | 
 |     } | 
 |      | 
 |     // Find all predecessors and successors of the group. | 
 |     // Temporarily add N to make code simpler. | 
 |     SU->FlaggedNodes.push_back(MainNode); | 
 |      | 
 |     for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) { | 
 |       SDNode *N = SU->FlaggedNodes[n]; | 
 |       if (N->isMachineOpcode() && | 
 |           TII->get(N->getMachineOpcode()).getImplicitDefs() && | 
 |           CountResults(N) > TII->get(N->getMachineOpcode()).getNumDefs()) | 
 |         SU->hasPhysRegDefs = true; | 
 |        | 
 |       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
 |         SDNode *OpN = N->getOperand(i).getNode(); | 
 |         if (isPassiveNode(OpN)) continue;   // Not scheduled. | 
 |         SUnit *OpSU = &SUnits[OpN->getNodeId()]; | 
 |         assert(OpSU && "Node has no SUnit!"); | 
 |         if (OpSU == SU) continue;           // In the same group. | 
 |  | 
 |         MVT OpVT = N->getOperand(i).getValueType(); | 
 |         assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!"); | 
 |         bool isChain = OpVT == MVT::Other; | 
 |  | 
 |         unsigned PhysReg = 0; | 
 |         int Cost = 1; | 
 |         // Determine if this is a physical register dependency. | 
 |         CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); | 
 |         SU->addPred(OpSU, isChain, false, PhysReg, Cost); | 
 |       } | 
 |     } | 
 |      | 
 |     // Remove MainNode from FlaggedNodes again. | 
 |     SU->FlaggedNodes.pop_back(); | 
 |   } | 
 | } | 
 |  | 
 | void ScheduleDAG::ComputeLatency(SUnit *SU) { | 
 |   const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); | 
 |    | 
 |   // Compute the latency for the node.  We use the sum of the latencies for | 
 |   // all nodes flagged together into this SUnit. | 
 |   if (InstrItins.isEmpty()) { | 
 |     // No latency information. | 
 |     SU->Latency = 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   SU->Latency = 0; | 
 |   if (SU->Node->isMachineOpcode()) { | 
 |     unsigned SchedClass = TII->get(SU->Node->getMachineOpcode()).getSchedClass(); | 
 |     const InstrStage *S = InstrItins.begin(SchedClass); | 
 |     const InstrStage *E = InstrItins.end(SchedClass); | 
 |     for (; S != E; ++S) | 
 |       SU->Latency += S->Cycles; | 
 |   } | 
 |   for (unsigned i = 0, e = SU->FlaggedNodes.size(); i != e; ++i) { | 
 |     SDNode *FNode = SU->FlaggedNodes[i]; | 
 |     if (FNode->isMachineOpcode()) { | 
 |       unsigned SchedClass = TII->get(FNode->getMachineOpcode()).getSchedClass(); | 
 |       const InstrStage *S = InstrItins.begin(SchedClass); | 
 |       const InstrStage *E = InstrItins.end(SchedClass); | 
 |       for (; S != E; ++S) | 
 |         SU->Latency += S->Cycles; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// CalculateDepths - compute depths using algorithms for the longest | 
 | /// paths in the DAG | 
 | void ScheduleDAG::CalculateDepths() { | 
 |   unsigned DAGSize = SUnits.size(); | 
 |   std::vector<SUnit*> WorkList; | 
 |   WorkList.reserve(DAGSize); | 
 |  | 
 |   // Initialize the data structures | 
 |   for (unsigned i = 0, e = DAGSize; i != e; ++i) { | 
 |     SUnit *SU = &SUnits[i]; | 
 |     unsigned Degree = SU->Preds.size(); | 
 |     // Temporarily use the Depth field as scratch space for the degree count. | 
 |     SU->Depth = Degree; | 
 |  | 
 |     // Is it a node without dependencies? | 
 |     if (Degree == 0) { | 
 |         assert(SU->Preds.empty() && "SUnit should have no predecessors"); | 
 |         // Collect leaf nodes | 
 |         WorkList.push_back(SU); | 
 |     } | 
 |   } | 
 |  | 
 |   // Process nodes in the topological order | 
 |   while (!WorkList.empty()) { | 
 |     SUnit *SU = WorkList.back(); | 
 |     WorkList.pop_back(); | 
 |     unsigned SUDepth = 0; | 
 |  | 
 |     // Use dynamic programming: | 
 |     // When current node is being processed, all of its dependencies | 
 |     // are already processed. | 
 |     // So, just iterate over all predecessors and take the longest path | 
 |     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); | 
 |          I != E; ++I) { | 
 |       unsigned PredDepth = I->Dep->Depth; | 
 |       if (PredDepth+1 > SUDepth) { | 
 |           SUDepth = PredDepth + 1; | 
 |       } | 
 |     } | 
 |  | 
 |     SU->Depth = SUDepth; | 
 |  | 
 |     // Update degrees of all nodes depending on current SUnit | 
 |     for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); | 
 |          I != E; ++I) { | 
 |       SUnit *SU = I->Dep; | 
 |       if (!--SU->Depth) | 
 |         // If all dependencies of the node are processed already, | 
 |         // then the longest path for the node can be computed now | 
 |         WorkList.push_back(SU); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// CalculateHeights - compute heights using algorithms for the longest | 
 | /// paths in the DAG | 
 | void ScheduleDAG::CalculateHeights() { | 
 |   unsigned DAGSize = SUnits.size(); | 
 |   std::vector<SUnit*> WorkList; | 
 |   WorkList.reserve(DAGSize); | 
 |  | 
 |   // Initialize the data structures | 
 |   for (unsigned i = 0, e = DAGSize; i != e; ++i) { | 
 |     SUnit *SU = &SUnits[i]; | 
 |     unsigned Degree = SU->Succs.size(); | 
 |     // Temporarily use the Height field as scratch space for the degree count. | 
 |     SU->Height = Degree; | 
 |  | 
 |     // Is it a node without dependencies? | 
 |     if (Degree == 0) { | 
 |         assert(SU->Succs.empty() && "Something wrong"); | 
 |         assert(WorkList.empty() && "Should be empty"); | 
 |         // Collect leaf nodes | 
 |         WorkList.push_back(SU); | 
 |     } | 
 |   } | 
 |  | 
 |   // Process nodes in the topological order | 
 |   while (!WorkList.empty()) { | 
 |     SUnit *SU = WorkList.back(); | 
 |     WorkList.pop_back(); | 
 |     unsigned SUHeight = 0; | 
 |  | 
 |     // Use dynamic programming: | 
 |     // When current node is being processed, all of its dependencies | 
 |     // are already processed. | 
 |     // So, just iterate over all successors and take the longest path | 
 |     for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); | 
 |          I != E; ++I) { | 
 |       unsigned SuccHeight = I->Dep->Height; | 
 |       if (SuccHeight+1 > SUHeight) { | 
 |           SUHeight = SuccHeight + 1; | 
 |       } | 
 |     } | 
 |  | 
 |     SU->Height = SUHeight; | 
 |  | 
 |     // Update degrees of all nodes depending on current SUnit | 
 |     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); | 
 |          I != E; ++I) { | 
 |       SUnit *SU = I->Dep; | 
 |       if (!--SU->Height) | 
 |         // If all dependencies of the node are processed already, | 
 |         // then the longest path for the node can be computed now | 
 |         WorkList.push_back(SU); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// CountResults - The results of target nodes have register or immediate | 
 | /// operands first, then an optional chain, and optional flag operands (which do | 
 | /// not go into the resulting MachineInstr). | 
 | unsigned ScheduleDAG::CountResults(SDNode *Node) { | 
 |   unsigned N = Node->getNumValues(); | 
 |   while (N && Node->getValueType(N - 1) == MVT::Flag) | 
 |     --N; | 
 |   if (N && Node->getValueType(N - 1) == MVT::Other) | 
 |     --N;    // Skip over chain result. | 
 |   return N; | 
 | } | 
 |  | 
 | /// CountOperands - The inputs to target nodes have any actual inputs first, | 
 | /// followed by special operands that describe memory references, then an | 
 | /// optional chain operand, then flag operands.  Compute the number of | 
 | /// actual operands that will go into the resulting MachineInstr. | 
 | unsigned ScheduleDAG::CountOperands(SDNode *Node) { | 
 |   unsigned N = ComputeMemOperandsEnd(Node); | 
 |   while (N && isa<MemOperandSDNode>(Node->getOperand(N - 1).getNode())) | 
 |     --N; // Ignore MEMOPERAND nodes | 
 |   return N; | 
 | } | 
 |  | 
 | /// ComputeMemOperandsEnd - Find the index one past the last MemOperandSDNode | 
 | /// operand | 
 | unsigned ScheduleDAG::ComputeMemOperandsEnd(SDNode *Node) { | 
 |   unsigned N = Node->getNumOperands(); | 
 |   while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag) | 
 |     --N; | 
 |   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) | 
 |     --N; // Ignore chain if it exists. | 
 |   return N; | 
 | } | 
 |  | 
 |  | 
 | /// dump - dump the schedule. | 
 | void ScheduleDAG::dumpSchedule() const { | 
 |   for (unsigned i = 0, e = Sequence.size(); i != e; i++) { | 
 |     if (SUnit *SU = Sequence[i]) | 
 |       SU->dump(&DAG); | 
 |     else | 
 |       cerr << "**** NOOP ****\n"; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /// Run - perform scheduling. | 
 | /// | 
 | void ScheduleDAG::Run() { | 
 |   Schedule(); | 
 |    | 
 |   DOUT << "*** Final schedule ***\n"; | 
 |   DEBUG(dumpSchedule()); | 
 |   DOUT << "\n"; | 
 | } | 
 |  | 
 | /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or | 
 | /// a group of nodes flagged together. | 
 | void SUnit::dump(const SelectionDAG *G) const { | 
 |   cerr << "SU(" << NodeNum << "): "; | 
 |   if (Node) | 
 |     Node->dump(G); | 
 |   else | 
 |     cerr << "CROSS RC COPY "; | 
 |   cerr << "\n"; | 
 |   if (FlaggedNodes.size() != 0) { | 
 |     for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) { | 
 |       cerr << "    "; | 
 |       FlaggedNodes[i]->dump(G); | 
 |       cerr << "\n"; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SUnit::dumpAll(const SelectionDAG *G) const { | 
 |   dump(G); | 
 |  | 
 |   cerr << "  # preds left       : " << NumPredsLeft << "\n"; | 
 |   cerr << "  # succs left       : " << NumSuccsLeft << "\n"; | 
 |   cerr << "  Latency            : " << Latency << "\n"; | 
 |   cerr << "  Depth              : " << Depth << "\n"; | 
 |   cerr << "  Height             : " << Height << "\n"; | 
 |  | 
 |   if (Preds.size() != 0) { | 
 |     cerr << "  Predecessors:\n"; | 
 |     for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end(); | 
 |          I != E; ++I) { | 
 |       if (I->isCtrl) | 
 |         cerr << "   ch  #"; | 
 |       else | 
 |         cerr << "   val #"; | 
 |       cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")"; | 
 |       if (I->isSpecial) | 
 |         cerr << " *"; | 
 |       cerr << "\n"; | 
 |     } | 
 |   } | 
 |   if (Succs.size() != 0) { | 
 |     cerr << "  Successors:\n"; | 
 |     for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end(); | 
 |          I != E; ++I) { | 
 |       if (I->isCtrl) | 
 |         cerr << "   ch  #"; | 
 |       else | 
 |         cerr << "   val #"; | 
 |       cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")"; | 
 |       if (I->isSpecial) | 
 |         cerr << " *"; | 
 |       cerr << "\n"; | 
 |     } | 
 |   } | 
 |   cerr << "\n"; | 
 | } |