| //===-- FunctionLoweringInfo.cpp ------------------------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This implements routines for translating functions from LLVM IR into | 
 | // Machine IR. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
 | #include "llvm/ADT/PostOrderIterator.h" | 
 | #include "llvm/CodeGen/Analysis.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineModuleInfo.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/DebugInfo.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/IntrinsicInst.h" | 
 | #include "llvm/IR/LLVMContext.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Target/TargetFrameLowering.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetLowering.h" | 
 | #include "llvm/Target/TargetOptions.h" | 
 | #include "llvm/Target/TargetRegisterInfo.h" | 
 | #include <algorithm> | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "function-lowering-info" | 
 |  | 
 | /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by | 
 | /// PHI nodes or outside of the basic block that defines it, or used by a | 
 | /// switch or atomic instruction, which may expand to multiple basic blocks. | 
 | static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { | 
 |   if (I->use_empty()) return false; | 
 |   if (isa<PHINode>(I)) return true; | 
 |   const BasicBlock *BB = I->getParent(); | 
 |   for (const User *U : I->users()) | 
 |     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) | 
 |       return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, | 
 |                                SelectionDAG *DAG) { | 
 |   const TargetLowering *TLI = TM.getTargetLowering(); | 
 |  | 
 |   Fn = &fn; | 
 |   MF = &mf; | 
 |   RegInfo = &MF->getRegInfo(); | 
 |  | 
 |   // Check whether the function can return without sret-demotion. | 
 |   SmallVector<ISD::OutputArg, 4> Outs; | 
 |   GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI); | 
 |   CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, | 
 |                                        Fn->isVarArg(), | 
 |                                        Outs, Fn->getContext()); | 
 |  | 
 |   // Initialize the mapping of values to registers.  This is only set up for | 
 |   // instruction values that are used outside of the block that defines | 
 |   // them. | 
 |   Function::const_iterator BB = Fn->begin(), EB = Fn->end(); | 
 |   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) | 
 |     if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { | 
 |       // Don't fold inalloca allocas or other dynamic allocas into the initial | 
 |       // stack frame allocation, even if they are in the entry block. | 
 |       if (!AI->isStaticAlloca()) | 
 |         continue; | 
 |  | 
 |       if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { | 
 |         Type *Ty = AI->getAllocatedType(); | 
 |         uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); | 
 |         unsigned Align = | 
 |           std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), | 
 |                    AI->getAlignment()); | 
 |  | 
 |         TySize *= CUI->getZExtValue();   // Get total allocated size. | 
 |         if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. | 
 |  | 
 |         StaticAllocaMap[AI] = | 
 |           MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI); | 
 |       } | 
 |     } | 
 |  | 
 |   for (; BB != EB; ++BB) | 
 |     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); | 
 |          I != E; ++I) { | 
 |       // Look for dynamic allocas. | 
 |       if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { | 
 |         if (!AI->isStaticAlloca()) { | 
 |           unsigned Align = std::max( | 
 |               (unsigned)TLI->getDataLayout()->getPrefTypeAlignment( | 
 |                 AI->getAllocatedType()), | 
 |               AI->getAlignment()); | 
 |           unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); | 
 |           if (Align <= StackAlign) | 
 |             Align = 0; | 
 |           // Inform the Frame Information that we have variable-sized objects. | 
 |           MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI); | 
 |         } | 
 |       } | 
 |  | 
 |       // Look for inline asm that clobbers the SP register. | 
 |       if (isa<CallInst>(I) || isa<InvokeInst>(I)) { | 
 |         ImmutableCallSite CS(I); | 
 |         if (isa<InlineAsm>(CS.getCalledValue())) { | 
 |           unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); | 
 |           std::vector<TargetLowering::AsmOperandInfo> Ops = | 
 |             TLI->ParseConstraints(CS); | 
 |           for (size_t I = 0, E = Ops.size(); I != E; ++I) { | 
 |             TargetLowering::AsmOperandInfo &Op = Ops[I]; | 
 |             if (Op.Type == InlineAsm::isClobber) { | 
 |               // Clobbers don't have SDValue operands, hence SDValue(). | 
 |               TLI->ComputeConstraintToUse(Op, SDValue(), DAG); | 
 |               std::pair<unsigned, const TargetRegisterClass*> PhysReg = | 
 |                 TLI->getRegForInlineAsmConstraint(Op.ConstraintCode, | 
 |                                                   Op.ConstraintVT); | 
 |               if (PhysReg.first == SP) | 
 |                 MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true); | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // Mark values used outside their block as exported, by allocating | 
 |       // a virtual register for them. | 
 |       if (isUsedOutsideOfDefiningBlock(I)) | 
 |         if (!isa<AllocaInst>(I) || | 
 |             !StaticAllocaMap.count(cast<AllocaInst>(I))) | 
 |           InitializeRegForValue(I); | 
 |  | 
 |       // Collect llvm.dbg.declare information. This is done now instead of | 
 |       // during the initial isel pass through the IR so that it is done | 
 |       // in a predictable order. | 
 |       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { | 
 |         MachineModuleInfo &MMI = MF->getMMI(); | 
 |         DIVariable DIVar(DI->getVariable()); | 
 |         assert((!DIVar || DIVar.isVariable()) && | 
 |           "Variable in DbgDeclareInst should be either null or a DIVariable."); | 
 |         if (MMI.hasDebugInfo() && | 
 |             DIVar && | 
 |             !DI->getDebugLoc().isUnknown()) { | 
 |           // Don't handle byval struct arguments or VLAs, for example. | 
 |           // Non-byval arguments are handled here (they refer to the stack | 
 |           // temporary alloca at this point). | 
 |           const Value *Address = DI->getAddress(); | 
 |           if (Address) { | 
 |             if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) | 
 |               Address = BCI->getOperand(0); | 
 |             if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { | 
 |               DenseMap<const AllocaInst *, int>::iterator SI = | 
 |                 StaticAllocaMap.find(AI); | 
 |               if (SI != StaticAllocaMap.end()) { // Check for VLAs. | 
 |                 int FI = SI->second; | 
 |                 MMI.setVariableDbgInfo(DI->getVariable(), | 
 |                                        FI, DI->getDebugLoc()); | 
 |               } | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This | 
 |   // also creates the initial PHI MachineInstrs, though none of the input | 
 |   // operands are populated. | 
 |   for (BB = Fn->begin(); BB != EB; ++BB) { | 
 |     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); | 
 |     MBBMap[BB] = MBB; | 
 |     MF->push_back(MBB); | 
 |  | 
 |     // Transfer the address-taken flag. This is necessary because there could | 
 |     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only | 
 |     // the first one should be marked. | 
 |     if (BB->hasAddressTaken()) | 
 |       MBB->setHasAddressTaken(); | 
 |  | 
 |     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as | 
 |     // appropriate. | 
 |     for (BasicBlock::const_iterator I = BB->begin(); | 
 |          const PHINode *PN = dyn_cast<PHINode>(I); ++I) { | 
 |       if (PN->use_empty()) continue; | 
 |  | 
 |       // Skip empty types | 
 |       if (PN->getType()->isEmptyTy()) | 
 |         continue; | 
 |  | 
 |       DebugLoc DL = PN->getDebugLoc(); | 
 |       unsigned PHIReg = ValueMap[PN]; | 
 |       assert(PHIReg && "PHI node does not have an assigned virtual register!"); | 
 |  | 
 |       SmallVector<EVT, 4> ValueVTs; | 
 |       ComputeValueVTs(*TLI, PN->getType(), ValueVTs); | 
 |       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { | 
 |         EVT VT = ValueVTs[vti]; | 
 |         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); | 
 |         const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); | 
 |         for (unsigned i = 0; i != NumRegisters; ++i) | 
 |           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); | 
 |         PHIReg += NumRegisters; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Mark landing pad blocks. | 
 |   for (BB = Fn->begin(); BB != EB; ++BB) | 
 |     if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) | 
 |       MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); | 
 | } | 
 |  | 
 | /// clear - Clear out all the function-specific state. This returns this | 
 | /// FunctionLoweringInfo to an empty state, ready to be used for a | 
 | /// different function. | 
 | void FunctionLoweringInfo::clear() { | 
 |   assert(CatchInfoFound.size() == CatchInfoLost.size() && | 
 |          "Not all catch info was assigned to a landing pad!"); | 
 |  | 
 |   MBBMap.clear(); | 
 |   ValueMap.clear(); | 
 |   StaticAllocaMap.clear(); | 
 | #ifndef NDEBUG | 
 |   CatchInfoLost.clear(); | 
 |   CatchInfoFound.clear(); | 
 | #endif | 
 |   LiveOutRegInfo.clear(); | 
 |   VisitedBBs.clear(); | 
 |   ArgDbgValues.clear(); | 
 |   ByValArgFrameIndexMap.clear(); | 
 |   RegFixups.clear(); | 
 | } | 
 |  | 
 | /// CreateReg - Allocate a single virtual register for the given type. | 
 | unsigned FunctionLoweringInfo::CreateReg(MVT VT) { | 
 |   return RegInfo-> | 
 |     createVirtualRegister(TM.getTargetLowering()->getRegClassFor(VT)); | 
 | } | 
 |  | 
 | /// CreateRegs - Allocate the appropriate number of virtual registers of | 
 | /// the correctly promoted or expanded types.  Assign these registers | 
 | /// consecutive vreg numbers and return the first assigned number. | 
 | /// | 
 | /// In the case that the given value has struct or array type, this function | 
 | /// will assign registers for each member or element. | 
 | /// | 
 | unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { | 
 |   const TargetLowering *TLI = TM.getTargetLowering(); | 
 |  | 
 |   SmallVector<EVT, 4> ValueVTs; | 
 |   ComputeValueVTs(*TLI, Ty, ValueVTs); | 
 |  | 
 |   unsigned FirstReg = 0; | 
 |   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
 |     EVT ValueVT = ValueVTs[Value]; | 
 |     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); | 
 |  | 
 |     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); | 
 |     for (unsigned i = 0; i != NumRegs; ++i) { | 
 |       unsigned R = CreateReg(RegisterVT); | 
 |       if (!FirstReg) FirstReg = R; | 
 |     } | 
 |   } | 
 |   return FirstReg; | 
 | } | 
 |  | 
 | /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the | 
 | /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If | 
 | /// the register's LiveOutInfo is for a smaller bit width, it is extended to | 
 | /// the larger bit width by zero extension. The bit width must be no smaller | 
 | /// than the LiveOutInfo's existing bit width. | 
 | const FunctionLoweringInfo::LiveOutInfo * | 
 | FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { | 
 |   if (!LiveOutRegInfo.inBounds(Reg)) | 
 |     return nullptr; | 
 |  | 
 |   LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; | 
 |   if (!LOI->IsValid) | 
 |     return nullptr; | 
 |  | 
 |   if (BitWidth > LOI->KnownZero.getBitWidth()) { | 
 |     LOI->NumSignBits = 1; | 
 |     LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); | 
 |     LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); | 
 |   } | 
 |  | 
 |   return LOI; | 
 | } | 
 |  | 
 | /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination | 
 | /// register based on the LiveOutInfo of its operands. | 
 | void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { | 
 |   Type *Ty = PN->getType(); | 
 |   if (!Ty->isIntegerTy() || Ty->isVectorTy()) | 
 |     return; | 
 |  | 
 |   const TargetLowering *TLI = TM.getTargetLowering(); | 
 |  | 
 |   SmallVector<EVT, 1> ValueVTs; | 
 |   ComputeValueVTs(*TLI, Ty, ValueVTs); | 
 |   assert(ValueVTs.size() == 1 && | 
 |          "PHIs with non-vector integer types should have a single VT."); | 
 |   EVT IntVT = ValueVTs[0]; | 
 |  | 
 |   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) | 
 |     return; | 
 |   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); | 
 |   unsigned BitWidth = IntVT.getSizeInBits(); | 
 |  | 
 |   unsigned DestReg = ValueMap[PN]; | 
 |   if (!TargetRegisterInfo::isVirtualRegister(DestReg)) | 
 |     return; | 
 |   LiveOutRegInfo.grow(DestReg); | 
 |   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; | 
 |  | 
 |   Value *V = PN->getIncomingValue(0); | 
 |   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { | 
 |     DestLOI.NumSignBits = 1; | 
 |     APInt Zero(BitWidth, 0); | 
 |     DestLOI.KnownZero = Zero; | 
 |     DestLOI.KnownOne = Zero; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
 |     APInt Val = CI->getValue().zextOrTrunc(BitWidth); | 
 |     DestLOI.NumSignBits = Val.getNumSignBits(); | 
 |     DestLOI.KnownZero = ~Val; | 
 |     DestLOI.KnownOne = Val; | 
 |   } else { | 
 |     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" | 
 |                                 "CopyToReg node was created."); | 
 |     unsigned SrcReg = ValueMap[V]; | 
 |     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { | 
 |       DestLOI.IsValid = false; | 
 |       return; | 
 |     } | 
 |     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); | 
 |     if (!SrcLOI) { | 
 |       DestLOI.IsValid = false; | 
 |       return; | 
 |     } | 
 |     DestLOI = *SrcLOI; | 
 |   } | 
 |  | 
 |   assert(DestLOI.KnownZero.getBitWidth() == BitWidth && | 
 |          DestLOI.KnownOne.getBitWidth() == BitWidth && | 
 |          "Masks should have the same bit width as the type."); | 
 |  | 
 |   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { | 
 |     Value *V = PN->getIncomingValue(i); | 
 |     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { | 
 |       DestLOI.NumSignBits = 1; | 
 |       APInt Zero(BitWidth, 0); | 
 |       DestLOI.KnownZero = Zero; | 
 |       DestLOI.KnownOne = Zero; | 
 |       return; | 
 |     } | 
 |  | 
 |     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
 |       APInt Val = CI->getValue().zextOrTrunc(BitWidth); | 
 |       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); | 
 |       DestLOI.KnownZero &= ~Val; | 
 |       DestLOI.KnownOne &= Val; | 
 |       continue; | 
 |     } | 
 |  | 
 |     assert(ValueMap.count(V) && "V should have been placed in ValueMap when " | 
 |                                 "its CopyToReg node was created."); | 
 |     unsigned SrcReg = ValueMap[V]; | 
 |     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { | 
 |       DestLOI.IsValid = false; | 
 |       return; | 
 |     } | 
 |     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); | 
 |     if (!SrcLOI) { | 
 |       DestLOI.IsValid = false; | 
 |       return; | 
 |     } | 
 |     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); | 
 |     DestLOI.KnownZero &= SrcLOI->KnownZero; | 
 |     DestLOI.KnownOne &= SrcLOI->KnownOne; | 
 |   } | 
 | } | 
 |  | 
 | /// setArgumentFrameIndex - Record frame index for the byval | 
 | /// argument. This overrides previous frame index entry for this argument, | 
 | /// if any. | 
 | void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, | 
 |                                                  int FI) { | 
 |   ByValArgFrameIndexMap[A] = FI; | 
 | } | 
 |  | 
 | /// getArgumentFrameIndex - Get frame index for the byval argument. | 
 | /// If the argument does not have any assigned frame index then 0 is | 
 | /// returned. | 
 | int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { | 
 |   DenseMap<const Argument *, int>::iterator I = | 
 |     ByValArgFrameIndexMap.find(A); | 
 |   if (I != ByValArgFrameIndexMap.end()) | 
 |     return I->second; | 
 |   DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); | 
 |   return 0; | 
 | } | 
 |  | 
 | /// ComputeUsesVAFloatArgument - Determine if any floating-point values are | 
 | /// being passed to this variadic function, and set the MachineModuleInfo's | 
 | /// usesVAFloatArgument flag if so. This flag is used to emit an undefined | 
 | /// reference to _fltused on Windows, which will link in MSVCRT's | 
 | /// floating-point support. | 
 | void llvm::ComputeUsesVAFloatArgument(const CallInst &I, | 
 |                                       MachineModuleInfo *MMI) | 
 | { | 
 |   FunctionType *FT = cast<FunctionType>( | 
 |     I.getCalledValue()->getType()->getContainedType(0)); | 
 |   if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { | 
 |     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { | 
 |       Type* T = I.getArgOperand(i)->getType(); | 
 |       for (po_iterator<Type*> i = po_begin(T), e = po_end(T); | 
 |            i != e; ++i) { | 
 |         if (i->isFloatingPointTy()) { | 
 |           MMI->setUsesVAFloatArgument(true); | 
 |           return; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// AddCatchInfo - Extract the personality and type infos from an eh.selector | 
 | /// call, and add them to the specified machine basic block. | 
 | void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, | 
 |                         MachineBasicBlock *MBB) { | 
 |   // Inform the MachineModuleInfo of the personality for this landing pad. | 
 |   const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1)); | 
 |   assert(CE->getOpcode() == Instruction::BitCast && | 
 |          isa<Function>(CE->getOperand(0)) && | 
 |          "Personality should be a function"); | 
 |   MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); | 
 |  | 
 |   // Gather all the type infos for this landing pad and pass them along to | 
 |   // MachineModuleInfo. | 
 |   std::vector<const GlobalVariable *> TyInfo; | 
 |   unsigned N = I.getNumArgOperands(); | 
 |  | 
 |   for (unsigned i = N - 1; i > 1; --i) { | 
 |     if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) { | 
 |       unsigned FilterLength = CI->getZExtValue(); | 
 |       unsigned FirstCatch = i + FilterLength + !FilterLength; | 
 |       assert(FirstCatch <= N && "Invalid filter length"); | 
 |  | 
 |       if (FirstCatch < N) { | 
 |         TyInfo.reserve(N - FirstCatch); | 
 |         for (unsigned j = FirstCatch; j < N; ++j) | 
 |           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); | 
 |         MMI->addCatchTypeInfo(MBB, TyInfo); | 
 |         TyInfo.clear(); | 
 |       } | 
 |  | 
 |       if (!FilterLength) { | 
 |         // Cleanup. | 
 |         MMI->addCleanup(MBB); | 
 |       } else { | 
 |         // Filter. | 
 |         TyInfo.reserve(FilterLength - 1); | 
 |         for (unsigned j = i + 1; j < FirstCatch; ++j) | 
 |           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); | 
 |         MMI->addFilterTypeInfo(MBB, TyInfo); | 
 |         TyInfo.clear(); | 
 |       } | 
 |  | 
 |       N = i; | 
 |     } | 
 |   } | 
 |  | 
 |   if (N > 2) { | 
 |     TyInfo.reserve(N - 2); | 
 |     for (unsigned j = 2; j < N; ++j) | 
 |       TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); | 
 |     MMI->addCatchTypeInfo(MBB, TyInfo); | 
 |   } | 
 | } | 
 |  | 
 | /// AddLandingPadInfo - Extract the exception handling information from the | 
 | /// landingpad instruction and add them to the specified machine module info. | 
 | void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, | 
 |                              MachineBasicBlock *MBB) { | 
 |   MMI.addPersonality(MBB, | 
 |                      cast<Function>(I.getPersonalityFn()->stripPointerCasts())); | 
 |  | 
 |   if (I.isCleanup()) | 
 |     MMI.addCleanup(MBB); | 
 |  | 
 |   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, | 
 |   //        but we need to do it this way because of how the DWARF EH emitter | 
 |   //        processes the clauses. | 
 |   for (unsigned i = I.getNumClauses(); i != 0; --i) { | 
 |     Value *Val = I.getClause(i - 1); | 
 |     if (I.isCatch(i - 1)) { | 
 |       MMI.addCatchTypeInfo(MBB, | 
 |                            dyn_cast<GlobalVariable>(Val->stripPointerCasts())); | 
 |     } else { | 
 |       // Add filters in a list. | 
 |       Constant *CVal = cast<Constant>(Val); | 
 |       SmallVector<const GlobalVariable*, 4> FilterList; | 
 |       for (User::op_iterator | 
 |              II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) | 
 |         FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts())); | 
 |  | 
 |       MMI.addFilterTypeInfo(MBB, FilterList); | 
 |     } | 
 |   } | 
 | } |