| //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the ScheduleDAGInstrs class, which implements re-scheduling |
| // of MachineInstrs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "sched-instrs" |
| #include "ScheduleDAGInstrs.h" |
| #include "llvm/Operator.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetSubtarget.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/SmallSet.h" |
| using namespace llvm; |
| |
| ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, |
| const MachineLoopInfo &mli, |
| const MachineDominatorTree &mdt) |
| : ScheduleDAG(mf), MLI(mli), MDT(mdt), LoopRegs(MLI, MDT) {} |
| |
| /// Run - perform scheduling. |
| /// |
| void ScheduleDAGInstrs::Run(MachineBasicBlock *bb, |
| MachineBasicBlock::iterator begin, |
| MachineBasicBlock::iterator end, |
| unsigned endcount) { |
| BB = bb; |
| Begin = begin; |
| InsertPosIndex = endcount; |
| |
| ScheduleDAG::Run(bb, end); |
| } |
| |
| /// getUnderlyingObjectFromInt - This is the function that does the work of |
| /// looking through basic ptrtoint+arithmetic+inttoptr sequences. |
| static const Value *getUnderlyingObjectFromInt(const Value *V) { |
| do { |
| if (const Operator *U = dyn_cast<Operator>(V)) { |
| // If we find a ptrtoint, we can transfer control back to the |
| // regular getUnderlyingObjectFromInt. |
| if (U->getOpcode() == Instruction::PtrToInt) |
| return U->getOperand(0); |
| // If we find an add of a constant or a multiplied value, it's |
| // likely that the other operand will lead us to the base |
| // object. We don't have to worry about the case where the |
| // object address is somehow being computed by the multiply, |
| // because our callers only care when the result is an |
| // identifibale object. |
| if (U->getOpcode() != Instruction::Add || |
| (!isa<ConstantInt>(U->getOperand(1)) && |
| Operator::getOpcode(U->getOperand(1)) != Instruction::Mul)) |
| return V; |
| V = U->getOperand(0); |
| } else { |
| return V; |
| } |
| assert(isa<IntegerType>(V->getType()) && "Unexpected operand type!"); |
| } while (1); |
| } |
| |
| /// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject |
| /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. |
| static const Value *getUnderlyingObject(const Value *V) { |
| // First just call Value::getUnderlyingObject to let it do what it does. |
| do { |
| V = V->getUnderlyingObject(); |
| // If it found an inttoptr, use special code to continue climing. |
| if (Operator::getOpcode(V) != Instruction::IntToPtr) |
| break; |
| const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); |
| // If that succeeded in finding a pointer, continue the search. |
| if (!isa<PointerType>(O->getType())) |
| break; |
| V = O; |
| } while (1); |
| return V; |
| } |
| |
| /// getUnderlyingObjectForInstr - If this machine instr has memory reference |
| /// information and it can be tracked to a normal reference to a known |
| /// object, return the Value for that object. Otherwise return null. |
| static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI) { |
| if (!MI->hasOneMemOperand() || |
| !MI->memoperands_begin()->getValue() || |
| MI->memoperands_begin()->isVolatile()) |
| return 0; |
| |
| const Value *V = MI->memoperands_begin()->getValue(); |
| if (!V) |
| return 0; |
| |
| V = getUnderlyingObject(V); |
| if (!isa<PseudoSourceValue>(V) && !isIdentifiedObject(V)) |
| return 0; |
| |
| return V; |
| } |
| |
| void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) { |
| if (MachineLoop *ML = MLI.getLoopFor(BB)) |
| if (BB == ML->getLoopLatch()) { |
| MachineBasicBlock *Header = ML->getHeader(); |
| for (MachineBasicBlock::livein_iterator I = Header->livein_begin(), |
| E = Header->livein_end(); I != E; ++I) |
| LoopLiveInRegs.insert(*I); |
| LoopRegs.VisitLoop(ML); |
| } |
| } |
| |
| void ScheduleDAGInstrs::BuildSchedGraph() { |
| // We'll be allocating one SUnit for each instruction, plus one for |
| // the region exit node. |
| SUnits.reserve(BB->size()); |
| |
| // We build scheduling units by walking a block's instruction list from bottom |
| // to top. |
| |
| // Remember where a generic side-effecting instruction is as we procede. If |
| // ChainMMO is null, this is assumed to have arbitrary side-effects. If |
| // ChainMMO is non-null, then Chain makes only a single memory reference. |
| SUnit *Chain = 0; |
| MachineMemOperand *ChainMMO = 0; |
| |
| // Memory references to specific known memory locations are tracked so that |
| // they can be given more precise dependencies. |
| std::map<const Value *, SUnit *> MemDefs; |
| std::map<const Value *, std::vector<SUnit *> > MemUses; |
| |
| // Check to see if the scheduler cares about latencies. |
| bool UnitLatencies = ForceUnitLatencies(); |
| |
| // Ask the target if address-backscheduling is desirable, and if so how much. |
| const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>(); |
| unsigned SpecialAddressLatency = ST.getSpecialAddressLatency(); |
| |
| // Walk the list of instructions, from bottom moving up. |
| for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin; |
| MII != MIE; --MII) { |
| MachineInstr *MI = prior(MII); |
| const TargetInstrDesc &TID = MI->getDesc(); |
| assert(!TID.isTerminator() && !MI->isLabel() && |
| "Cannot schedule terminators or labels!"); |
| // Create the SUnit for this MI. |
| SUnit *SU = NewSUnit(MI); |
| |
| // Assign the Latency field of SU using target-provided information. |
| if (UnitLatencies) |
| SU->Latency = 1; |
| else |
| ComputeLatency(SU); |
| |
| // Add register-based dependencies (data, anti, and output). |
| for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { |
| const MachineOperand &MO = MI->getOperand(j); |
| if (!MO.isReg()) continue; |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0) continue; |
| |
| assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!"); |
| std::vector<SUnit *> &UseList = Uses[Reg]; |
| std::vector<SUnit *> &DefList = Defs[Reg]; |
| // Optionally add output and anti dependencies. For anti |
| // dependencies we use a latency of 0 because for a multi-issue |
| // target we want to allow the defining instruction to issue |
| // in the same cycle as the using instruction. |
| // TODO: Using a latency of 1 here for output dependencies assumes |
| // there's no cost for reusing registers. |
| SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; |
| unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1; |
| for (unsigned i = 0, e = DefList.size(); i != e; ++i) { |
| SUnit *DefSU = DefList[i]; |
| if (DefSU != SU && |
| (Kind != SDep::Output || !MO.isDead() || |
| !DefSU->getInstr()->registerDefIsDead(Reg))) |
| DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg)); |
| } |
| for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { |
| std::vector<SUnit *> &DefList = Defs[*Alias]; |
| for (unsigned i = 0, e = DefList.size(); i != e; ++i) { |
| SUnit *DefSU = DefList[i]; |
| if (DefSU != SU && |
| (Kind != SDep::Output || !MO.isDead() || |
| !DefSU->getInstr()->registerDefIsDead(Reg))) |
| DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias)); |
| } |
| } |
| |
| if (MO.isDef()) { |
| // Add any data dependencies. |
| unsigned DataLatency = SU->Latency; |
| for (unsigned i = 0, e = UseList.size(); i != e; ++i) { |
| SUnit *UseSU = UseList[i]; |
| if (UseSU != SU) { |
| unsigned LDataLatency = DataLatency; |
| // Optionally add in a special extra latency for nodes that |
| // feed addresses. |
| // TODO: Do this for register aliases too. |
| // TODO: Perhaps we should get rid of |
| // SpecialAddressLatency and just move this into |
| // adjustSchedDependency for the targets that care about |
| // it. |
| if (SpecialAddressLatency != 0 && !UnitLatencies) { |
| MachineInstr *UseMI = UseSU->getInstr(); |
| const TargetInstrDesc &UseTID = UseMI->getDesc(); |
| int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg); |
| assert(RegUseIndex >= 0 && "UseMI doesn's use register!"); |
| if ((UseTID.mayLoad() || UseTID.mayStore()) && |
| (unsigned)RegUseIndex < UseTID.getNumOperands() && |
| UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass()) |
| LDataLatency += SpecialAddressLatency; |
| } |
| // Adjust the dependence latency using operand def/use |
| // information (if any), and then allow the target to |
| // perform its own adjustments. |
| const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg); |
| if (!UnitLatencies) { |
| ComputeOperandLatency(SU, UseSU, (SDep &)dep); |
| ST.adjustSchedDependency(SU, UseSU, (SDep &)dep); |
| } |
| UseSU->addPred(dep); |
| } |
| } |
| for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { |
| std::vector<SUnit *> &UseList = Uses[*Alias]; |
| for (unsigned i = 0, e = UseList.size(); i != e; ++i) { |
| SUnit *UseSU = UseList[i]; |
| if (UseSU != SU) { |
| const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias); |
| if (!UnitLatencies) { |
| ComputeOperandLatency(SU, UseSU, (SDep &)dep); |
| ST.adjustSchedDependency(SU, UseSU, (SDep &)dep); |
| } |
| UseSU->addPred(dep); |
| } |
| } |
| } |
| |
| // If a def is going to wrap back around to the top of the loop, |
| // backschedule it. |
| if (!UnitLatencies && DefList.empty()) { |
| LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg); |
| if (I != LoopRegs.Deps.end()) { |
| const MachineOperand *UseMO = I->second.first; |
| unsigned Count = I->second.second; |
| const MachineInstr *UseMI = UseMO->getParent(); |
| unsigned UseMOIdx = UseMO - &UseMI->getOperand(0); |
| const TargetInstrDesc &UseTID = UseMI->getDesc(); |
| // TODO: If we knew the total depth of the region here, we could |
| // handle the case where the whole loop is inside the region but |
| // is large enough that the isScheduleHigh trick isn't needed. |
| if (UseMOIdx < UseTID.getNumOperands()) { |
| // Currently, we only support scheduling regions consisting of |
| // single basic blocks. Check to see if the instruction is in |
| // the same region by checking to see if it has the same parent. |
| if (UseMI->getParent() != MI->getParent()) { |
| unsigned Latency = SU->Latency; |
| if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) |
| Latency += SpecialAddressLatency; |
| // This is a wild guess as to the portion of the latency which |
| // will be overlapped by work done outside the current |
| // scheduling region. |
| Latency -= std::min(Latency, Count); |
| // Add the artifical edge. |
| ExitSU.addPred(SDep(SU, SDep::Order, Latency, |
| /*Reg=*/0, /*isNormalMemory=*/false, |
| /*isMustAlias=*/false, |
| /*isArtificial=*/true)); |
| } else if (SpecialAddressLatency > 0 && |
| UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) { |
| // The entire loop body is within the current scheduling region |
| // and the latency of this operation is assumed to be greater |
| // than the latency of the loop. |
| // TODO: Recursively mark data-edge predecessors as |
| // isScheduleHigh too. |
| SU->isScheduleHigh = true; |
| } |
| } |
| LoopRegs.Deps.erase(I); |
| } |
| } |
| |
| UseList.clear(); |
| if (!MO.isDead()) |
| DefList.clear(); |
| DefList.push_back(SU); |
| } else { |
| UseList.push_back(SU); |
| } |
| } |
| |
| // Add chain dependencies. |
| // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable |
| // after stack slots are lowered to actual addresses. |
| // TODO: Use an AliasAnalysis and do real alias-analysis queries, and |
| // produce more precise dependence information. |
| if (TID.isCall() || TID.hasUnmodeledSideEffects()) { |
| new_chain: |
| // This is the conservative case. Add dependencies on all memory |
| // references. |
| if (Chain) |
| Chain->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| Chain = SU; |
| for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) |
| PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| PendingLoads.clear(); |
| for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(), |
| E = MemDefs.end(); I != E; ++I) { |
| I->second->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| I->second = SU; |
| } |
| for (std::map<const Value *, std::vector<SUnit *> >::iterator I = |
| MemUses.begin(), E = MemUses.end(); I != E; ++I) { |
| for (unsigned i = 0, e = I->second.size(); i != e; ++i) |
| I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| I->second.clear(); |
| } |
| // See if it is known to just have a single memory reference. |
| MachineInstr *ChainMI = Chain->getInstr(); |
| const TargetInstrDesc &ChainTID = ChainMI->getDesc(); |
| if (!ChainTID.isCall() && |
| !ChainTID.hasUnmodeledSideEffects() && |
| ChainMI->hasOneMemOperand() && |
| !ChainMI->memoperands_begin()->isVolatile() && |
| ChainMI->memoperands_begin()->getValue()) |
| // We know that the Chain accesses one specific memory location. |
| ChainMMO = &*ChainMI->memoperands_begin(); |
| else |
| // Unknown memory accesses. Assume the worst. |
| ChainMMO = 0; |
| } else if (TID.mayStore()) { |
| if (const Value *V = getUnderlyingObjectForInstr(MI)) { |
| // A store to a specific PseudoSourceValue. Add precise dependencies. |
| // Handle the def in MemDefs, if there is one. |
| std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V); |
| if (I != MemDefs.end()) { |
| I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0, |
| /*isNormalMemory=*/true)); |
| I->second = SU; |
| } else { |
| MemDefs[V] = SU; |
| } |
| // Handle the uses in MemUses, if there are any. |
| std::map<const Value *, std::vector<SUnit *> >::iterator J = |
| MemUses.find(V); |
| if (J != MemUses.end()) { |
| for (unsigned i = 0, e = J->second.size(); i != e; ++i) |
| J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0, |
| /*isNormalMemory=*/true)); |
| J->second.clear(); |
| } |
| // Add dependencies from all the PendingLoads, since without |
| // memoperands we must assume they alias anything. |
| for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) |
| PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| // Add a general dependence too, if needed. |
| if (Chain) |
| Chain->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| } else |
| // Treat all other stores conservatively. |
| goto new_chain; |
| } else if (TID.mayLoad()) { |
| if (TII->isInvariantLoad(MI)) { |
| // Invariant load, no chain dependencies needed! |
| } else if (const Value *V = getUnderlyingObjectForInstr(MI)) { |
| // A load from a specific PseudoSourceValue. Add precise dependencies. |
| std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V); |
| if (I != MemDefs.end()) |
| I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0, |
| /*isNormalMemory=*/true)); |
| MemUses[V].push_back(SU); |
| |
| // Add a general dependence too, if needed. |
| if (Chain && (!ChainMMO || |
| (ChainMMO->isStore() || ChainMMO->isVolatile()))) |
| Chain->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| } else if (MI->hasVolatileMemoryRef()) { |
| // Treat volatile loads conservatively. Note that this includes |
| // cases where memoperand information is unavailable. |
| goto new_chain; |
| } else { |
| // A normal load. Depend on the general chain, as well as on |
| // all stores. In the absense of MachineMemOperand information, |
| // we can't even assume that the load doesn't alias well-behaved |
| // memory locations. |
| if (Chain) |
| Chain->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(), |
| E = MemDefs.end(); I != E; ++I) |
| I->second->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| PendingLoads.push_back(SU); |
| } |
| } |
| } |
| |
| for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) { |
| Defs[i].clear(); |
| Uses[i].clear(); |
| } |
| PendingLoads.clear(); |
| } |
| |
| void ScheduleDAGInstrs::FinishBlock() { |
| // Nothing to do. |
| } |
| |
| void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) { |
| const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); |
| |
| // Compute the latency for the node. |
| SU->Latency = |
| InstrItins.getStageLatency(SU->getInstr()->getDesc().getSchedClass()); |
| |
| // Simplistic target-independent heuristic: assume that loads take |
| // extra time. |
| if (InstrItins.isEmpty()) |
| if (SU->getInstr()->getDesc().mayLoad()) |
| SU->Latency += 2; |
| } |
| |
| void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use, |
| SDep& dep) const { |
| const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); |
| if (InstrItins.isEmpty()) |
| return; |
| |
| // For a data dependency with a known register... |
| if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0)) |
| return; |
| |
| const unsigned Reg = dep.getReg(); |
| |
| // ... find the definition of the register in the defining |
| // instruction |
| MachineInstr *DefMI = Def->getInstr(); |
| int DefIdx = DefMI->findRegisterDefOperandIdx(Reg); |
| if (DefIdx != -1) { |
| int DefCycle = InstrItins.getOperandCycle(DefMI->getDesc().getSchedClass(), DefIdx); |
| if (DefCycle >= 0) { |
| MachineInstr *UseMI = Use->getInstr(); |
| const unsigned UseClass = UseMI->getDesc().getSchedClass(); |
| |
| // For all uses of the register, calculate the maxmimum latency |
| int Latency = -1; |
| for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = UseMI->getOperand(i); |
| if (!MO.isReg() || !MO.isUse()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| if (MOReg != Reg) |
| continue; |
| |
| int UseCycle = InstrItins.getOperandCycle(UseClass, i); |
| if (UseCycle >= 0) |
| Latency = std::max(Latency, DefCycle - UseCycle + 1); |
| } |
| |
| // If we found a latency, then replace the existing dependence latency. |
| if (Latency >= 0) |
| dep.setLatency(Latency); |
| } |
| } |
| } |
| |
| void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { |
| SU->getInstr()->dump(); |
| } |
| |
| std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { |
| std::string s; |
| raw_string_ostream oss(s); |
| if (SU == &EntrySU) |
| oss << "<entry>"; |
| else if (SU == &ExitSU) |
| oss << "<exit>"; |
| else |
| SU->getInstr()->print(oss); |
| return oss.str(); |
| } |
| |
| // EmitSchedule - Emit the machine code in scheduled order. |
| MachineBasicBlock *ScheduleDAGInstrs:: |
| EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) { |
| // For MachineInstr-based scheduling, we're rescheduling the instructions in |
| // the block, so start by removing them from the block. |
| while (Begin != InsertPos) { |
| MachineBasicBlock::iterator I = Begin; |
| ++Begin; |
| BB->remove(I); |
| } |
| |
| // Then re-insert them according to the given schedule. |
| for (unsigned i = 0, e = Sequence.size(); i != e; i++) { |
| SUnit *SU = Sequence[i]; |
| if (!SU) { |
| // Null SUnit* is a noop. |
| EmitNoop(); |
| continue; |
| } |
| |
| BB->insert(InsertPos, SU->getInstr()); |
| } |
| |
| // Update the Begin iterator, as the first instruction in the block |
| // may have been scheduled later. |
| if (!Sequence.empty()) |
| Begin = Sequence[0]->getInstr(); |
| |
| return BB; |
| } |