| //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file was developed by the LLVM research group and is distributed under | 
 | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This implements the SelectionDAGISel class. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "isel" | 
 | #include "llvm/ADT/BitVector.h" | 
 | #include "llvm/Analysis/AliasAnalysis.h" | 
 | #include "llvm/CodeGen/SelectionDAGISel.h" | 
 | #include "llvm/CodeGen/ScheduleDAG.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/CallingConv.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/GlobalVariable.h" | 
 | #include "llvm/InlineAsm.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/Intrinsics.h" | 
 | #include "llvm/IntrinsicInst.h" | 
 | #include "llvm/ParameterAttributes.h" | 
 | #include "llvm/CodeGen/MachineModuleInfo.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/SchedulerRegistry.h" | 
 | #include "llvm/CodeGen/SelectionDAG.h" | 
 | #include "llvm/CodeGen/SSARegMap.h" | 
 | #include "llvm/Target/MRegisterInfo.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Target/TargetFrameInfo.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetLowering.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetOptions.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include <algorithm> | 
 | using namespace llvm; | 
 |  | 
 | #ifndef NDEBUG | 
 | static cl::opt<bool> | 
 | ViewISelDAGs("view-isel-dags", cl::Hidden, | 
 |           cl::desc("Pop up a window to show isel dags as they are selected")); | 
 | static cl::opt<bool> | 
 | ViewSchedDAGs("view-sched-dags", cl::Hidden, | 
 |           cl::desc("Pop up a window to show sched dags as they are processed")); | 
 | static cl::opt<bool> | 
 | ViewSUnitDAGs("view-sunit-dags", cl::Hidden, | 
 |           cl::desc("Pop up a window to show SUnit dags after they are processed")); | 
 | #else | 
 | static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0; | 
 | #endif | 
 |  | 
 | //===---------------------------------------------------------------------===// | 
 | /// | 
 | /// RegisterScheduler class - Track the registration of instruction schedulers. | 
 | /// | 
 | //===---------------------------------------------------------------------===// | 
 | MachinePassRegistry RegisterScheduler::Registry; | 
 |  | 
 | //===---------------------------------------------------------------------===// | 
 | /// | 
 | /// ISHeuristic command line option for instruction schedulers. | 
 | /// | 
 | //===---------------------------------------------------------------------===// | 
 | namespace { | 
 |   cl::opt<RegisterScheduler::FunctionPassCtor, false, | 
 |           RegisterPassParser<RegisterScheduler> > | 
 |   ISHeuristic("pre-RA-sched", | 
 |               cl::init(&createDefaultScheduler), | 
 |               cl::desc("Instruction schedulers available (before register allocation):")); | 
 |  | 
 |   static RegisterScheduler | 
 |   defaultListDAGScheduler("default", "  Best scheduler for the target", | 
 |                           createDefaultScheduler); | 
 | } // namespace | 
 |  | 
 | namespace { struct AsmOperandInfo; } | 
 |  | 
 | namespace { | 
 |   /// RegsForValue - This struct represents the physical registers that a | 
 |   /// particular value is assigned and the type information about the value. | 
 |   /// This is needed because values can be promoted into larger registers and | 
 |   /// expanded into multiple smaller registers than the value. | 
 |   struct VISIBILITY_HIDDEN RegsForValue { | 
 |     /// Regs - This list holds the register (for legal and promoted values) | 
 |     /// or register set (for expanded values) that the value should be assigned | 
 |     /// to. | 
 |     std::vector<unsigned> Regs; | 
 |      | 
 |     /// RegVT - The value type of each register. | 
 |     /// | 
 |     MVT::ValueType RegVT; | 
 |      | 
 |     /// ValueVT - The value type of the LLVM value, which may be promoted from | 
 |     /// RegVT or made from merging the two expanded parts. | 
 |     MVT::ValueType ValueVT; | 
 |      | 
 |     RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {} | 
 |      | 
 |     RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt) | 
 |       : RegVT(regvt), ValueVT(valuevt) { | 
 |         Regs.push_back(Reg); | 
 |     } | 
 |     RegsForValue(const std::vector<unsigned> ®s,  | 
 |                  MVT::ValueType regvt, MVT::ValueType valuevt) | 
 |       : Regs(regs), RegVT(regvt), ValueVT(valuevt) { | 
 |     } | 
 |      | 
 |     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from | 
 |     /// this value and returns the result as a ValueVT value.  This uses  | 
 |     /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
 |     /// If the Flag pointer is NULL, no flag is used. | 
 |     SDOperand getCopyFromRegs(SelectionDAG &DAG, | 
 |                               SDOperand &Chain, SDOperand *Flag) const; | 
 |  | 
 |     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the | 
 |     /// specified value into the registers specified by this object.  This uses  | 
 |     /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
 |     /// If the Flag pointer is NULL, no flag is used. | 
 |     void getCopyToRegs(SDOperand Val, SelectionDAG &DAG, | 
 |                        SDOperand &Chain, SDOperand *Flag) const; | 
 |      | 
 |     /// AddInlineAsmOperands - Add this value to the specified inlineasm node | 
 |     /// operand list.  This adds the code marker and includes the number of  | 
 |     /// values added into it. | 
 |     void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG, | 
 |                               std::vector<SDOperand> &Ops) const; | 
 |   }; | 
 | } | 
 |  | 
 | namespace llvm { | 
 |   //===--------------------------------------------------------------------===// | 
 |   /// createDefaultScheduler - This creates an instruction scheduler appropriate | 
 |   /// for the target. | 
 |   ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS, | 
 |                                       SelectionDAG *DAG, | 
 |                                       MachineBasicBlock *BB) { | 
 |     TargetLowering &TLI = IS->getTargetLowering(); | 
 |      | 
 |     if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) { | 
 |       return createTDListDAGScheduler(IS, DAG, BB); | 
 |     } else { | 
 |       assert(TLI.getSchedulingPreference() == | 
 |            TargetLowering::SchedulingForRegPressure && "Unknown sched type!"); | 
 |       return createBURRListDAGScheduler(IS, DAG, BB); | 
 |     } | 
 |   } | 
 |  | 
 |  | 
 |   //===--------------------------------------------------------------------===// | 
 |   /// FunctionLoweringInfo - This contains information that is global to a | 
 |   /// function that is used when lowering a region of the function. | 
 |   class FunctionLoweringInfo { | 
 |   public: | 
 |     TargetLowering &TLI; | 
 |     Function &Fn; | 
 |     MachineFunction &MF; | 
 |     SSARegMap *RegMap; | 
 |  | 
 |     FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF); | 
 |  | 
 |     /// MBBMap - A mapping from LLVM basic blocks to their machine code entry. | 
 |     std::map<const BasicBlock*, MachineBasicBlock *> MBBMap; | 
 |  | 
 |     /// ValueMap - Since we emit code for the function a basic block at a time, | 
 |     /// we must remember which virtual registers hold the values for | 
 |     /// cross-basic-block values. | 
 |     DenseMap<const Value*, unsigned> ValueMap; | 
 |  | 
 |     /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in | 
 |     /// the entry block.  This allows the allocas to be efficiently referenced | 
 |     /// anywhere in the function. | 
 |     std::map<const AllocaInst*, int> StaticAllocaMap; | 
 |  | 
 | #ifndef NDEBUG | 
 |     SmallSet<Instruction*, 8> CatchInfoLost; | 
 |     SmallSet<Instruction*, 8> CatchInfoFound; | 
 | #endif | 
 |  | 
 |     unsigned MakeReg(MVT::ValueType VT) { | 
 |       return RegMap->createVirtualRegister(TLI.getRegClassFor(VT)); | 
 |     } | 
 |      | 
 |     /// isExportedInst - Return true if the specified value is an instruction | 
 |     /// exported from its block. | 
 |     bool isExportedInst(const Value *V) { | 
 |       return ValueMap.count(V); | 
 |     } | 
 |  | 
 |     unsigned CreateRegForValue(const Value *V); | 
 |      | 
 |     unsigned InitializeRegForValue(const Value *V) { | 
 |       unsigned &R = ValueMap[V]; | 
 |       assert(R == 0 && "Already initialized this value register!"); | 
 |       return R = CreateRegForValue(V); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | /// isSelector - Return true if this instruction is a call to the | 
 | /// eh.selector intrinsic. | 
 | static bool isSelector(Instruction *I) { | 
 |   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) | 
 |     return II->getIntrinsicID() == Intrinsic::eh_selector; | 
 |   return false; | 
 | } | 
 |  | 
 | /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by | 
 | /// PHI nodes or outside of the basic block that defines it, or used by a  | 
 | /// switch instruction, which may expand to multiple basic blocks. | 
 | static bool isUsedOutsideOfDefiningBlock(Instruction *I) { | 
 |   if (isa<PHINode>(I)) return true; | 
 |   BasicBlock *BB = I->getParent(); | 
 |   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) | 
 |     if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) || | 
 |         // FIXME: Remove switchinst special case. | 
 |         isa<SwitchInst>(*UI)) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | /// isOnlyUsedInEntryBlock - If the specified argument is only used in the | 
 | /// entry block, return true.  This includes arguments used by switches, since | 
 | /// the switch may expand into multiple basic blocks. | 
 | static bool isOnlyUsedInEntryBlock(Argument *A) { | 
 |   BasicBlock *Entry = A->getParent()->begin(); | 
 |   for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) | 
 |     if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI)) | 
 |       return false;  // Use not in entry block. | 
 |   return true; | 
 | } | 
 |  | 
 | FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli, | 
 |                                            Function &fn, MachineFunction &mf) | 
 |     : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) { | 
 |  | 
 |   // Create a vreg for each argument register that is not dead and is used | 
 |   // outside of the entry block for the function. | 
 |   for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end(); | 
 |        AI != E; ++AI) | 
 |     if (!isOnlyUsedInEntryBlock(AI)) | 
 |       InitializeRegForValue(AI); | 
 |  | 
 |   // Initialize the mapping of values to registers.  This is only set up for | 
 |   // instruction values that are used outside of the block that defines | 
 |   // them. | 
 |   Function::iterator BB = Fn.begin(), EB = Fn.end(); | 
 |   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) | 
 |     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) | 
 |       if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { | 
 |         const Type *Ty = AI->getAllocatedType(); | 
 |         uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty); | 
 |         unsigned Align =  | 
 |           std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), | 
 |                    AI->getAlignment()); | 
 |  | 
 |         TySize *= CUI->getZExtValue();   // Get total allocated size. | 
 |         if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. | 
 |         StaticAllocaMap[AI] = | 
 |           MF.getFrameInfo()->CreateStackObject(TySize, Align); | 
 |       } | 
 |  | 
 |   for (; BB != EB; ++BB) | 
 |     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) | 
 |       if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) | 
 |         if (!isa<AllocaInst>(I) || | 
 |             !StaticAllocaMap.count(cast<AllocaInst>(I))) | 
 |           InitializeRegForValue(I); | 
 |  | 
 |   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This | 
 |   // also creates the initial PHI MachineInstrs, though none of the input | 
 |   // operands are populated. | 
 |   for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) { | 
 |     MachineBasicBlock *MBB = new MachineBasicBlock(BB); | 
 |     MBBMap[BB] = MBB; | 
 |     MF.getBasicBlockList().push_back(MBB); | 
 |  | 
 |     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as | 
 |     // appropriate. | 
 |     PHINode *PN; | 
 |     for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){ | 
 |       if (PN->use_empty()) continue; | 
 |        | 
 |       MVT::ValueType VT = TLI.getValueType(PN->getType()); | 
 |       unsigned NumRegisters = TLI.getNumRegisters(VT); | 
 |       unsigned PHIReg = ValueMap[PN]; | 
 |       assert(PHIReg && "PHI node does not have an assigned virtual register!"); | 
 |       const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo(); | 
 |       for (unsigned i = 0; i != NumRegisters; ++i) | 
 |         BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// CreateRegForValue - Allocate the appropriate number of virtual registers of | 
 | /// the correctly promoted or expanded types.  Assign these registers | 
 | /// consecutive vreg numbers and return the first assigned number. | 
 | unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) { | 
 |   MVT::ValueType VT = TLI.getValueType(V->getType()); | 
 |    | 
 |   unsigned NumRegisters = TLI.getNumRegisters(VT); | 
 |   MVT::ValueType RegisterVT = TLI.getRegisterType(VT); | 
 |  | 
 |   unsigned R = MakeReg(RegisterVT); | 
 |   for (unsigned i = 1; i != NumRegisters; ++i) | 
 |     MakeReg(RegisterVT); | 
 |  | 
 |   return R; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | /// SelectionDAGLowering - This is the common target-independent lowering | 
 | /// implementation that is parameterized by a TargetLowering object. | 
 | /// Also, targets can overload any lowering method. | 
 | /// | 
 | namespace llvm { | 
 | class SelectionDAGLowering { | 
 |   MachineBasicBlock *CurMBB; | 
 |  | 
 |   DenseMap<const Value*, SDOperand> NodeMap; | 
 |  | 
 |   /// PendingLoads - Loads are not emitted to the program immediately.  We bunch | 
 |   /// them up and then emit token factor nodes when possible.  This allows us to | 
 |   /// get simple disambiguation between loads without worrying about alias | 
 |   /// analysis. | 
 |   std::vector<SDOperand> PendingLoads; | 
 |  | 
 |   /// Case - A struct to record the Value for a switch case, and the | 
 |   /// case's target basic block. | 
 |   struct Case { | 
 |     Constant* Low; | 
 |     Constant* High; | 
 |     MachineBasicBlock* BB; | 
 |  | 
 |     Case() : Low(0), High(0), BB(0) { } | 
 |     Case(Constant* low, Constant* high, MachineBasicBlock* bb) : | 
 |       Low(low), High(high), BB(bb) { } | 
 |     uint64_t size() const { | 
 |       uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue(); | 
 |       uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue(); | 
 |       return (rHigh - rLow + 1ULL); | 
 |     } | 
 |   }; | 
 |  | 
 |   struct CaseBits { | 
 |     uint64_t Mask; | 
 |     MachineBasicBlock* BB; | 
 |     unsigned Bits; | 
 |  | 
 |     CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits): | 
 |       Mask(mask), BB(bb), Bits(bits) { } | 
 |   }; | 
 |  | 
 |   typedef std::vector<Case>           CaseVector; | 
 |   typedef std::vector<CaseBits>       CaseBitsVector; | 
 |   typedef CaseVector::iterator        CaseItr; | 
 |   typedef std::pair<CaseItr, CaseItr> CaseRange; | 
 |  | 
 |   /// CaseRec - A struct with ctor used in lowering switches to a binary tree | 
 |   /// of conditional branches. | 
 |   struct CaseRec { | 
 |     CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) : | 
 |     CaseBB(bb), LT(lt), GE(ge), Range(r) {} | 
 |  | 
 |     /// CaseBB - The MBB in which to emit the compare and branch | 
 |     MachineBasicBlock *CaseBB; | 
 |     /// LT, GE - If nonzero, we know the current case value must be less-than or | 
 |     /// greater-than-or-equal-to these Constants. | 
 |     Constant *LT; | 
 |     Constant *GE; | 
 |     /// Range - A pair of iterators representing the range of case values to be | 
 |     /// processed at this point in the binary search tree. | 
 |     CaseRange Range; | 
 |   }; | 
 |  | 
 |   typedef std::vector<CaseRec> CaseRecVector; | 
 |  | 
 |   /// The comparison function for sorting the switch case values in the vector. | 
 |   /// WARNING: Case ranges should be disjoint! | 
 |   struct CaseCmp { | 
 |     bool operator () (const Case& C1, const Case& C2) { | 
 |       assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High)); | 
 |       const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low); | 
 |       const ConstantInt* CI2 = cast<const ConstantInt>(C2.High); | 
 |       return CI1->getValue().slt(CI2->getValue()); | 
 |     } | 
 |   }; | 
 |  | 
 |   struct CaseBitsCmp { | 
 |     bool operator () (const CaseBits& C1, const CaseBits& C2) { | 
 |       return C1.Bits > C2.Bits; | 
 |     } | 
 |   }; | 
 |  | 
 |   unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI); | 
 |    | 
 | public: | 
 |   // TLI - This is information that describes the available target features we | 
 |   // need for lowering.  This indicates when operations are unavailable, | 
 |   // implemented with a libcall, etc. | 
 |   TargetLowering &TLI; | 
 |   SelectionDAG &DAG; | 
 |   const TargetData *TD; | 
 |   AliasAnalysis &AA; | 
 |  | 
 |   /// SwitchCases - Vector of CaseBlock structures used to communicate | 
 |   /// SwitchInst code generation information. | 
 |   std::vector<SelectionDAGISel::CaseBlock> SwitchCases; | 
 |   /// JTCases - Vector of JumpTable structures used to communicate | 
 |   /// SwitchInst code generation information. | 
 |   std::vector<SelectionDAGISel::JumpTableBlock> JTCases; | 
 |   std::vector<SelectionDAGISel::BitTestBlock> BitTestCases; | 
 |    | 
 |   /// FuncInfo - Information about the function as a whole. | 
 |   /// | 
 |   FunctionLoweringInfo &FuncInfo; | 
 |  | 
 |   SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli, | 
 |                        AliasAnalysis &aa, | 
 |                        FunctionLoweringInfo &funcinfo) | 
 |     : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa), | 
 |       FuncInfo(funcinfo) { | 
 |   } | 
 |  | 
 |   /// getRoot - Return the current virtual root of the Selection DAG. | 
 |   /// | 
 |   SDOperand getRoot() { | 
 |     if (PendingLoads.empty()) | 
 |       return DAG.getRoot(); | 
 |  | 
 |     if (PendingLoads.size() == 1) { | 
 |       SDOperand Root = PendingLoads[0]; | 
 |       DAG.setRoot(Root); | 
 |       PendingLoads.clear(); | 
 |       return Root; | 
 |     } | 
 |  | 
 |     // Otherwise, we have to make a token factor node. | 
 |     SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, | 
 |                                  &PendingLoads[0], PendingLoads.size()); | 
 |     PendingLoads.clear(); | 
 |     DAG.setRoot(Root); | 
 |     return Root; | 
 |   } | 
 |  | 
 |   SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg); | 
 |  | 
 |   void visit(Instruction &I) { visit(I.getOpcode(), I); } | 
 |  | 
 |   void visit(unsigned Opcode, User &I) { | 
 |     // Note: this doesn't use InstVisitor, because it has to work with | 
 |     // ConstantExpr's in addition to instructions. | 
 |     switch (Opcode) { | 
 |     default: assert(0 && "Unknown instruction type encountered!"); | 
 |              abort(); | 
 |       // Build the switch statement using the Instruction.def file. | 
 | #define HANDLE_INST(NUM, OPCODE, CLASS) \ | 
 |     case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); | 
 | #include "llvm/Instruction.def" | 
 |     } | 
 |   } | 
 |  | 
 |   void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; } | 
 |  | 
 |   SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr, | 
 |                         const Value *SV, SDOperand Root, | 
 |                         bool isVolatile, unsigned Alignment); | 
 |  | 
 |   SDOperand getIntPtrConstant(uint64_t Val) { | 
 |     return DAG.getConstant(Val, TLI.getPointerTy()); | 
 |   } | 
 |  | 
 |   SDOperand getValue(const Value *V); | 
 |  | 
 |   void setValue(const Value *V, SDOperand NewN) { | 
 |     SDOperand &N = NodeMap[V]; | 
 |     assert(N.Val == 0 && "Already set a value for this node!"); | 
 |     N = NewN; | 
 |   } | 
 |    | 
 |   void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber, | 
 |                             std::set<unsigned> &OutputRegs,  | 
 |                             std::set<unsigned> &InputRegs); | 
 |  | 
 |   void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB, | 
 |                             MachineBasicBlock *FBB, MachineBasicBlock *CurBB, | 
 |                             unsigned Opc); | 
 |   bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB); | 
 |   void ExportFromCurrentBlock(Value *V); | 
 |   void LowerCallTo(Instruction &I, | 
 |                    const Type *CalledValueTy, unsigned CallingConv, | 
 |                    bool IsTailCall, SDOperand Callee, unsigned OpIdx, | 
 |                    MachineBasicBlock *LandingPad = NULL); | 
 |    | 
 |   // Terminator instructions. | 
 |   void visitRet(ReturnInst &I); | 
 |   void visitBr(BranchInst &I); | 
 |   void visitSwitch(SwitchInst &I); | 
 |   void visitUnreachable(UnreachableInst &I) { /* noop */ } | 
 |  | 
 |   // Helpers for visitSwitch | 
 |   bool handleSmallSwitchRange(CaseRec& CR, | 
 |                               CaseRecVector& WorkList, | 
 |                               Value* SV, | 
 |                               MachineBasicBlock* Default); | 
 |   bool handleJTSwitchCase(CaseRec& CR, | 
 |                           CaseRecVector& WorkList, | 
 |                           Value* SV, | 
 |                           MachineBasicBlock* Default); | 
 |   bool handleBTSplitSwitchCase(CaseRec& CR, | 
 |                                CaseRecVector& WorkList, | 
 |                                Value* SV, | 
 |                                MachineBasicBlock* Default); | 
 |   bool handleBitTestsSwitchCase(CaseRec& CR, | 
 |                                 CaseRecVector& WorkList, | 
 |                                 Value* SV, | 
 |                                 MachineBasicBlock* Default);   | 
 |   void visitSwitchCase(SelectionDAGISel::CaseBlock &CB); | 
 |   void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B); | 
 |   void visitBitTestCase(MachineBasicBlock* NextMBB, | 
 |                         unsigned Reg, | 
 |                         SelectionDAGISel::BitTestCase &B); | 
 |   void visitJumpTable(SelectionDAGISel::JumpTable &JT); | 
 |   void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT, | 
 |                             SelectionDAGISel::JumpTableHeader &JTH); | 
 |    | 
 |   // These all get lowered before this pass. | 
 |   void visitInvoke(InvokeInst &I); | 
 |   void visitUnwind(UnwindInst &I); | 
 |  | 
 |   void visitBinary(User &I, unsigned OpCode); | 
 |   void visitShift(User &I, unsigned Opcode); | 
 |   void visitAdd(User &I) {  | 
 |     if (I.getType()->isFPOrFPVector()) | 
 |       visitBinary(I, ISD::FADD); | 
 |     else | 
 |       visitBinary(I, ISD::ADD); | 
 |   } | 
 |   void visitSub(User &I); | 
 |   void visitMul(User &I) { | 
 |     if (I.getType()->isFPOrFPVector()) | 
 |       visitBinary(I, ISD::FMUL); | 
 |     else | 
 |       visitBinary(I, ISD::MUL); | 
 |   } | 
 |   void visitURem(User &I) { visitBinary(I, ISD::UREM); } | 
 |   void visitSRem(User &I) { visitBinary(I, ISD::SREM); } | 
 |   void visitFRem(User &I) { visitBinary(I, ISD::FREM); } | 
 |   void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); } | 
 |   void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); } | 
 |   void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); } | 
 |   void visitAnd (User &I) { visitBinary(I, ISD::AND); } | 
 |   void visitOr  (User &I) { visitBinary(I, ISD::OR); } | 
 |   void visitXor (User &I) { visitBinary(I, ISD::XOR); } | 
 |   void visitShl (User &I) { visitShift(I, ISD::SHL); } | 
 |   void visitLShr(User &I) { visitShift(I, ISD::SRL); } | 
 |   void visitAShr(User &I) { visitShift(I, ISD::SRA); } | 
 |   void visitICmp(User &I); | 
 |   void visitFCmp(User &I); | 
 |   // Visit the conversion instructions | 
 |   void visitTrunc(User &I); | 
 |   void visitZExt(User &I); | 
 |   void visitSExt(User &I); | 
 |   void visitFPTrunc(User &I); | 
 |   void visitFPExt(User &I); | 
 |   void visitFPToUI(User &I); | 
 |   void visitFPToSI(User &I); | 
 |   void visitUIToFP(User &I); | 
 |   void visitSIToFP(User &I); | 
 |   void visitPtrToInt(User &I); | 
 |   void visitIntToPtr(User &I); | 
 |   void visitBitCast(User &I); | 
 |  | 
 |   void visitExtractElement(User &I); | 
 |   void visitInsertElement(User &I); | 
 |   void visitShuffleVector(User &I); | 
 |  | 
 |   void visitGetElementPtr(User &I); | 
 |   void visitSelect(User &I); | 
 |  | 
 |   void visitMalloc(MallocInst &I); | 
 |   void visitFree(FreeInst &I); | 
 |   void visitAlloca(AllocaInst &I); | 
 |   void visitLoad(LoadInst &I); | 
 |   void visitStore(StoreInst &I); | 
 |   void visitPHI(PHINode &I) { } // PHI nodes are handled specially. | 
 |   void visitCall(CallInst &I); | 
 |   void visitInlineAsm(CallInst &I); | 
 |   const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic); | 
 |   void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic); | 
 |  | 
 |   void visitVAStart(CallInst &I); | 
 |   void visitVAArg(VAArgInst &I); | 
 |   void visitVAEnd(CallInst &I); | 
 |   void visitVACopy(CallInst &I); | 
 |  | 
 |   void visitMemIntrinsic(CallInst &I, unsigned Op); | 
 |  | 
 |   void visitUserOp1(Instruction &I) { | 
 |     assert(0 && "UserOp1 should not exist at instruction selection time!"); | 
 |     abort(); | 
 |   } | 
 |   void visitUserOp2(Instruction &I) { | 
 |     assert(0 && "UserOp2 should not exist at instruction selection time!"); | 
 |     abort(); | 
 |   } | 
 | }; | 
 | } // end namespace llvm | 
 |  | 
 |  | 
 | /// getCopyFromParts - Create a value that contains the | 
 | /// specified legal parts combined into the value they represent. | 
 | static SDOperand getCopyFromParts(SelectionDAG &DAG, | 
 |                                   const SDOperand *Parts, | 
 |                                   unsigned NumParts, | 
 |                                   MVT::ValueType PartVT, | 
 |                                   MVT::ValueType ValueVT, | 
 |                                   ISD::NodeType AssertOp = ISD::DELETED_NODE) { | 
 |   if (!MVT::isVector(ValueVT) || NumParts == 1) { | 
 |     SDOperand Val = Parts[0]; | 
 |  | 
 |     // If the value was expanded, copy from the top part. | 
 |     if (NumParts > 1) { | 
 |       assert(NumParts == 2 && | 
 |              "Cannot expand to more than 2 elts yet!"); | 
 |       SDOperand Hi = Parts[1]; | 
 |       if (!DAG.getTargetLoweringInfo().isLittleEndian()) | 
 |         std::swap(Val, Hi); | 
 |       return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi); | 
 |     } | 
 |  | 
 |     // Otherwise, if the value was promoted or extended, truncate it to the | 
 |     // appropriate type. | 
 |     if (PartVT == ValueVT) | 
 |       return Val; | 
 |    | 
 |     if (MVT::isVector(PartVT)) { | 
 |       assert(MVT::isVector(ValueVT) && "Unknown vector conversion!"); | 
 |       return DAG.getNode(ISD::BIT_CONVERT, PartVT, Val); | 
 |     } | 
 |    | 
 |     if (MVT::isInteger(PartVT) && | 
 |         MVT::isInteger(ValueVT)) { | 
 |       if (ValueVT < PartVT) { | 
 |         // For a truncate, see if we have any information to | 
 |         // indicate whether the truncated bits will always be | 
 |         // zero or sign-extension. | 
 |         if (AssertOp != ISD::DELETED_NODE) | 
 |           Val = DAG.getNode(AssertOp, PartVT, Val, | 
 |                             DAG.getValueType(ValueVT)); | 
 |         return DAG.getNode(ISD::TRUNCATE, ValueVT, Val); | 
 |       } else { | 
 |         return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val); | 
 |       } | 
 |     } | 
 |    | 
 |     if (MVT::isFloatingPoint(PartVT) && | 
 |         MVT::isFloatingPoint(ValueVT)) | 
 |       return DAG.getNode(ISD::FP_ROUND, ValueVT, Val); | 
 |  | 
 |     if (MVT::getSizeInBits(PartVT) ==  | 
 |         MVT::getSizeInBits(ValueVT)) | 
 |       return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val); | 
 |  | 
 |     assert(0 && "Unknown mismatch!"); | 
 |   } | 
 |  | 
 |   // Handle a multi-element vector. | 
 |   MVT::ValueType IntermediateVT, RegisterVT; | 
 |   unsigned NumIntermediates; | 
 |   unsigned NumRegs = | 
 |     DAG.getTargetLoweringInfo() | 
 |       .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates, | 
 |                               RegisterVT); | 
 |  | 
 |   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); | 
 |   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); | 
 |   assert(RegisterVT == Parts[0].getValueType() && | 
 |          "Part type doesn't match part!"); | 
 |  | 
 |   // Assemble the parts into intermediate operands. | 
 |   SmallVector<SDOperand, 8> Ops(NumIntermediates); | 
 |   if (NumIntermediates == NumParts) { | 
 |     // If the register was not expanded, truncate or copy the value, | 
 |     // as appropriate. | 
 |     for (unsigned i = 0; i != NumParts; ++i) | 
 |       Ops[i] = getCopyFromParts(DAG, &Parts[i], 1, | 
 |                                 PartVT, IntermediateVT); | 
 |   } else if (NumParts > 0) { | 
 |     // If the intermediate type was expanded, build the intermediate operands | 
 |     // from the parts. | 
 |     assert(NumParts % NumIntermediates == 0 && | 
 |            "Must expand into a divisible number of parts!"); | 
 |     unsigned Factor = NumParts / NumIntermediates; | 
 |     for (unsigned i = 0; i != NumIntermediates; ++i) | 
 |       Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor, | 
 |                                 PartVT, IntermediateVT); | 
 |   } | 
 |    | 
 |   // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate | 
 |   // operands. | 
 |   return DAG.getNode(MVT::isVector(IntermediateVT) ? | 
 |                        ISD::CONCAT_VECTORS : | 
 |                        ISD::BUILD_VECTOR, | 
 |                      ValueVT, &Ops[0], NumIntermediates); | 
 | } | 
 |  | 
 | /// getCopyToParts - Create a series of nodes that contain the | 
 | /// specified value split into legal parts. | 
 | static void getCopyToParts(SelectionDAG &DAG, | 
 |                            SDOperand Val, | 
 |                            SDOperand *Parts, | 
 |                            unsigned NumParts, | 
 |                            MVT::ValueType PartVT) { | 
 |   TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   MVT::ValueType PtrVT = TLI.getPointerTy(); | 
 |   MVT::ValueType ValueVT = Val.getValueType(); | 
 |  | 
 |   if (!MVT::isVector(ValueVT) || NumParts == 1) { | 
 |     // If the value was expanded, copy from the parts. | 
 |     if (NumParts > 1) { | 
 |       for (unsigned i = 0; i != NumParts; ++i) | 
 |         Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val, | 
 |                                DAG.getConstant(i, PtrVT)); | 
 |       if (!DAG.getTargetLoweringInfo().isLittleEndian()) | 
 |         std::reverse(Parts, Parts + NumParts); | 
 |       return; | 
 |     } | 
 |  | 
 |     // If there is a single part and the types differ, this must be | 
 |     // a promotion. | 
 |     if (PartVT != ValueVT) { | 
 |       if (MVT::isVector(PartVT)) { | 
 |         assert(MVT::isVector(ValueVT) && | 
 |                "Not a vector-vector cast?"); | 
 |         Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val); | 
 |       } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) { | 
 |         if (PartVT < ValueVT) | 
 |           Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val); | 
 |         else | 
 |           Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val); | 
 |       } else if (MVT::isFloatingPoint(PartVT) && | 
 |                  MVT::isFloatingPoint(ValueVT)) { | 
 |         Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val); | 
 |       } else if (MVT::getSizeInBits(PartVT) ==  | 
 |                  MVT::getSizeInBits(ValueVT)) { | 
 |         Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val); | 
 |       } else { | 
 |         assert(0 && "Unknown mismatch!"); | 
 |       } | 
 |     } | 
 |     Parts[0] = Val; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Handle a multi-element vector. | 
 |   MVT::ValueType IntermediateVT, RegisterVT; | 
 |   unsigned NumIntermediates; | 
 |   unsigned NumRegs = | 
 |     DAG.getTargetLoweringInfo() | 
 |       .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates, | 
 |                               RegisterVT); | 
 |   unsigned NumElements = MVT::getVectorNumElements(ValueVT); | 
 |  | 
 |   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); | 
 |   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); | 
 |  | 
 |   // Split the vector into intermediate operands. | 
 |   SmallVector<SDOperand, 8> Ops(NumIntermediates); | 
 |   for (unsigned i = 0; i != NumIntermediates; ++i) | 
 |     if (MVT::isVector(IntermediateVT)) | 
 |       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, | 
 |                            IntermediateVT, Val, | 
 |                            DAG.getConstant(i * (NumElements / NumIntermediates), | 
 |                                            PtrVT)); | 
 |     else | 
 |       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, | 
 |                            IntermediateVT, Val,  | 
 |                            DAG.getConstant(i, PtrVT)); | 
 |  | 
 |   // Split the intermediate operands into legal parts. | 
 |   if (NumParts == NumIntermediates) { | 
 |     // If the register was not expanded, promote or copy the value, | 
 |     // as appropriate. | 
 |     for (unsigned i = 0; i != NumParts; ++i) | 
 |       getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT); | 
 |   } else if (NumParts > 0) { | 
 |     // If the intermediate type was expanded, split each the value into | 
 |     // legal parts. | 
 |     assert(NumParts % NumIntermediates == 0 && | 
 |            "Must expand into a divisible number of parts!"); | 
 |     unsigned Factor = NumParts / NumIntermediates; | 
 |     for (unsigned i = 0; i != NumIntermediates; ++i) | 
 |       getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | SDOperand SelectionDAGLowering::getValue(const Value *V) { | 
 |   SDOperand &N = NodeMap[V]; | 
 |   if (N.Val) return N; | 
 |    | 
 |   const Type *VTy = V->getType(); | 
 |   MVT::ValueType VT = TLI.getValueType(VTy); | 
 |   if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) { | 
 |     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { | 
 |       visit(CE->getOpcode(), *CE); | 
 |       SDOperand N1 = NodeMap[V]; | 
 |       assert(N1.Val && "visit didn't populate the ValueMap!"); | 
 |       return N1; | 
 |     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) { | 
 |       return N = DAG.getGlobalAddress(GV, VT); | 
 |     } else if (isa<ConstantPointerNull>(C)) { | 
 |       return N = DAG.getConstant(0, TLI.getPointerTy()); | 
 |     } else if (isa<UndefValue>(C)) { | 
 |       if (!isa<VectorType>(VTy)) | 
 |         return N = DAG.getNode(ISD::UNDEF, VT); | 
 |  | 
 |       // Create a BUILD_VECTOR of undef nodes. | 
 |       const VectorType *PTy = cast<VectorType>(VTy); | 
 |       unsigned NumElements = PTy->getNumElements(); | 
 |       MVT::ValueType PVT = TLI.getValueType(PTy->getElementType()); | 
 |  | 
 |       SmallVector<SDOperand, 8> Ops; | 
 |       Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT)); | 
 |        | 
 |       // Create a VConstant node with generic Vector type. | 
 |       MVT::ValueType VT = MVT::getVectorType(PVT, NumElements); | 
 |       return N = DAG.getNode(ISD::BUILD_VECTOR, VT, | 
 |                              &Ops[0], Ops.size()); | 
 |     } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { | 
 |       return N = DAG.getConstantFP(CFP->getValueAPF(), VT); | 
 |     } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) { | 
 |       unsigned NumElements = PTy->getNumElements(); | 
 |       MVT::ValueType PVT = TLI.getValueType(PTy->getElementType()); | 
 |        | 
 |       // Now that we know the number and type of the elements, push a | 
 |       // Constant or ConstantFP node onto the ops list for each element of | 
 |       // the vector constant. | 
 |       SmallVector<SDOperand, 8> Ops; | 
 |       if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) { | 
 |         for (unsigned i = 0; i != NumElements; ++i) | 
 |           Ops.push_back(getValue(CP->getOperand(i))); | 
 |       } else { | 
 |         assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); | 
 |         SDOperand Op; | 
 |         if (MVT::isFloatingPoint(PVT)) | 
 |           Op = DAG.getConstantFP(0, PVT); | 
 |         else | 
 |           Op = DAG.getConstant(0, PVT); | 
 |         Ops.assign(NumElements, Op); | 
 |       } | 
 |        | 
 |       // Create a BUILD_VECTOR node. | 
 |       MVT::ValueType VT = MVT::getVectorType(PVT, NumElements); | 
 |       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], | 
 |                                       Ops.size()); | 
 |     } else { | 
 |       // Canonicalize all constant ints to be unsigned. | 
 |       return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT); | 
 |     } | 
 |   } | 
 |        | 
 |   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { | 
 |     std::map<const AllocaInst*, int>::iterator SI = | 
 |     FuncInfo.StaticAllocaMap.find(AI); | 
 |     if (SI != FuncInfo.StaticAllocaMap.end()) | 
 |       return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); | 
 |   } | 
 |        | 
 |   unsigned InReg = FuncInfo.ValueMap[V]; | 
 |   assert(InReg && "Value not in map!"); | 
 |    | 
 |   MVT::ValueType RegisterVT = TLI.getRegisterType(VT); | 
 |   unsigned NumRegs = TLI.getNumRegisters(VT); | 
 |  | 
 |   std::vector<unsigned> Regs(NumRegs); | 
 |   for (unsigned i = 0; i != NumRegs; ++i) | 
 |     Regs[i] = InReg + i; | 
 |  | 
 |   RegsForValue RFV(Regs, RegisterVT, VT); | 
 |   SDOperand Chain = DAG.getEntryNode(); | 
 |  | 
 |   return RFV.getCopyFromRegs(DAG, Chain, NULL); | 
 | } | 
 |  | 
 |  | 
 | void SelectionDAGLowering::visitRet(ReturnInst &I) { | 
 |   if (I.getNumOperands() == 0) { | 
 |     DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot())); | 
 |     return; | 
 |   } | 
 |   SmallVector<SDOperand, 8> NewValues; | 
 |   NewValues.push_back(getRoot()); | 
 |   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { | 
 |     SDOperand RetOp = getValue(I.getOperand(i)); | 
 |      | 
 |     // If this is an integer return value, we need to promote it ourselves to | 
 |     // the full width of a register, since getCopyToParts and Legalize will use | 
 |     // ANY_EXTEND rather than sign/zero. | 
 |     // FIXME: C calling convention requires the return type to be promoted to | 
 |     // at least 32-bit. But this is not necessary for non-C calling conventions. | 
 |     if (MVT::isInteger(RetOp.getValueType()) &&  | 
 |         RetOp.getValueType() < MVT::i64) { | 
 |       MVT::ValueType TmpVT; | 
 |       if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote) | 
 |         TmpVT = TLI.getTypeToTransformTo(MVT::i32); | 
 |       else | 
 |         TmpVT = MVT::i32; | 
 |       const FunctionType *FTy = I.getParent()->getParent()->getFunctionType(); | 
 |       const ParamAttrsList *Attrs = FTy->getParamAttrs(); | 
 |       ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
 |       if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt)) | 
 |         ExtendKind = ISD::SIGN_EXTEND; | 
 |       if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt)) | 
 |         ExtendKind = ISD::ZERO_EXTEND; | 
 |       RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp); | 
 |       NewValues.push_back(RetOp); | 
 |       NewValues.push_back(DAG.getConstant(false, MVT::i32)); | 
 |     } else { | 
 |       MVT::ValueType VT = RetOp.getValueType(); | 
 |       unsigned NumParts = TLI.getNumRegisters(VT); | 
 |       MVT::ValueType PartVT = TLI.getRegisterType(VT); | 
 |       SmallVector<SDOperand, 4> Parts(NumParts); | 
 |       getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT); | 
 |       for (unsigned i = 0; i < NumParts; ++i) { | 
 |         NewValues.push_back(Parts[i]); | 
 |         NewValues.push_back(DAG.getConstant(false, MVT::i32)); | 
 |       } | 
 |     } | 
 |   } | 
 |   DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, | 
 |                           &NewValues[0], NewValues.size())); | 
 | } | 
 |  | 
 | /// ExportFromCurrentBlock - If this condition isn't known to be exported from | 
 | /// the current basic block, add it to ValueMap now so that we'll get a | 
 | /// CopyTo/FromReg. | 
 | void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) { | 
 |   // No need to export constants. | 
 |   if (!isa<Instruction>(V) && !isa<Argument>(V)) return; | 
 |    | 
 |   // Already exported? | 
 |   if (FuncInfo.isExportedInst(V)) return; | 
 |  | 
 |   unsigned Reg = FuncInfo.InitializeRegForValue(V); | 
 |   PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg)); | 
 | } | 
 |  | 
 | bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V, | 
 |                                                     const BasicBlock *FromBB) { | 
 |   // The operands of the setcc have to be in this block.  We don't know | 
 |   // how to export them from some other block. | 
 |   if (Instruction *VI = dyn_cast<Instruction>(V)) { | 
 |     // Can export from current BB. | 
 |     if (VI->getParent() == FromBB) | 
 |       return true; | 
 |      | 
 |     // Is already exported, noop. | 
 |     return FuncInfo.isExportedInst(V); | 
 |   } | 
 |    | 
 |   // If this is an argument, we can export it if the BB is the entry block or | 
 |   // if it is already exported. | 
 |   if (isa<Argument>(V)) { | 
 |     if (FromBB == &FromBB->getParent()->getEntryBlock()) | 
 |       return true; | 
 |  | 
 |     // Otherwise, can only export this if it is already exported. | 
 |     return FuncInfo.isExportedInst(V); | 
 |   } | 
 |    | 
 |   // Otherwise, constants can always be exported. | 
 |   return true; | 
 | } | 
 |  | 
 | static bool InBlock(const Value *V, const BasicBlock *BB) { | 
 |   if (const Instruction *I = dyn_cast<Instruction>(V)) | 
 |     return I->getParent() == BB; | 
 |   return true; | 
 | } | 
 |  | 
 | /// FindMergedConditions - If Cond is an expression like  | 
 | void SelectionDAGLowering::FindMergedConditions(Value *Cond, | 
 |                                                 MachineBasicBlock *TBB, | 
 |                                                 MachineBasicBlock *FBB, | 
 |                                                 MachineBasicBlock *CurBB, | 
 |                                                 unsigned Opc) { | 
 |   // If this node is not part of the or/and tree, emit it as a branch. | 
 |   Instruction *BOp = dyn_cast<Instruction>(Cond); | 
 |  | 
 |   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||  | 
 |       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || | 
 |       BOp->getParent() != CurBB->getBasicBlock() || | 
 |       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || | 
 |       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { | 
 |     const BasicBlock *BB = CurBB->getBasicBlock(); | 
 |      | 
 |     // If the leaf of the tree is a comparison, merge the condition into  | 
 |     // the caseblock. | 
 |     if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) && | 
 |         // The operands of the cmp have to be in this block.  We don't know | 
 |         // how to export them from some other block.  If this is the first block | 
 |         // of the sequence, no exporting is needed. | 
 |         (CurBB == CurMBB || | 
 |          (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && | 
 |           isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) { | 
 |       BOp = cast<Instruction>(Cond); | 
 |       ISD::CondCode Condition; | 
 |       if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { | 
 |         switch (IC->getPredicate()) { | 
 |         default: assert(0 && "Unknown icmp predicate opcode!"); | 
 |         case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break; | 
 |         case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break; | 
 |         case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break; | 
 |         case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break; | 
 |         case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break; | 
 |         case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break; | 
 |         case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break; | 
 |         case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break; | 
 |         case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break; | 
 |         case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break; | 
 |         } | 
 |       } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { | 
 |         ISD::CondCode FPC, FOC; | 
 |         switch (FC->getPredicate()) { | 
 |         default: assert(0 && "Unknown fcmp predicate opcode!"); | 
 |         case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; | 
 |         case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; | 
 |         case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break; | 
 |         case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break; | 
 |         case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break; | 
 |         case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break; | 
 |         case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break; | 
 |         case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break; | 
 |         case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break; | 
 |         case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; | 
 |         case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break; | 
 |         case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break; | 
 |         case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break; | 
 |         case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break; | 
 |         case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break; | 
 |         case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break; | 
 |         } | 
 |         if (FiniteOnlyFPMath()) | 
 |           Condition = FOC; | 
 |         else  | 
 |           Condition = FPC; | 
 |       } else { | 
 |         Condition = ISD::SETEQ; // silence warning. | 
 |         assert(0 && "Unknown compare instruction"); | 
 |       } | 
 |        | 
 |       SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),  | 
 |                                      BOp->getOperand(1), NULL, TBB, FBB, CurBB); | 
 |       SwitchCases.push_back(CB); | 
 |       return; | 
 |     } | 
 |      | 
 |     // Create a CaseBlock record representing this branch. | 
 |     SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(), | 
 |                                    NULL, TBB, FBB, CurBB); | 
 |     SwitchCases.push_back(CB); | 
 |     return; | 
 |   } | 
 |    | 
 |    | 
 |   //  Create TmpBB after CurBB. | 
 |   MachineFunction::iterator BBI = CurBB; | 
 |   MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock()); | 
 |   CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB); | 
 |    | 
 |   if (Opc == Instruction::Or) { | 
 |     // Codegen X | Y as: | 
 |     //   jmp_if_X TBB | 
 |     //   jmp TmpBB | 
 |     // TmpBB: | 
 |     //   jmp_if_Y TBB | 
 |     //   jmp FBB | 
 |     // | 
 |    | 
 |     // Emit the LHS condition. | 
 |     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); | 
 |    | 
 |     // Emit the RHS condition into TmpBB. | 
 |     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); | 
 |   } else { | 
 |     assert(Opc == Instruction::And && "Unknown merge op!"); | 
 |     // Codegen X & Y as: | 
 |     //   jmp_if_X TmpBB | 
 |     //   jmp FBB | 
 |     // TmpBB: | 
 |     //   jmp_if_Y TBB | 
 |     //   jmp FBB | 
 |     // | 
 |     //  This requires creation of TmpBB after CurBB. | 
 |      | 
 |     // Emit the LHS condition. | 
 |     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); | 
 |      | 
 |     // Emit the RHS condition into TmpBB. | 
 |     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); | 
 |   } | 
 | } | 
 |  | 
 | /// If the set of cases should be emitted as a series of branches, return true. | 
 | /// If we should emit this as a bunch of and/or'd together conditions, return | 
 | /// false. | 
 | static bool  | 
 | ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) { | 
 |   if (Cases.size() != 2) return true; | 
 |    | 
 |   // If this is two comparisons of the same values or'd or and'd together, they | 
 |   // will get folded into a single comparison, so don't emit two blocks. | 
 |   if ((Cases[0].CmpLHS == Cases[1].CmpLHS && | 
 |        Cases[0].CmpRHS == Cases[1].CmpRHS) || | 
 |       (Cases[0].CmpRHS == Cases[1].CmpLHS && | 
 |        Cases[0].CmpLHS == Cases[1].CmpRHS)) { | 
 |     return false; | 
 |   } | 
 |    | 
 |   return true; | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitBr(BranchInst &I) { | 
 |   // Update machine-CFG edges. | 
 |   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; | 
 |  | 
 |   // Figure out which block is immediately after the current one. | 
 |   MachineBasicBlock *NextBlock = 0; | 
 |   MachineFunction::iterator BBI = CurMBB; | 
 |   if (++BBI != CurMBB->getParent()->end()) | 
 |     NextBlock = BBI; | 
 |  | 
 |   if (I.isUnconditional()) { | 
 |     // If this is not a fall-through branch, emit the branch. | 
 |     if (Succ0MBB != NextBlock) | 
 |       DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(), | 
 |                               DAG.getBasicBlock(Succ0MBB))); | 
 |  | 
 |     // Update machine-CFG edges. | 
 |     CurMBB->addSuccessor(Succ0MBB); | 
 |  | 
 |     return; | 
 |   } | 
 |  | 
 |   // If this condition is one of the special cases we handle, do special stuff | 
 |   // now. | 
 |   Value *CondVal = I.getCondition(); | 
 |   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; | 
 |  | 
 |   // If this is a series of conditions that are or'd or and'd together, emit | 
 |   // this as a sequence of branches instead of setcc's with and/or operations. | 
 |   // For example, instead of something like: | 
 |   //     cmp A, B | 
 |   //     C = seteq  | 
 |   //     cmp D, E | 
 |   //     F = setle  | 
 |   //     or C, F | 
 |   //     jnz foo | 
 |   // Emit: | 
 |   //     cmp A, B | 
 |   //     je foo | 
 |   //     cmp D, E | 
 |   //     jle foo | 
 |   // | 
 |   if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { | 
 |     if (BOp->hasOneUse() &&  | 
 |         (BOp->getOpcode() == Instruction::And || | 
 |          BOp->getOpcode() == Instruction::Or)) { | 
 |       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); | 
 |       // If the compares in later blocks need to use values not currently | 
 |       // exported from this block, export them now.  This block should always | 
 |       // be the first entry. | 
 |       assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); | 
 |        | 
 |       // Allow some cases to be rejected. | 
 |       if (ShouldEmitAsBranches(SwitchCases)) { | 
 |         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { | 
 |           ExportFromCurrentBlock(SwitchCases[i].CmpLHS); | 
 |           ExportFromCurrentBlock(SwitchCases[i].CmpRHS); | 
 |         } | 
 |          | 
 |         // Emit the branch for this block. | 
 |         visitSwitchCase(SwitchCases[0]); | 
 |         SwitchCases.erase(SwitchCases.begin()); | 
 |         return; | 
 |       } | 
 |        | 
 |       // Okay, we decided not to do this, remove any inserted MBB's and clear | 
 |       // SwitchCases. | 
 |       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) | 
 |         CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB); | 
 |        | 
 |       SwitchCases.clear(); | 
 |     } | 
 |   } | 
 |    | 
 |   // Create a CaseBlock record representing this branch. | 
 |   SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(), | 
 |                                  NULL, Succ0MBB, Succ1MBB, CurMBB); | 
 |   // Use visitSwitchCase to actually insert the fast branch sequence for this | 
 |   // cond branch. | 
 |   visitSwitchCase(CB); | 
 | } | 
 |  | 
 | /// visitSwitchCase - Emits the necessary code to represent a single node in | 
 | /// the binary search tree resulting from lowering a switch instruction. | 
 | void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) { | 
 |   SDOperand Cond; | 
 |   SDOperand CondLHS = getValue(CB.CmpLHS); | 
 |    | 
 |   // Build the setcc now.  | 
 |   if (CB.CmpMHS == NULL) { | 
 |     // Fold "(X == true)" to X and "(X == false)" to !X to | 
 |     // handle common cases produced by branch lowering. | 
 |     if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ) | 
 |       Cond = CondLHS; | 
 |     else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) { | 
 |       SDOperand True = DAG.getConstant(1, CondLHS.getValueType()); | 
 |       Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True); | 
 |     } else | 
 |       Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); | 
 |   } else { | 
 |     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); | 
 |  | 
 |     uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue(); | 
 |     uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue(); | 
 |  | 
 |     SDOperand CmpOp = getValue(CB.CmpMHS); | 
 |     MVT::ValueType VT = CmpOp.getValueType(); | 
 |  | 
 |     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { | 
 |       Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE); | 
 |     } else { | 
 |       SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT)); | 
 |       Cond = DAG.getSetCC(MVT::i1, SUB, | 
 |                           DAG.getConstant(High-Low, VT), ISD::SETULE); | 
 |     } | 
 |      | 
 |   } | 
 |    | 
 |   // Set NextBlock to be the MBB immediately after the current one, if any. | 
 |   // This is used to avoid emitting unnecessary branches to the next block. | 
 |   MachineBasicBlock *NextBlock = 0; | 
 |   MachineFunction::iterator BBI = CurMBB; | 
 |   if (++BBI != CurMBB->getParent()->end()) | 
 |     NextBlock = BBI; | 
 |    | 
 |   // If the lhs block is the next block, invert the condition so that we can | 
 |   // fall through to the lhs instead of the rhs block. | 
 |   if (CB.TrueBB == NextBlock) { | 
 |     std::swap(CB.TrueBB, CB.FalseBB); | 
 |     SDOperand True = DAG.getConstant(1, Cond.getValueType()); | 
 |     Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True); | 
 |   } | 
 |   SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond, | 
 |                                  DAG.getBasicBlock(CB.TrueBB)); | 
 |   if (CB.FalseBB == NextBlock) | 
 |     DAG.setRoot(BrCond); | 
 |   else | 
 |     DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,  | 
 |                             DAG.getBasicBlock(CB.FalseBB))); | 
 |   // Update successor info | 
 |   CurMBB->addSuccessor(CB.TrueBB); | 
 |   CurMBB->addSuccessor(CB.FalseBB); | 
 | } | 
 |  | 
 | /// visitJumpTable - Emit JumpTable node in the current MBB | 
 | void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) { | 
 |   // Emit the code for the jump table | 
 |   assert(JT.Reg != -1U && "Should lower JT Header first!"); | 
 |   MVT::ValueType PTy = TLI.getPointerTy(); | 
 |   SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy); | 
 |   SDOperand Table = DAG.getJumpTable(JT.JTI, PTy); | 
 |   DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1), | 
 |                           Table, Index)); | 
 |   return; | 
 | } | 
 |  | 
 | /// visitJumpTableHeader - This function emits necessary code to produce index | 
 | /// in the JumpTable from switch case. | 
 | void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT, | 
 |                                          SelectionDAGISel::JumpTableHeader &JTH) { | 
 |   // Subtract the lowest switch case value from the value being switched on | 
 |   // and conditional branch to default mbb if the result is greater than the | 
 |   // difference between smallest and largest cases. | 
 |   SDOperand SwitchOp = getValue(JTH.SValue); | 
 |   MVT::ValueType VT = SwitchOp.getValueType(); | 
 |   SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp, | 
 |                               DAG.getConstant(JTH.First, VT)); | 
 |    | 
 |   // The SDNode we just created, which holds the value being switched on | 
 |   // minus the the smallest case value, needs to be copied to a virtual | 
 |   // register so it can be used as an index into the jump table in a  | 
 |   // subsequent basic block.  This value may be smaller or larger than the | 
 |   // target's pointer type, and therefore require extension or truncating. | 
 |   if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy())) | 
 |     SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB); | 
 |   else | 
 |     SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB); | 
 |    | 
 |   unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); | 
 |   SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp); | 
 |   JT.Reg = JumpTableReg; | 
 |  | 
 |   // Emit the range check for the jump table, and branch to the default | 
 |   // block for the switch statement if the value being switched on exceeds | 
 |   // the largest case in the switch. | 
 |   SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB, | 
 |                                DAG.getConstant(JTH.Last-JTH.First,VT), | 
 |                                ISD::SETUGT); | 
 |  | 
 |   // Set NextBlock to be the MBB immediately after the current one, if any. | 
 |   // This is used to avoid emitting unnecessary branches to the next block. | 
 |   MachineBasicBlock *NextBlock = 0; | 
 |   MachineFunction::iterator BBI = CurMBB; | 
 |   if (++BBI != CurMBB->getParent()->end()) | 
 |     NextBlock = BBI; | 
 |  | 
 |   SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP, | 
 |                                  DAG.getBasicBlock(JT.Default)); | 
 |  | 
 |   if (JT.MBB == NextBlock) | 
 |     DAG.setRoot(BrCond); | 
 |   else | 
 |     DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,  | 
 |                             DAG.getBasicBlock(JT.MBB))); | 
 |  | 
 |   return; | 
 | } | 
 |  | 
 | /// visitBitTestHeader - This function emits necessary code to produce value | 
 | /// suitable for "bit tests" | 
 | void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) { | 
 |   // Subtract the minimum value | 
 |   SDOperand SwitchOp = getValue(B.SValue); | 
 |   MVT::ValueType VT = SwitchOp.getValueType(); | 
 |   SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp, | 
 |                               DAG.getConstant(B.First, VT)); | 
 |  | 
 |   // Check range | 
 |   SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB, | 
 |                                     DAG.getConstant(B.Range, VT), | 
 |                                     ISD::SETUGT); | 
 |  | 
 |   SDOperand ShiftOp; | 
 |   if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy())) | 
 |     ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB); | 
 |   else | 
 |     ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB); | 
 |  | 
 |   // Make desired shift | 
 |   SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(), | 
 |                                     DAG.getConstant(1, TLI.getPointerTy()), | 
 |                                     ShiftOp); | 
 |  | 
 |   unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy()); | 
 |   SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal); | 
 |   B.Reg = SwitchReg; | 
 |  | 
 |   SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp, | 
 |                                   DAG.getBasicBlock(B.Default)); | 
 |  | 
 |   // Set NextBlock to be the MBB immediately after the current one, if any. | 
 |   // This is used to avoid emitting unnecessary branches to the next block. | 
 |   MachineBasicBlock *NextBlock = 0; | 
 |   MachineFunction::iterator BBI = CurMBB; | 
 |   if (++BBI != CurMBB->getParent()->end()) | 
 |     NextBlock = BBI; | 
 |  | 
 |   MachineBasicBlock* MBB = B.Cases[0].ThisBB; | 
 |   if (MBB == NextBlock) | 
 |     DAG.setRoot(BrRange); | 
 |   else | 
 |     DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo, | 
 |                             DAG.getBasicBlock(MBB))); | 
 |  | 
 |   CurMBB->addSuccessor(B.Default); | 
 |   CurMBB->addSuccessor(MBB); | 
 |  | 
 |   return; | 
 | } | 
 |  | 
 | /// visitBitTestCase - this function produces one "bit test" | 
 | void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB, | 
 |                                             unsigned Reg, | 
 |                                             SelectionDAGISel::BitTestCase &B) { | 
 |   // Emit bit tests and jumps | 
 |   SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy()); | 
 |    | 
 |   SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), | 
 |                                 SwitchVal, | 
 |                                 DAG.getConstant(B.Mask, | 
 |                                                 TLI.getPointerTy())); | 
 |   SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp, | 
 |                                   DAG.getConstant(0, TLI.getPointerTy()), | 
 |                                   ISD::SETNE); | 
 |   SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), | 
 |                                 AndCmp, DAG.getBasicBlock(B.TargetBB)); | 
 |  | 
 |   // Set NextBlock to be the MBB immediately after the current one, if any. | 
 |   // This is used to avoid emitting unnecessary branches to the next block. | 
 |   MachineBasicBlock *NextBlock = 0; | 
 |   MachineFunction::iterator BBI = CurMBB; | 
 |   if (++BBI != CurMBB->getParent()->end()) | 
 |     NextBlock = BBI; | 
 |  | 
 |   if (NextMBB == NextBlock) | 
 |     DAG.setRoot(BrAnd); | 
 |   else | 
 |     DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd, | 
 |                             DAG.getBasicBlock(NextMBB))); | 
 |  | 
 |   CurMBB->addSuccessor(B.TargetBB); | 
 |   CurMBB->addSuccessor(NextMBB); | 
 |  | 
 |   return; | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitInvoke(InvokeInst &I) { | 
 |   // Retrieve successors. | 
 |   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; | 
 |   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; | 
 |  | 
 |   LowerCallTo(I, I.getCalledValue()->getType(), | 
 |               I.getCallingConv(), | 
 |               false, | 
 |               getValue(I.getOperand(0)), | 
 |               3, LandingPad); | 
 |  | 
 |   // If the value of the invoke is used outside of its defining block, make it | 
 |   // available as a virtual register. | 
 |   if (!I.use_empty()) { | 
 |     DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I); | 
 |     if (VMI != FuncInfo.ValueMap.end()) | 
 |       DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second)); | 
 |   } | 
 |  | 
 |   // Drop into normal successor. | 
 |   DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(), | 
 |                           DAG.getBasicBlock(Return))); | 
 |  | 
 |   // Update successor info | 
 |   CurMBB->addSuccessor(Return); | 
 |   CurMBB->addSuccessor(LandingPad); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitUnwind(UnwindInst &I) { | 
 | } | 
 |  | 
 | /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for | 
 | /// small case ranges). | 
 | bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR, | 
 |                                                   CaseRecVector& WorkList, | 
 |                                                   Value* SV, | 
 |                                                   MachineBasicBlock* Default) { | 
 |   Case& BackCase  = *(CR.Range.second-1); | 
 |    | 
 |   // Size is the number of Cases represented by this range. | 
 |   unsigned Size = CR.Range.second - CR.Range.first; | 
 |   if (Size > 3) | 
 |     return false;   | 
 |    | 
 |   // Get the MachineFunction which holds the current MBB.  This is used when | 
 |   // inserting any additional MBBs necessary to represent the switch. | 
 |   MachineFunction *CurMF = CurMBB->getParent();   | 
 |  | 
 |   // Figure out which block is immediately after the current one. | 
 |   MachineBasicBlock *NextBlock = 0; | 
 |   MachineFunction::iterator BBI = CR.CaseBB; | 
 |  | 
 |   if (++BBI != CurMBB->getParent()->end()) | 
 |     NextBlock = BBI; | 
 |  | 
 |   // TODO: If any two of the cases has the same destination, and if one value | 
 |   // is the same as the other, but has one bit unset that the other has set, | 
 |   // use bit manipulation to do two compares at once.  For example: | 
 |   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" | 
 |      | 
 |   // Rearrange the case blocks so that the last one falls through if possible. | 
 |   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { | 
 |     // The last case block won't fall through into 'NextBlock' if we emit the | 
 |     // branches in this order.  See if rearranging a case value would help. | 
 |     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { | 
 |       if (I->BB == NextBlock) { | 
 |         std::swap(*I, BackCase); | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   // Create a CaseBlock record representing a conditional branch to | 
 |   // the Case's target mbb if the value being switched on SV is equal | 
 |   // to C. | 
 |   MachineBasicBlock *CurBlock = CR.CaseBB; | 
 |   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { | 
 |     MachineBasicBlock *FallThrough; | 
 |     if (I != E-1) { | 
 |       FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock()); | 
 |       CurMF->getBasicBlockList().insert(BBI, FallThrough); | 
 |     } else { | 
 |       // If the last case doesn't match, go to the default block. | 
 |       FallThrough = Default; | 
 |     } | 
 |  | 
 |     Value *RHS, *LHS, *MHS; | 
 |     ISD::CondCode CC; | 
 |     if (I->High == I->Low) { | 
 |       // This is just small small case range :) containing exactly 1 case | 
 |       CC = ISD::SETEQ; | 
 |       LHS = SV; RHS = I->High; MHS = NULL; | 
 |     } else { | 
 |       CC = ISD::SETLE; | 
 |       LHS = I->Low; MHS = SV; RHS = I->High; | 
 |     } | 
 |     SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS, | 
 |                                    I->BB, FallThrough, CurBlock); | 
 |      | 
 |     // If emitting the first comparison, just call visitSwitchCase to emit the | 
 |     // code into the current block.  Otherwise, push the CaseBlock onto the | 
 |     // vector to be later processed by SDISel, and insert the node's MBB | 
 |     // before the next MBB. | 
 |     if (CurBlock == CurMBB) | 
 |       visitSwitchCase(CB); | 
 |     else | 
 |       SwitchCases.push_back(CB); | 
 |      | 
 |     CurBlock = FallThrough; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static inline bool areJTsAllowed(const TargetLowering &TLI) { | 
 |   return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) || | 
 |           TLI.isOperationLegal(ISD::BRIND, MVT::Other)); | 
 | } | 
 |    | 
 | /// handleJTSwitchCase - Emit jumptable for current switch case range | 
 | bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR, | 
 |                                               CaseRecVector& WorkList, | 
 |                                               Value* SV, | 
 |                                               MachineBasicBlock* Default) { | 
 |   Case& FrontCase = *CR.Range.first; | 
 |   Case& BackCase  = *(CR.Range.second-1); | 
 |  | 
 |   int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue(); | 
 |   int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue(); | 
 |  | 
 |   uint64_t TSize = 0; | 
 |   for (CaseItr I = CR.Range.first, E = CR.Range.second; | 
 |        I!=E; ++I) | 
 |     TSize += I->size(); | 
 |  | 
 |   if (!areJTsAllowed(TLI) || TSize <= 3) | 
 |     return false; | 
 |    | 
 |   double Density = (double)TSize / (double)((Last - First) + 1ULL);   | 
 |   if (Density < 0.4) | 
 |     return false; | 
 |  | 
 |   DOUT << "Lowering jump table\n" | 
 |        << "First entry: " << First << ". Last entry: " << Last << "\n" | 
 |        << "Size: " << TSize << ". Density: " << Density << "\n\n"; | 
 |  | 
 |   // Get the MachineFunction which holds the current MBB.  This is used when | 
 |   // inserting any additional MBBs necessary to represent the switch. | 
 |   MachineFunction *CurMF = CurMBB->getParent(); | 
 |  | 
 |   // Figure out which block is immediately after the current one. | 
 |   MachineBasicBlock *NextBlock = 0; | 
 |   MachineFunction::iterator BBI = CR.CaseBB; | 
 |  | 
 |   if (++BBI != CurMBB->getParent()->end()) | 
 |     NextBlock = BBI; | 
 |  | 
 |   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); | 
 |  | 
 |   // Create a new basic block to hold the code for loading the address | 
 |   // of the jump table, and jumping to it.  Update successor information; | 
 |   // we will either branch to the default case for the switch, or the jump | 
 |   // table. | 
 |   MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB); | 
 |   CurMF->getBasicBlockList().insert(BBI, JumpTableBB); | 
 |   CR.CaseBB->addSuccessor(Default); | 
 |   CR.CaseBB->addSuccessor(JumpTableBB); | 
 |                  | 
 |   // Build a vector of destination BBs, corresponding to each target | 
 |   // of the jump table. If the value of the jump table slot corresponds to | 
 |   // a case statement, push the case's BB onto the vector, otherwise, push | 
 |   // the default BB. | 
 |   std::vector<MachineBasicBlock*> DestBBs; | 
 |   int64_t TEI = First; | 
 |   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { | 
 |     int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue(); | 
 |     int64_t High = cast<ConstantInt>(I->High)->getSExtValue(); | 
 |      | 
 |     if ((Low <= TEI) && (TEI <= High)) { | 
 |       DestBBs.push_back(I->BB); | 
 |       if (TEI==High) | 
 |         ++I; | 
 |     } else { | 
 |       DestBBs.push_back(Default); | 
 |     } | 
 |   } | 
 |    | 
 |   // Update successor info. Add one edge to each unique successor. | 
 |   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());   | 
 |   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),  | 
 |          E = DestBBs.end(); I != E; ++I) { | 
 |     if (!SuccsHandled[(*I)->getNumber()]) { | 
 |       SuccsHandled[(*I)->getNumber()] = true; | 
 |       JumpTableBB->addSuccessor(*I); | 
 |     } | 
 |   } | 
 |        | 
 |   // Create a jump table index for this jump table, or return an existing | 
 |   // one. | 
 |   unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); | 
 |    | 
 |   // Set the jump table information so that we can codegen it as a second | 
 |   // MachineBasicBlock | 
 |   SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default); | 
 |   SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB, | 
 |                                         (CR.CaseBB == CurMBB)); | 
 |   if (CR.CaseBB == CurMBB) | 
 |     visitJumpTableHeader(JT, JTH); | 
 |          | 
 |   JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT)); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// handleBTSplitSwitchCase - emit comparison and split binary search tree into | 
 | /// 2 subtrees. | 
 | bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR, | 
 |                                                    CaseRecVector& WorkList, | 
 |                                                    Value* SV, | 
 |                                                    MachineBasicBlock* Default) { | 
 |   // Get the MachineFunction which holds the current MBB.  This is used when | 
 |   // inserting any additional MBBs necessary to represent the switch. | 
 |   MachineFunction *CurMF = CurMBB->getParent();   | 
 |  | 
 |   // Figure out which block is immediately after the current one. | 
 |   MachineBasicBlock *NextBlock = 0; | 
 |   MachineFunction::iterator BBI = CR.CaseBB; | 
 |  | 
 |   if (++BBI != CurMBB->getParent()->end()) | 
 |     NextBlock = BBI; | 
 |  | 
 |   Case& FrontCase = *CR.Range.first; | 
 |   Case& BackCase  = *(CR.Range.second-1); | 
 |   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); | 
 |  | 
 |   // Size is the number of Cases represented by this range. | 
 |   unsigned Size = CR.Range.second - CR.Range.first; | 
 |  | 
 |   int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue(); | 
 |   int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue(); | 
 |   double FMetric = 0; | 
 |   CaseItr Pivot = CR.Range.first + Size/2; | 
 |  | 
 |   // Select optimal pivot, maximizing sum density of LHS and RHS. This will | 
 |   // (heuristically) allow us to emit JumpTable's later. | 
 |   uint64_t TSize = 0; | 
 |   for (CaseItr I = CR.Range.first, E = CR.Range.second; | 
 |        I!=E; ++I) | 
 |     TSize += I->size(); | 
 |  | 
 |   uint64_t LSize = FrontCase.size(); | 
 |   uint64_t RSize = TSize-LSize; | 
 |   DOUT << "Selecting best pivot: \n" | 
 |        << "First: " << First << ", Last: " << Last <<"\n" | 
 |        << "LSize: " << LSize << ", RSize: " << RSize << "\n"; | 
 |   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; | 
 |        J!=E; ++I, ++J) { | 
 |     int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue(); | 
 |     int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue(); | 
 |     assert((RBegin-LEnd>=1) && "Invalid case distance"); | 
 |     double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL); | 
 |     double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL); | 
 |     double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity); | 
 |     // Should always split in some non-trivial place | 
 |     DOUT <<"=>Step\n" | 
 |          << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n" | 
 |          << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n" | 
 |          << "Metric: " << Metric << "\n";  | 
 |     if (FMetric < Metric) { | 
 |       Pivot = J; | 
 |       FMetric = Metric; | 
 |       DOUT << "Current metric set to: " << FMetric << "\n"; | 
 |     } | 
 |  | 
 |     LSize += J->size(); | 
 |     RSize -= J->size(); | 
 |   } | 
 |   if (areJTsAllowed(TLI)) { | 
 |     // If our case is dense we *really* should handle it earlier! | 
 |     assert((FMetric > 0) && "Should handle dense range earlier!"); | 
 |   } else { | 
 |     Pivot = CR.Range.first + Size/2; | 
 |   } | 
 |    | 
 |   CaseRange LHSR(CR.Range.first, Pivot); | 
 |   CaseRange RHSR(Pivot, CR.Range.second); | 
 |   Constant *C = Pivot->Low; | 
 |   MachineBasicBlock *FalseBB = 0, *TrueBB = 0; | 
 |        | 
 |   // We know that we branch to the LHS if the Value being switched on is | 
 |   // less than the Pivot value, C.  We use this to optimize our binary  | 
 |   // tree a bit, by recognizing that if SV is greater than or equal to the | 
 |   // LHS's Case Value, and that Case Value is exactly one less than the  | 
 |   // Pivot's Value, then we can branch directly to the LHS's Target, | 
 |   // rather than creating a leaf node for it. | 
 |   if ((LHSR.second - LHSR.first) == 1 && | 
 |       LHSR.first->High == CR.GE && | 
 |       cast<ConstantInt>(C)->getSExtValue() == | 
 |       (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) { | 
 |     TrueBB = LHSR.first->BB; | 
 |   } else { | 
 |     TrueBB = new MachineBasicBlock(LLVMBB); | 
 |     CurMF->getBasicBlockList().insert(BBI, TrueBB); | 
 |     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); | 
 |   } | 
 |    | 
 |   // Similar to the optimization above, if the Value being switched on is | 
 |   // known to be less than the Constant CR.LT, and the current Case Value | 
 |   // is CR.LT - 1, then we can branch directly to the target block for | 
 |   // the current Case Value, rather than emitting a RHS leaf node for it. | 
 |   if ((RHSR.second - RHSR.first) == 1 && CR.LT && | 
 |       cast<ConstantInt>(RHSR.first->Low)->getSExtValue() == | 
 |       (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) { | 
 |     FalseBB = RHSR.first->BB; | 
 |   } else { | 
 |     FalseBB = new MachineBasicBlock(LLVMBB); | 
 |     CurMF->getBasicBlockList().insert(BBI, FalseBB); | 
 |     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); | 
 |   } | 
 |  | 
 |   // Create a CaseBlock record representing a conditional branch to | 
 |   // the LHS node if the value being switched on SV is less than C.  | 
 |   // Otherwise, branch to LHS. | 
 |   SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL, | 
 |                                  TrueBB, FalseBB, CR.CaseBB); | 
 |  | 
 |   if (CR.CaseBB == CurMBB) | 
 |     visitSwitchCase(CB); | 
 |   else | 
 |     SwitchCases.push_back(CB); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// handleBitTestsSwitchCase - if current case range has few destination and | 
 | /// range span less, than machine word bitwidth, encode case range into series | 
 | /// of masks and emit bit tests with these masks. | 
 | bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR, | 
 |                                                     CaseRecVector& WorkList, | 
 |                                                     Value* SV, | 
 |                                                     MachineBasicBlock* Default){ | 
 |   unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy()); | 
 |  | 
 |   Case& FrontCase = *CR.Range.first; | 
 |   Case& BackCase  = *(CR.Range.second-1); | 
 |  | 
 |   // Get the MachineFunction which holds the current MBB.  This is used when | 
 |   // inserting any additional MBBs necessary to represent the switch. | 
 |   MachineFunction *CurMF = CurMBB->getParent();   | 
 |  | 
 |   unsigned numCmps = 0; | 
 |   for (CaseItr I = CR.Range.first, E = CR.Range.second; | 
 |        I!=E; ++I) { | 
 |     // Single case counts one, case range - two. | 
 |     if (I->Low == I->High) | 
 |       numCmps +=1; | 
 |     else | 
 |       numCmps +=2; | 
 |   } | 
 |      | 
 |   // Count unique destinations | 
 |   SmallSet<MachineBasicBlock*, 4> Dests; | 
 |   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { | 
 |     Dests.insert(I->BB); | 
 |     if (Dests.size() > 3) | 
 |       // Don't bother the code below, if there are too much unique destinations | 
 |       return false; | 
 |   } | 
 |   DOUT << "Total number of unique destinations: " << Dests.size() << "\n" | 
 |        << "Total number of comparisons: " << numCmps << "\n"; | 
 |    | 
 |   // Compute span of values. | 
 |   Constant* minValue = FrontCase.Low; | 
 |   Constant* maxValue = BackCase.High; | 
 |   uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() - | 
 |                    cast<ConstantInt>(minValue)->getSExtValue(); | 
 |   DOUT << "Compare range: " << range << "\n" | 
 |        << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n" | 
 |        << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n"; | 
 |    | 
 |   if (range>=IntPtrBits || | 
 |       (!(Dests.size() == 1 && numCmps >= 3) && | 
 |        !(Dests.size() == 2 && numCmps >= 5) && | 
 |        !(Dests.size() >= 3 && numCmps >= 6))) | 
 |     return false; | 
 |    | 
 |   DOUT << "Emitting bit tests\n"; | 
 |   int64_t lowBound = 0; | 
 |      | 
 |   // Optimize the case where all the case values fit in a | 
 |   // word without having to subtract minValue. In this case, | 
 |   // we can optimize away the subtraction. | 
 |   if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 && | 
 |       cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) { | 
 |     range = cast<ConstantInt>(maxValue)->getSExtValue(); | 
 |   } else { | 
 |     lowBound = cast<ConstantInt>(minValue)->getSExtValue(); | 
 |   } | 
 |      | 
 |   CaseBitsVector CasesBits; | 
 |   unsigned i, count = 0; | 
 |  | 
 |   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { | 
 |     MachineBasicBlock* Dest = I->BB; | 
 |     for (i = 0; i < count; ++i) | 
 |       if (Dest == CasesBits[i].BB) | 
 |         break; | 
 |      | 
 |     if (i == count) { | 
 |       assert((count < 3) && "Too much destinations to test!"); | 
 |       CasesBits.push_back(CaseBits(0, Dest, 0)); | 
 |       count++; | 
 |     } | 
 |      | 
 |     uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound; | 
 |     uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound; | 
 |      | 
 |     for (uint64_t j = lo; j <= hi; j++) { | 
 |       CasesBits[i].Mask |=  1ULL << j; | 
 |       CasesBits[i].Bits++; | 
 |     } | 
 |        | 
 |   } | 
 |   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); | 
 |    | 
 |   SelectionDAGISel::BitTestInfo BTC; | 
 |  | 
 |   // Figure out which block is immediately after the current one. | 
 |   MachineFunction::iterator BBI = CR.CaseBB; | 
 |   ++BBI; | 
 |  | 
 |   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); | 
 |  | 
 |   DOUT << "Cases:\n"; | 
 |   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { | 
 |     DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits | 
 |          << ", BB: " << CasesBits[i].BB << "\n"; | 
 |  | 
 |     MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB); | 
 |     CurMF->getBasicBlockList().insert(BBI, CaseBB); | 
 |     BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask, | 
 |                                                 CaseBB, | 
 |                                                 CasesBits[i].BB)); | 
 |   } | 
 |    | 
 |   SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV, | 
 |                                      -1U, (CR.CaseBB == CurMBB), | 
 |                                      CR.CaseBB, Default, BTC); | 
 |  | 
 |   if (CR.CaseBB == CurMBB) | 
 |     visitBitTestHeader(BTB); | 
 |    | 
 |   BitTestCases.push_back(BTB); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | // Clusterify - Transform simple list of Cases into list of CaseRange's | 
 | unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases, | 
 |                                           const SwitchInst& SI) { | 
 |   unsigned numCmps = 0; | 
 |  | 
 |   // Start with "simple" cases | 
 |   for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) { | 
 |     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; | 
 |     Cases.push_back(Case(SI.getSuccessorValue(i), | 
 |                          SI.getSuccessorValue(i), | 
 |                          SMBB)); | 
 |   } | 
 |   sort(Cases.begin(), Cases.end(), CaseCmp()); | 
 |  | 
 |   // Merge case into clusters | 
 |   if (Cases.size()>=2) | 
 |     // Must recompute end() each iteration because it may be | 
 |     // invalidated by erase if we hold on to it | 
 |     for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) { | 
 |       int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue(); | 
 |       int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue(); | 
 |       MachineBasicBlock* nextBB = J->BB; | 
 |       MachineBasicBlock* currentBB = I->BB; | 
 |  | 
 |       // If the two neighboring cases go to the same destination, merge them | 
 |       // into a single case. | 
 |       if ((nextValue-currentValue==1) && (currentBB == nextBB)) { | 
 |         I->High = J->High; | 
 |         J = Cases.erase(J); | 
 |       } else { | 
 |         I = J++; | 
 |       } | 
 |     } | 
 |  | 
 |   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { | 
 |     if (I->Low != I->High) | 
 |       // A range counts double, since it requires two compares. | 
 |       ++numCmps; | 
 |   } | 
 |  | 
 |   return numCmps; | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {   | 
 |   // Figure out which block is immediately after the current one. | 
 |   MachineBasicBlock *NextBlock = 0; | 
 |   MachineFunction::iterator BBI = CurMBB; | 
 |  | 
 |   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; | 
 |  | 
 |   // If there is only the default destination, branch to it if it is not the | 
 |   // next basic block.  Otherwise, just fall through. | 
 |   if (SI.getNumOperands() == 2) { | 
 |     // Update machine-CFG edges. | 
 |  | 
 |     // If this is not a fall-through branch, emit the branch. | 
 |     if (Default != NextBlock) | 
 |       DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(), | 
 |                               DAG.getBasicBlock(Default))); | 
 |  | 
 |     CurMBB->addSuccessor(Default); | 
 |     return; | 
 |   } | 
 |    | 
 |   // If there are any non-default case statements, create a vector of Cases | 
 |   // representing each one, and sort the vector so that we can efficiently | 
 |   // create a binary search tree from them. | 
 |   CaseVector Cases; | 
 |   unsigned numCmps = Clusterify(Cases, SI); | 
 |   DOUT << "Clusterify finished. Total clusters: " << Cases.size() | 
 |        << ". Total compares: " << numCmps << "\n"; | 
 |  | 
 |   // Get the Value to be switched on and default basic blocks, which will be | 
 |   // inserted into CaseBlock records, representing basic blocks in the binary | 
 |   // search tree. | 
 |   Value *SV = SI.getOperand(0); | 
 |  | 
 |   // Push the initial CaseRec onto the worklist | 
 |   CaseRecVector WorkList; | 
 |   WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); | 
 |  | 
 |   while (!WorkList.empty()) { | 
 |     // Grab a record representing a case range to process off the worklist | 
 |     CaseRec CR = WorkList.back(); | 
 |     WorkList.pop_back(); | 
 |  | 
 |     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) | 
 |       continue; | 
 |      | 
 |     // If the range has few cases (two or less) emit a series of specific | 
 |     // tests. | 
 |     if (handleSmallSwitchRange(CR, WorkList, SV, Default)) | 
 |       continue; | 
 |      | 
 |     // If the switch has more than 5 blocks, and at least 40% dense, and the  | 
 |     // target supports indirect branches, then emit a jump table rather than  | 
 |     // lowering the switch to a binary tree of conditional branches. | 
 |     if (handleJTSwitchCase(CR, WorkList, SV, Default)) | 
 |       continue; | 
 |            | 
 |     // Emit binary tree. We need to pick a pivot, and push left and right ranges | 
 |     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. | 
 |     handleBTSplitSwitchCase(CR, WorkList, SV, Default); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void SelectionDAGLowering::visitSub(User &I) { | 
 |   // -0.0 - X --> fneg | 
 |   const Type *Ty = I.getType(); | 
 |   if (isa<VectorType>(Ty)) { | 
 |     if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { | 
 |       const VectorType *DestTy = cast<VectorType>(I.getType()); | 
 |       const Type *ElTy = DestTy->getElementType(); | 
 |       if (ElTy->isFloatingPoint()) { | 
 |         unsigned VL = DestTy->getNumElements(); | 
 |         std::vector<Constant*> NZ(VL, ConstantFP::get(ElTy,  | 
 |           ElTy==Type::FloatTy ? APFloat(-0.0f) : APFloat(-0.0))); | 
 |         Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); | 
 |         if (CV == CNZ) { | 
 |           SDOperand Op2 = getValue(I.getOperand(1)); | 
 |           setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2)); | 
 |           return; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   if (Ty->isFloatingPoint()) { | 
 |     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) | 
 |       if (CFP->isExactlyValue(-0.0)) { | 
 |         SDOperand Op2 = getValue(I.getOperand(1)); | 
 |         setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2)); | 
 |         return; | 
 |       } | 
 |   } | 
 |  | 
 |   visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) { | 
 |   SDOperand Op1 = getValue(I.getOperand(0)); | 
 |   SDOperand Op2 = getValue(I.getOperand(1)); | 
 |    | 
 |   setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) { | 
 |   SDOperand Op1 = getValue(I.getOperand(0)); | 
 |   SDOperand Op2 = getValue(I.getOperand(1)); | 
 |    | 
 |   if (MVT::getSizeInBits(TLI.getShiftAmountTy()) < | 
 |       MVT::getSizeInBits(Op2.getValueType())) | 
 |     Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2); | 
 |   else if (TLI.getShiftAmountTy() > Op2.getValueType()) | 
 |     Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2); | 
 |    | 
 |   setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitICmp(User &I) { | 
 |   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; | 
 |   if (ICmpInst *IC = dyn_cast<ICmpInst>(&I)) | 
 |     predicate = IC->getPredicate(); | 
 |   else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) | 
 |     predicate = ICmpInst::Predicate(IC->getPredicate()); | 
 |   SDOperand Op1 = getValue(I.getOperand(0)); | 
 |   SDOperand Op2 = getValue(I.getOperand(1)); | 
 |   ISD::CondCode Opcode; | 
 |   switch (predicate) { | 
 |     case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break; | 
 |     case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break; | 
 |     case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break; | 
 |     case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break; | 
 |     case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break; | 
 |     case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break; | 
 |     case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break; | 
 |     case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break; | 
 |     case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break; | 
 |     case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break; | 
 |     default: | 
 |       assert(!"Invalid ICmp predicate value"); | 
 |       Opcode = ISD::SETEQ; | 
 |       break; | 
 |   } | 
 |   setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitFCmp(User &I) { | 
 |   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; | 
 |   if (FCmpInst *FC = dyn_cast<FCmpInst>(&I)) | 
 |     predicate = FC->getPredicate(); | 
 |   else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) | 
 |     predicate = FCmpInst::Predicate(FC->getPredicate()); | 
 |   SDOperand Op1 = getValue(I.getOperand(0)); | 
 |   SDOperand Op2 = getValue(I.getOperand(1)); | 
 |   ISD::CondCode Condition, FOC, FPC; | 
 |   switch (predicate) { | 
 |     case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; | 
 |     case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; | 
 |     case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break; | 
 |     case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break; | 
 |     case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break; | 
 |     case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break; | 
 |     case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break; | 
 |     case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break; | 
 |     case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break; | 
 |     case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; | 
 |     case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break; | 
 |     case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break; | 
 |     case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break; | 
 |     case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break; | 
 |     case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break; | 
 |     case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break; | 
 |     default: | 
 |       assert(!"Invalid FCmp predicate value"); | 
 |       FOC = FPC = ISD::SETFALSE; | 
 |       break; | 
 |   } | 
 |   if (FiniteOnlyFPMath()) | 
 |     Condition = FOC; | 
 |   else  | 
 |     Condition = FPC; | 
 |   setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitSelect(User &I) { | 
 |   SDOperand Cond     = getValue(I.getOperand(0)); | 
 |   SDOperand TrueVal  = getValue(I.getOperand(1)); | 
 |   SDOperand FalseVal = getValue(I.getOperand(2)); | 
 |   setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond, | 
 |                            TrueVal, FalseVal)); | 
 | } | 
 |  | 
 |  | 
 | void SelectionDAGLowering::visitTrunc(User &I) { | 
 |   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). | 
 |   SDOperand N = getValue(I.getOperand(0)); | 
 |   MVT::ValueType DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitZExt(User &I) { | 
 |   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). | 
 |   // ZExt also can't be a cast to bool for same reason. So, nothing much to do | 
 |   SDOperand N = getValue(I.getOperand(0)); | 
 |   MVT::ValueType DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitSExt(User &I) { | 
 |   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). | 
 |   // SExt also can't be a cast to bool for same reason. So, nothing much to do | 
 |   SDOperand N = getValue(I.getOperand(0)); | 
 |   MVT::ValueType DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitFPTrunc(User &I) { | 
 |   // FPTrunc is never a no-op cast, no need to check | 
 |   SDOperand N = getValue(I.getOperand(0)); | 
 |   MVT::ValueType DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitFPExt(User &I){  | 
 |   // FPTrunc is never a no-op cast, no need to check | 
 |   SDOperand N = getValue(I.getOperand(0)); | 
 |   MVT::ValueType DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitFPToUI(User &I) {  | 
 |   // FPToUI is never a no-op cast, no need to check | 
 |   SDOperand N = getValue(I.getOperand(0)); | 
 |   MVT::ValueType DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitFPToSI(User &I) { | 
 |   // FPToSI is never a no-op cast, no need to check | 
 |   SDOperand N = getValue(I.getOperand(0)); | 
 |   MVT::ValueType DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitUIToFP(User &I) {  | 
 |   // UIToFP is never a no-op cast, no need to check | 
 |   SDOperand N = getValue(I.getOperand(0)); | 
 |   MVT::ValueType DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitSIToFP(User &I){  | 
 |   // UIToFP is never a no-op cast, no need to check | 
 |   SDOperand N = getValue(I.getOperand(0)); | 
 |   MVT::ValueType DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitPtrToInt(User &I) { | 
 |   // What to do depends on the size of the integer and the size of the pointer. | 
 |   // We can either truncate, zero extend, or no-op, accordingly. | 
 |   SDOperand N = getValue(I.getOperand(0)); | 
 |   MVT::ValueType SrcVT = N.getValueType(); | 
 |   MVT::ValueType DestVT = TLI.getValueType(I.getType()); | 
 |   SDOperand Result; | 
 |   if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT)) | 
 |     Result = DAG.getNode(ISD::TRUNCATE, DestVT, N); | 
 |   else  | 
 |     // Note: ZERO_EXTEND can handle cases where the sizes are equal too | 
 |     Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N); | 
 |   setValue(&I, Result); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitIntToPtr(User &I) { | 
 |   // What to do depends on the size of the integer and the size of the pointer. | 
 |   // We can either truncate, zero extend, or no-op, accordingly. | 
 |   SDOperand N = getValue(I.getOperand(0)); | 
 |   MVT::ValueType SrcVT = N.getValueType(); | 
 |   MVT::ValueType DestVT = TLI.getValueType(I.getType()); | 
 |   if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT)) | 
 |     setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N)); | 
 |   else  | 
 |     // Note: ZERO_EXTEND can handle cases where the sizes are equal too | 
 |     setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitBitCast(User &I) {  | 
 |   SDOperand N = getValue(I.getOperand(0)); | 
 |   MVT::ValueType DestVT = TLI.getValueType(I.getType()); | 
 |  | 
 |   // BitCast assures us that source and destination are the same size so this  | 
 |   // is either a BIT_CONVERT or a no-op. | 
 |   if (DestVT != N.getValueType()) | 
 |     setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types | 
 |   else | 
 |     setValue(&I, N); // noop cast. | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitInsertElement(User &I) { | 
 |   SDOperand InVec = getValue(I.getOperand(0)); | 
 |   SDOperand InVal = getValue(I.getOperand(1)); | 
 |   SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), | 
 |                                 getValue(I.getOperand(2))); | 
 |  | 
 |   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, | 
 |                            TLI.getValueType(I.getType()), | 
 |                            InVec, InVal, InIdx)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitExtractElement(User &I) { | 
 |   SDOperand InVec = getValue(I.getOperand(0)); | 
 |   SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), | 
 |                                 getValue(I.getOperand(1))); | 
 |   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, | 
 |                            TLI.getValueType(I.getType()), InVec, InIdx)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitShuffleVector(User &I) { | 
 |   SDOperand V1   = getValue(I.getOperand(0)); | 
 |   SDOperand V2   = getValue(I.getOperand(1)); | 
 |   SDOperand Mask = getValue(I.getOperand(2)); | 
 |  | 
 |   setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE, | 
 |                            TLI.getValueType(I.getType()), | 
 |                            V1, V2, Mask)); | 
 | } | 
 |  | 
 |  | 
 | void SelectionDAGLowering::visitGetElementPtr(User &I) { | 
 |   SDOperand N = getValue(I.getOperand(0)); | 
 |   const Type *Ty = I.getOperand(0)->getType(); | 
 |  | 
 |   for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); | 
 |        OI != E; ++OI) { | 
 |     Value *Idx = *OI; | 
 |     if (const StructType *StTy = dyn_cast<StructType>(Ty)) { | 
 |       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); | 
 |       if (Field) { | 
 |         // N = N + Offset | 
 |         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); | 
 |         N = DAG.getNode(ISD::ADD, N.getValueType(), N, | 
 |                         getIntPtrConstant(Offset)); | 
 |       } | 
 |       Ty = StTy->getElementType(Field); | 
 |     } else { | 
 |       Ty = cast<SequentialType>(Ty)->getElementType(); | 
 |  | 
 |       // If this is a constant subscript, handle it quickly. | 
 |       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { | 
 |         if (CI->getZExtValue() == 0) continue; | 
 |         uint64_t Offs =  | 
 |             TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); | 
 |         N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs)); | 
 |         continue; | 
 |       } | 
 |        | 
 |       // N = N + Idx * ElementSize; | 
 |       uint64_t ElementSize = TD->getTypeSize(Ty); | 
 |       SDOperand IdxN = getValue(Idx); | 
 |  | 
 |       // If the index is smaller or larger than intptr_t, truncate or extend | 
 |       // it. | 
 |       if (IdxN.getValueType() < N.getValueType()) { | 
 |         IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN); | 
 |       } else if (IdxN.getValueType() > N.getValueType()) | 
 |         IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN); | 
 |  | 
 |       // If this is a multiply by a power of two, turn it into a shl | 
 |       // immediately.  This is a very common case. | 
 |       if (isPowerOf2_64(ElementSize)) { | 
 |         unsigned Amt = Log2_64(ElementSize); | 
 |         IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN, | 
 |                            DAG.getConstant(Amt, TLI.getShiftAmountTy())); | 
 |         N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); | 
 |         continue; | 
 |       } | 
 |        | 
 |       SDOperand Scale = getIntPtrConstant(ElementSize); | 
 |       IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale); | 
 |       N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); | 
 |     } | 
 |   } | 
 |   setValue(&I, N); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitAlloca(AllocaInst &I) { | 
 |   // If this is a fixed sized alloca in the entry block of the function, | 
 |   // allocate it statically on the stack. | 
 |   if (FuncInfo.StaticAllocaMap.count(&I)) | 
 |     return;   // getValue will auto-populate this. | 
 |  | 
 |   const Type *Ty = I.getAllocatedType(); | 
 |   uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty); | 
 |   unsigned Align = | 
 |     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), | 
 |              I.getAlignment()); | 
 |  | 
 |   SDOperand AllocSize = getValue(I.getArraySize()); | 
 |   MVT::ValueType IntPtr = TLI.getPointerTy(); | 
 |   if (IntPtr < AllocSize.getValueType()) | 
 |     AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize); | 
 |   else if (IntPtr > AllocSize.getValueType()) | 
 |     AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize); | 
 |  | 
 |   AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize, | 
 |                           getIntPtrConstant(TySize)); | 
 |  | 
 |   // Handle alignment.  If the requested alignment is less than or equal to | 
 |   // the stack alignment, ignore it.  If the size is greater than or equal to | 
 |   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. | 
 |   unsigned StackAlign = | 
 |     TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); | 
 |   if (Align <= StackAlign) | 
 |     Align = 0; | 
 |  | 
 |   // Round the size of the allocation up to the stack alignment size | 
 |   // by add SA-1 to the size. | 
 |   AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize, | 
 |                           getIntPtrConstant(StackAlign-1)); | 
 |   // Mask out the low bits for alignment purposes. | 
 |   AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize, | 
 |                           getIntPtrConstant(~(uint64_t)(StackAlign-1))); | 
 |  | 
 |   SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) }; | 
 |   const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(), | 
 |                                                     MVT::Other); | 
 |   SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3); | 
 |   setValue(&I, DSA); | 
 |   DAG.setRoot(DSA.getValue(1)); | 
 |  | 
 |   // Inform the Frame Information that we have just allocated a variable-sized | 
 |   // object. | 
 |   CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject(); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitLoad(LoadInst &I) { | 
 |   SDOperand Ptr = getValue(I.getOperand(0)); | 
 |  | 
 |   SDOperand Root; | 
 |   if (I.isVolatile()) | 
 |     Root = getRoot(); | 
 |   else { | 
 |     // Do not serialize non-volatile loads against each other. | 
 |     Root = DAG.getRoot(); | 
 |   } | 
 |  | 
 |   setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0), | 
 |                            Root, I.isVolatile(), I.getAlignment())); | 
 | } | 
 |  | 
 | SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr, | 
 |                                             const Value *SV, SDOperand Root, | 
 |                                             bool isVolatile,  | 
 |                                             unsigned Alignment) { | 
 |   SDOperand L = | 
 |     DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,  | 
 |                 isVolatile, Alignment); | 
 |  | 
 |   if (isVolatile) | 
 |     DAG.setRoot(L.getValue(1)); | 
 |   else | 
 |     PendingLoads.push_back(L.getValue(1)); | 
 |    | 
 |   return L; | 
 | } | 
 |  | 
 |  | 
 | void SelectionDAGLowering::visitStore(StoreInst &I) { | 
 |   Value *SrcV = I.getOperand(0); | 
 |   SDOperand Src = getValue(SrcV); | 
 |   SDOperand Ptr = getValue(I.getOperand(1)); | 
 |   DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0, | 
 |                            I.isVolatile(), I.getAlignment())); | 
 | } | 
 |  | 
 | /// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot | 
 | /// access memory and has no other side effects at all. | 
 | static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) { | 
 | #define GET_NO_MEMORY_INTRINSICS | 
 | #include "llvm/Intrinsics.gen" | 
 | #undef GET_NO_MEMORY_INTRINSICS | 
 |   return false; | 
 | } | 
 |  | 
 | // IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't | 
 | // have any side-effects or if it only reads memory. | 
 | static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) { | 
 | #define GET_SIDE_EFFECT_INFO | 
 | #include "llvm/Intrinsics.gen" | 
 | #undef GET_SIDE_EFFECT_INFO | 
 |   return false; | 
 | } | 
 |  | 
 | /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC | 
 | /// node. | 
 | void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,  | 
 |                                                 unsigned Intrinsic) { | 
 |   bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic); | 
 |   bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic); | 
 |    | 
 |   // Build the operand list. | 
 |   SmallVector<SDOperand, 8> Ops; | 
 |   if (HasChain) {  // If this intrinsic has side-effects, chainify it. | 
 |     if (OnlyLoad) { | 
 |       // We don't need to serialize loads against other loads. | 
 |       Ops.push_back(DAG.getRoot()); | 
 |     } else {  | 
 |       Ops.push_back(getRoot()); | 
 |     } | 
 |   } | 
 |    | 
 |   // Add the intrinsic ID as an integer operand. | 
 |   Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); | 
 |  | 
 |   // Add all operands of the call to the operand list. | 
 |   for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { | 
 |     SDOperand Op = getValue(I.getOperand(i)); | 
 |     assert(TLI.isTypeLegal(Op.getValueType()) && | 
 |            "Intrinsic uses a non-legal type?"); | 
 |     Ops.push_back(Op); | 
 |   } | 
 |  | 
 |   std::vector<MVT::ValueType> VTs; | 
 |   if (I.getType() != Type::VoidTy) { | 
 |     MVT::ValueType VT = TLI.getValueType(I.getType()); | 
 |     if (MVT::isVector(VT)) { | 
 |       const VectorType *DestTy = cast<VectorType>(I.getType()); | 
 |       MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType()); | 
 |        | 
 |       VT = MVT::getVectorType(EltVT, DestTy->getNumElements()); | 
 |       assert(VT != MVT::Other && "Intrinsic uses a non-legal type?"); | 
 |     } | 
 |      | 
 |     assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?"); | 
 |     VTs.push_back(VT); | 
 |   } | 
 |   if (HasChain) | 
 |     VTs.push_back(MVT::Other); | 
 |  | 
 |   const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs); | 
 |  | 
 |   // Create the node. | 
 |   SDOperand Result; | 
 |   if (!HasChain) | 
 |     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(), | 
 |                          &Ops[0], Ops.size()); | 
 |   else if (I.getType() != Type::VoidTy) | 
 |     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(), | 
 |                          &Ops[0], Ops.size()); | 
 |   else | 
 |     Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(), | 
 |                          &Ops[0], Ops.size()); | 
 |  | 
 |   if (HasChain) { | 
 |     SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1); | 
 |     if (OnlyLoad) | 
 |       PendingLoads.push_back(Chain); | 
 |     else | 
 |       DAG.setRoot(Chain); | 
 |   } | 
 |   if (I.getType() != Type::VoidTy) { | 
 |     if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { | 
 |       MVT::ValueType VT = TLI.getValueType(PTy); | 
 |       Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result); | 
 |     }  | 
 |     setValue(&I, Result); | 
 |   } | 
 | } | 
 |  | 
 | /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. | 
 | static GlobalVariable *ExtractTypeInfo (Value *V) { | 
 |   V = IntrinsicInst::StripPointerCasts(V); | 
 |   GlobalVariable *GV = dyn_cast<GlobalVariable>(V); | 
 |   assert (GV || isa<ConstantPointerNull>(V) && | 
 |           "TypeInfo must be a global variable or NULL"); | 
 |   return GV; | 
 | } | 
 |  | 
 | /// addCatchInfo - Extract the personality and type infos from an eh.selector | 
 | /// call, and add them to the specified machine basic block. | 
 | static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI, | 
 |                          MachineBasicBlock *MBB) { | 
 |   // Inform the MachineModuleInfo of the personality for this landing pad. | 
 |   ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2)); | 
 |   assert(CE->getOpcode() == Instruction::BitCast && | 
 |          isa<Function>(CE->getOperand(0)) && | 
 |          "Personality should be a function"); | 
 |   MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); | 
 |  | 
 |   // Gather all the type infos for this landing pad and pass them along to | 
 |   // MachineModuleInfo. | 
 |   std::vector<GlobalVariable *> TyInfo; | 
 |   unsigned N = I.getNumOperands(); | 
 |  | 
 |   for (unsigned i = N - 1; i > 2; --i) { | 
 |     if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) { | 
 |       unsigned FilterLength = CI->getZExtValue(); | 
 |       unsigned FirstCatch = i + FilterLength + !FilterLength; | 
 |       assert (FirstCatch <= N && "Invalid filter length"); | 
 |  | 
 |       if (FirstCatch < N) { | 
 |         TyInfo.reserve(N - FirstCatch); | 
 |         for (unsigned j = FirstCatch; j < N; ++j) | 
 |           TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); | 
 |         MMI->addCatchTypeInfo(MBB, TyInfo); | 
 |         TyInfo.clear(); | 
 |       } | 
 |  | 
 |       if (!FilterLength) { | 
 |         // Cleanup. | 
 |         MMI->addCleanup(MBB); | 
 |       } else { | 
 |         // Filter. | 
 |         TyInfo.reserve(FilterLength - 1); | 
 |         for (unsigned j = i + 1; j < FirstCatch; ++j) | 
 |           TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); | 
 |         MMI->addFilterTypeInfo(MBB, TyInfo); | 
 |         TyInfo.clear(); | 
 |       } | 
 |  | 
 |       N = i; | 
 |     } | 
 |   } | 
 |  | 
 |   if (N > 3) { | 
 |     TyInfo.reserve(N - 3); | 
 |     for (unsigned j = 3; j < N; ++j) | 
 |       TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); | 
 |     MMI->addCatchTypeInfo(MBB, TyInfo); | 
 |   } | 
 | } | 
 |  | 
 | /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If | 
 | /// we want to emit this as a call to a named external function, return the name | 
 | /// otherwise lower it and return null. | 
 | const char * | 
 | SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { | 
 |   switch (Intrinsic) { | 
 |   default: | 
 |     // By default, turn this into a target intrinsic node. | 
 |     visitTargetIntrinsic(I, Intrinsic); | 
 |     return 0; | 
 |   case Intrinsic::vastart:  visitVAStart(I); return 0; | 
 |   case Intrinsic::vaend:    visitVAEnd(I); return 0; | 
 |   case Intrinsic::vacopy:   visitVACopy(I); return 0; | 
 |   case Intrinsic::returnaddress: | 
 |     setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(), | 
 |                              getValue(I.getOperand(1)))); | 
 |     return 0; | 
 |   case Intrinsic::frameaddress: | 
 |     setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(), | 
 |                              getValue(I.getOperand(1)))); | 
 |     return 0; | 
 |   case Intrinsic::setjmp: | 
 |     return "_setjmp"+!TLI.usesUnderscoreSetJmp(); | 
 |     break; | 
 |   case Intrinsic::longjmp: | 
 |     return "_longjmp"+!TLI.usesUnderscoreLongJmp(); | 
 |     break; | 
 |   case Intrinsic::memcpy_i32: | 
 |   case Intrinsic::memcpy_i64: | 
 |     visitMemIntrinsic(I, ISD::MEMCPY); | 
 |     return 0; | 
 |   case Intrinsic::memset_i32: | 
 |   case Intrinsic::memset_i64: | 
 |     visitMemIntrinsic(I, ISD::MEMSET); | 
 |     return 0; | 
 |   case Intrinsic::memmove_i32: | 
 |   case Intrinsic::memmove_i64: | 
 |     visitMemIntrinsic(I, ISD::MEMMOVE); | 
 |     return 0; | 
 |      | 
 |   case Intrinsic::dbg_stoppoint: { | 
 |     MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
 |     DbgStopPointInst &SPI = cast<DbgStopPointInst>(I); | 
 |     if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) { | 
 |       SDOperand Ops[5]; | 
 |  | 
 |       Ops[0] = getRoot(); | 
 |       Ops[1] = getValue(SPI.getLineValue()); | 
 |       Ops[2] = getValue(SPI.getColumnValue()); | 
 |  | 
 |       DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext()); | 
 |       assert(DD && "Not a debug information descriptor"); | 
 |       CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD); | 
 |        | 
 |       Ops[3] = DAG.getString(CompileUnit->getFileName()); | 
 |       Ops[4] = DAG.getString(CompileUnit->getDirectory()); | 
 |        | 
 |       DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5)); | 
 |     } | 
 |  | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::dbg_region_start: { | 
 |     MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
 |     DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I); | 
 |     if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) { | 
 |       unsigned LabelID = MMI->RecordRegionStart(RSI.getContext()); | 
 |       DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(), | 
 |                               DAG.getConstant(LabelID, MVT::i32))); | 
 |     } | 
 |  | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::dbg_region_end: { | 
 |     MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
 |     DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I); | 
 |     if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) { | 
 |       unsigned LabelID = MMI->RecordRegionEnd(REI.getContext()); | 
 |       DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, | 
 |                               getRoot(), DAG.getConstant(LabelID, MVT::i32))); | 
 |     } | 
 |  | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::dbg_func_start: { | 
 |     MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
 |     DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I); | 
 |     if (MMI && FSI.getSubprogram() && | 
 |         MMI->Verify(FSI.getSubprogram())) { | 
 |       unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram()); | 
 |       DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, | 
 |                   getRoot(), DAG.getConstant(LabelID, MVT::i32))); | 
 |     } | 
 |  | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::dbg_declare: { | 
 |     MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
 |     DbgDeclareInst &DI = cast<DbgDeclareInst>(I); | 
 |     if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) { | 
 |       SDOperand AddressOp  = getValue(DI.getAddress()); | 
 |       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp)) | 
 |         MMI->RecordVariable(DI.getVariable(), FI->getIndex()); | 
 |     } | 
 |  | 
 |     return 0; | 
 |   } | 
 |      | 
 |   case Intrinsic::eh_exception: { | 
 |     if (ExceptionHandling) { | 
 |       if (!CurMBB->isLandingPad()) { | 
 |         // FIXME: Mark exception register as live in.  Hack for PR1508. | 
 |         unsigned Reg = TLI.getExceptionAddressRegister(); | 
 |         if (Reg) CurMBB->addLiveIn(Reg); | 
 |       } | 
 |       // Insert the EXCEPTIONADDR instruction. | 
 |       SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); | 
 |       SDOperand Ops[1]; | 
 |       Ops[0] = DAG.getRoot(); | 
 |       SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1); | 
 |       setValue(&I, Op); | 
 |       DAG.setRoot(Op.getValue(1)); | 
 |     } else { | 
 |       setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); | 
 |     } | 
 |     return 0; | 
 |   } | 
 |  | 
 |   case Intrinsic::eh_selector:{ | 
 |     MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
 |  | 
 |     if (ExceptionHandling && MMI) { | 
 |       if (CurMBB->isLandingPad()) | 
 |         addCatchInfo(I, MMI, CurMBB); | 
 |       else { | 
 | #ifndef NDEBUG | 
 |         FuncInfo.CatchInfoLost.insert(&I); | 
 | #endif | 
 |         // FIXME: Mark exception selector register as live in.  Hack for PR1508. | 
 |         unsigned Reg = TLI.getExceptionSelectorRegister(); | 
 |         if (Reg) CurMBB->addLiveIn(Reg); | 
 |       } | 
 |  | 
 |       // Insert the EHSELECTION instruction. | 
 |       SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); | 
 |       SDOperand Ops[2]; | 
 |       Ops[0] = getValue(I.getOperand(1)); | 
 |       Ops[1] = getRoot(); | 
 |       SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2); | 
 |       setValue(&I, Op); | 
 |       DAG.setRoot(Op.getValue(1)); | 
 |     } else { | 
 |       setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); | 
 |     } | 
 |      | 
 |     return 0; | 
 |   } | 
 |    | 
 |   case Intrinsic::eh_typeid_for: { | 
 |     MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
 |      | 
 |     if (MMI) { | 
 |       // Find the type id for the given typeinfo. | 
 |       GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); | 
 |  | 
 |       unsigned TypeID = MMI->getTypeIDFor(GV); | 
 |       setValue(&I, DAG.getConstant(TypeID, MVT::i32)); | 
 |     } else { | 
 |       // Return something different to eh_selector. | 
 |       setValue(&I, DAG.getConstant(1, MVT::i32)); | 
 |     } | 
 |  | 
 |     return 0; | 
 |   } | 
 |  | 
 |   case Intrinsic::eh_return: { | 
 |     MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
 |  | 
 |     if (MMI && ExceptionHandling) { | 
 |       MMI->setCallsEHReturn(true); | 
 |       DAG.setRoot(DAG.getNode(ISD::EH_RETURN, | 
 |                               MVT::Other, | 
 |                               getRoot(), | 
 |                               getValue(I.getOperand(1)), | 
 |                               getValue(I.getOperand(2)))); | 
 |     } else { | 
 |       setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); | 
 |     } | 
 |  | 
 |     return 0; | 
 |   } | 
 |  | 
 |    case Intrinsic::eh_unwind_init: {     | 
 |      if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { | 
 |        MMI->setCallsUnwindInit(true); | 
 |      } | 
 |  | 
 |      return 0; | 
 |    } | 
 |  | 
 |    case Intrinsic::eh_dwarf_cfa: { | 
 |      if (ExceptionHandling) { | 
 |        MVT::ValueType VT = getValue(I.getOperand(1)).getValueType(); | 
 |        SDOperand CfaArg; | 
 |        if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy())) | 
 |          CfaArg = DAG.getNode(ISD::TRUNCATE, | 
 |                               TLI.getPointerTy(), getValue(I.getOperand(1))); | 
 |        else | 
 |          CfaArg = DAG.getNode(ISD::SIGN_EXTEND, | 
 |                               TLI.getPointerTy(), getValue(I.getOperand(1))); | 
 |         | 
 |        SDOperand Offset = DAG.getNode(ISD::ADD, | 
 |                                       TLI.getPointerTy(), | 
 |                                       DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, | 
 |                                                   TLI.getPointerTy()), | 
 |                                       CfaArg); | 
 |        setValue(&I, DAG.getNode(ISD::ADD, | 
 |                                 TLI.getPointerTy(), | 
 |                                 DAG.getNode(ISD::FRAMEADDR, | 
 |                                             TLI.getPointerTy(), | 
 |                                             DAG.getConstant(0, | 
 |                                                             TLI.getPointerTy())), | 
 |                                 Offset)); | 
 |      } else { | 
 |        setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); | 
 |      } | 
 |  | 
 |      return 0; | 
 |   } | 
 |  | 
 |   case Intrinsic::sqrt_f32: | 
 |   case Intrinsic::sqrt_f64: | 
 |     setValue(&I, DAG.getNode(ISD::FSQRT, | 
 |                              getValue(I.getOperand(1)).getValueType(), | 
 |                              getValue(I.getOperand(1)))); | 
 |     return 0; | 
 |   case Intrinsic::powi_f32: | 
 |   case Intrinsic::powi_f64: | 
 |     setValue(&I, DAG.getNode(ISD::FPOWI, | 
 |                              getValue(I.getOperand(1)).getValueType(), | 
 |                              getValue(I.getOperand(1)), | 
 |                              getValue(I.getOperand(2)))); | 
 |     return 0; | 
 |   case Intrinsic::pcmarker: { | 
 |     SDOperand Tmp = getValue(I.getOperand(1)); | 
 |     DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp)); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::readcyclecounter: { | 
 |     SDOperand Op = getRoot(); | 
 |     SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, | 
 |                                 DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2, | 
 |                                 &Op, 1); | 
 |     setValue(&I, Tmp); | 
 |     DAG.setRoot(Tmp.getValue(1)); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::part_select: { | 
 |     // Currently not implemented: just abort | 
 |     assert(0 && "part_select intrinsic not implemented"); | 
 |     abort(); | 
 |   } | 
 |   case Intrinsic::part_set: { | 
 |     // Currently not implemented: just abort | 
 |     assert(0 && "part_set intrinsic not implemented"); | 
 |     abort(); | 
 |   } | 
 |   case Intrinsic::bswap: | 
 |     setValue(&I, DAG.getNode(ISD::BSWAP, | 
 |                              getValue(I.getOperand(1)).getValueType(), | 
 |                              getValue(I.getOperand(1)))); | 
 |     return 0; | 
 |   case Intrinsic::cttz: { | 
 |     SDOperand Arg = getValue(I.getOperand(1)); | 
 |     MVT::ValueType Ty = Arg.getValueType(); | 
 |     SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg); | 
 |     setValue(&I, result); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::ctlz: { | 
 |     SDOperand Arg = getValue(I.getOperand(1)); | 
 |     MVT::ValueType Ty = Arg.getValueType(); | 
 |     SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg); | 
 |     setValue(&I, result); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::ctpop: { | 
 |     SDOperand Arg = getValue(I.getOperand(1)); | 
 |     MVT::ValueType Ty = Arg.getValueType(); | 
 |     SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg); | 
 |     setValue(&I, result); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::stacksave: { | 
 |     SDOperand Op = getRoot(); | 
 |     SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, | 
 |               DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1); | 
 |     setValue(&I, Tmp); | 
 |     DAG.setRoot(Tmp.getValue(1)); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::stackrestore: { | 
 |     SDOperand Tmp = getValue(I.getOperand(1)); | 
 |     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp)); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::prefetch: | 
 |     // FIXME: Currently discarding prefetches. | 
 |     return 0; | 
 |    | 
 |   case Intrinsic::var_annotation: | 
 |     // Discard annotate attributes | 
 |     return 0; | 
 |  | 
 |   case Intrinsic::adjust_trampoline: { | 
 |     SDOperand Arg = getValue(I.getOperand(1)); | 
 |     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMP, TLI.getPointerTy(), Arg)); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   case Intrinsic::init_trampoline: { | 
 |     const Function *F = | 
 |       cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2))); | 
 |  | 
 |     SDOperand Ops[6]; | 
 |     Ops[0] = getRoot(); | 
 |     Ops[1] = getValue(I.getOperand(1)); | 
 |     Ops[2] = getValue(I.getOperand(2)); | 
 |     Ops[3] = getValue(I.getOperand(3)); | 
 |     Ops[4] = DAG.getSrcValue(I.getOperand(1)); | 
 |     Ops[5] = DAG.getSrcValue(F); | 
 |  | 
 |     DAG.setRoot(DAG.getNode(ISD::TRAMPOLINE, MVT::Other, Ops, 6)); | 
 |     return 0; | 
 |   } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void SelectionDAGLowering::LowerCallTo(Instruction &I, | 
 |                                        const Type *CalledValueTy, | 
 |                                        unsigned CallingConv, | 
 |                                        bool IsTailCall, | 
 |                                        SDOperand Callee, unsigned OpIdx, | 
 |                                        MachineBasicBlock *LandingPad) { | 
 |   const PointerType *PT = cast<PointerType>(CalledValueTy); | 
 |   const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); | 
 |   const ParamAttrsList *Attrs = FTy->getParamAttrs(); | 
 |   MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
 |   unsigned BeginLabel = 0, EndLabel = 0; | 
 |      | 
 |   TargetLowering::ArgListTy Args; | 
 |   TargetLowering::ArgListEntry Entry; | 
 |   Args.reserve(I.getNumOperands()); | 
 |   for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) { | 
 |     Value *Arg = I.getOperand(i); | 
 |     SDOperand ArgNode = getValue(Arg); | 
 |     Entry.Node = ArgNode; Entry.Ty = Arg->getType(); | 
 |  | 
 |     unsigned attrInd = i - OpIdx + 1; | 
 |     Entry.isSExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt); | 
 |     Entry.isZExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt); | 
 |     Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg); | 
 |     Entry.isSRet  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet); | 
 |     Entry.isNest  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::Nest); | 
 |     Entry.isByVal = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ByVal); | 
 |     Args.push_back(Entry); | 
 |   } | 
 |  | 
 |   if (ExceptionHandling && MMI && LandingPad) { | 
 |     // Insert a label before the invoke call to mark the try range.  This can be | 
 |     // used to detect deletion of the invoke via the MachineModuleInfo. | 
 |     BeginLabel = MMI->NextLabelID(); | 
 |     DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(), | 
 |                             DAG.getConstant(BeginLabel, MVT::i32))); | 
 |   } | 
 |    | 
 |   std::pair<SDOperand,SDOperand> Result = | 
 |     TLI.LowerCallTo(getRoot(), I.getType(),  | 
 |                     Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), | 
 |                     FTy->isVarArg(), CallingConv, IsTailCall,  | 
 |                     Callee, Args, DAG); | 
 |   if (I.getType() != Type::VoidTy) | 
 |     setValue(&I, Result.first); | 
 |   DAG.setRoot(Result.second); | 
 |  | 
 |   if (ExceptionHandling && MMI && LandingPad) { | 
 |     // Insert a label at the end of the invoke call to mark the try range.  This | 
 |     // can be used to detect deletion of the invoke via the MachineModuleInfo. | 
 |     EndLabel = MMI->NextLabelID(); | 
 |     DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(), | 
 |                             DAG.getConstant(EndLabel, MVT::i32))); | 
 |  | 
 |     // Inform MachineModuleInfo of range.     | 
 |     MMI->addInvoke(LandingPad, BeginLabel, EndLabel); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void SelectionDAGLowering::visitCall(CallInst &I) { | 
 |   const char *RenameFn = 0; | 
 |   if (Function *F = I.getCalledFunction()) { | 
 |     if (F->isDeclaration()) | 
 |       if (unsigned IID = F->getIntrinsicID()) { | 
 |         RenameFn = visitIntrinsicCall(I, IID); | 
 |         if (!RenameFn) | 
 |           return; | 
 |       } else {    // Not an LLVM intrinsic. | 
 |         const std::string &Name = F->getName(); | 
 |         if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) { | 
 |           if (I.getNumOperands() == 3 &&   // Basic sanity checks. | 
 |               I.getOperand(1)->getType()->isFloatingPoint() && | 
 |               I.getType() == I.getOperand(1)->getType() && | 
 |               I.getType() == I.getOperand(2)->getType()) { | 
 |             SDOperand LHS = getValue(I.getOperand(1)); | 
 |             SDOperand RHS = getValue(I.getOperand(2)); | 
 |             setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(), | 
 |                                      LHS, RHS)); | 
 |             return; | 
 |           } | 
 |         } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) { | 
 |           if (I.getNumOperands() == 2 &&   // Basic sanity checks. | 
 |               I.getOperand(1)->getType()->isFloatingPoint() && | 
 |               I.getType() == I.getOperand(1)->getType()) { | 
 |             SDOperand Tmp = getValue(I.getOperand(1)); | 
 |             setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp)); | 
 |             return; | 
 |           } | 
 |         } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) { | 
 |           if (I.getNumOperands() == 2 &&   // Basic sanity checks. | 
 |               I.getOperand(1)->getType()->isFloatingPoint() && | 
 |               I.getType() == I.getOperand(1)->getType()) { | 
 |             SDOperand Tmp = getValue(I.getOperand(1)); | 
 |             setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp)); | 
 |             return; | 
 |           } | 
 |         } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) { | 
 |           if (I.getNumOperands() == 2 &&   // Basic sanity checks. | 
 |               I.getOperand(1)->getType()->isFloatingPoint() && | 
 |               I.getType() == I.getOperand(1)->getType()) { | 
 |             SDOperand Tmp = getValue(I.getOperand(1)); | 
 |             setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp)); | 
 |             return; | 
 |           } | 
 |         } | 
 |       } | 
 |   } else if (isa<InlineAsm>(I.getOperand(0))) { | 
 |     visitInlineAsm(I); | 
 |     return; | 
 |   } | 
 |  | 
 |   SDOperand Callee; | 
 |   if (!RenameFn) | 
 |     Callee = getValue(I.getOperand(0)); | 
 |   else | 
 |     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); | 
 |  | 
 |   LowerCallTo(I, I.getCalledValue()->getType(), | 
 |               I.getCallingConv(), | 
 |               I.isTailCall(), | 
 |               Callee, | 
 |               1); | 
 | } | 
 |  | 
 |  | 
 | /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from | 
 | /// this value and returns the result as a ValueVT value.  This uses  | 
 | /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
 | /// If the Flag pointer is NULL, no flag is used. | 
 | SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG, | 
 |                                         SDOperand &Chain, SDOperand *Flag)const{ | 
 |   // Copy the legal parts from the registers. | 
 |   unsigned NumParts = Regs.size(); | 
 |   SmallVector<SDOperand, 8> Parts(NumParts); | 
 |   for (unsigned i = 0; i != NumParts; ++i) { | 
 |     SDOperand Part = Flag ? | 
 |                      DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) : | 
 |                      DAG.getCopyFromReg(Chain, Regs[i], RegVT); | 
 |     Chain = Part.getValue(1); | 
 |     if (Flag) | 
 |       *Flag = Part.getValue(2); | 
 |     Parts[i] = Part; | 
 |   } | 
 |    | 
 |   // Assemble the legal parts into the final value. | 
 |   return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT); | 
 | } | 
 |  | 
 | /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the | 
 | /// specified value into the registers specified by this object.  This uses  | 
 | /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
 | /// If the Flag pointer is NULL, no flag is used. | 
 | void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG, | 
 |                                  SDOperand &Chain, SDOperand *Flag) const { | 
 |   // Get the list of the values's legal parts. | 
 |   unsigned NumParts = Regs.size(); | 
 |   SmallVector<SDOperand, 8> Parts(NumParts); | 
 |   getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT); | 
 |  | 
 |   // Copy the parts into the registers. | 
 |   for (unsigned i = 0; i != NumParts; ++i) { | 
 |     SDOperand Part = Flag ? | 
 |                      DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) : | 
 |                      DAG.getCopyToReg(Chain, Regs[i], Parts[i]); | 
 |     Chain = Part.getValue(0); | 
 |     if (Flag) | 
 |       *Flag = Part.getValue(1); | 
 |   } | 
 | } | 
 |  | 
 | /// AddInlineAsmOperands - Add this value to the specified inlineasm node | 
 | /// operand list.  This adds the code marker and includes the number of  | 
 | /// values added into it. | 
 | void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG, | 
 |                                         std::vector<SDOperand> &Ops) const { | 
 |   MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); | 
 |   Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy)); | 
 |   for (unsigned i = 0, e = Regs.size(); i != e; ++i) | 
 |     Ops.push_back(DAG.getRegister(Regs[i], RegVT)); | 
 | } | 
 |  | 
 | /// isAllocatableRegister - If the specified register is safe to allocate,  | 
 | /// i.e. it isn't a stack pointer or some other special register, return the | 
 | /// register class for the register.  Otherwise, return null. | 
 | static const TargetRegisterClass * | 
 | isAllocatableRegister(unsigned Reg, MachineFunction &MF, | 
 |                       const TargetLowering &TLI, const MRegisterInfo *MRI) { | 
 |   MVT::ValueType FoundVT = MVT::Other; | 
 |   const TargetRegisterClass *FoundRC = 0; | 
 |   for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(), | 
 |        E = MRI->regclass_end(); RCI != E; ++RCI) { | 
 |     MVT::ValueType ThisVT = MVT::Other; | 
 |  | 
 |     const TargetRegisterClass *RC = *RCI; | 
 |     // If none of the the value types for this register class are valid, we  | 
 |     // can't use it.  For example, 64-bit reg classes on 32-bit targets. | 
 |     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); | 
 |          I != E; ++I) { | 
 |       if (TLI.isTypeLegal(*I)) { | 
 |         // If we have already found this register in a different register class, | 
 |         // choose the one with the largest VT specified.  For example, on | 
 |         // PowerPC, we favor f64 register classes over f32. | 
 |         if (FoundVT == MVT::Other ||  | 
 |             MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) { | 
 |           ThisVT = *I; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |      | 
 |     if (ThisVT == MVT::Other) continue; | 
 |      | 
 |     // NOTE: This isn't ideal.  In particular, this might allocate the | 
 |     // frame pointer in functions that need it (due to them not being taken | 
 |     // out of allocation, because a variable sized allocation hasn't been seen | 
 |     // yet).  This is a slight code pessimization, but should still work. | 
 |     for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), | 
 |          E = RC->allocation_order_end(MF); I != E; ++I) | 
 |       if (*I == Reg) { | 
 |         // We found a matching register class.  Keep looking at others in case | 
 |         // we find one with larger registers that this physreg is also in. | 
 |         FoundRC = RC; | 
 |         FoundVT = ThisVT; | 
 |         break; | 
 |       } | 
 |   } | 
 |   return FoundRC; | 
 | }     | 
 |  | 
 |  | 
 | namespace { | 
 | /// AsmOperandInfo - This contains information for each constraint that we are | 
 | /// lowering. | 
 | struct AsmOperandInfo : public InlineAsm::ConstraintInfo { | 
 |   /// ConstraintCode - This contains the actual string for the code, like "m". | 
 |   std::string ConstraintCode; | 
 |  | 
 |   /// ConstraintType - Information about the constraint code, e.g. Register, | 
 |   /// RegisterClass, Memory, Other, Unknown. | 
 |   TargetLowering::ConstraintType ConstraintType; | 
 |    | 
 |   /// CallOperand/CallOperandval - If this is the result output operand or a | 
 |   /// clobber, this is null, otherwise it is the incoming operand to the | 
 |   /// CallInst.  This gets modified as the asm is processed. | 
 |   SDOperand CallOperand; | 
 |   Value *CallOperandVal; | 
 |    | 
 |   /// ConstraintVT - The ValueType for the operand value. | 
 |   MVT::ValueType ConstraintVT; | 
 |    | 
 |   /// AssignedRegs - If this is a register or register class operand, this | 
 |   /// contains the set of register corresponding to the operand. | 
 |   RegsForValue AssignedRegs; | 
 |    | 
 |   AsmOperandInfo(const InlineAsm::ConstraintInfo &info) | 
 |     : InlineAsm::ConstraintInfo(info),  | 
 |       ConstraintType(TargetLowering::C_Unknown), | 
 |       CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) { | 
 |   } | 
 |    | 
 |   void ComputeConstraintToUse(const TargetLowering &TLI); | 
 |    | 
 |   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers | 
 |   /// busy in OutputRegs/InputRegs. | 
 |   void MarkAllocatedRegs(bool isOutReg, bool isInReg, | 
 |                          std::set<unsigned> &OutputRegs,  | 
 |                          std::set<unsigned> &InputRegs) const { | 
 |      if (isOutReg) | 
 |        OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end()); | 
 |      if (isInReg) | 
 |        InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end()); | 
 |    } | 
 | }; | 
 | } // end anon namespace. | 
 |  | 
 | /// getConstraintGenerality - Return an integer indicating how general CT is. | 
 | static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { | 
 |   switch (CT) { | 
 |     default: assert(0 && "Unknown constraint type!"); | 
 |     case TargetLowering::C_Other: | 
 |     case TargetLowering::C_Unknown: | 
 |       return 0; | 
 |     case TargetLowering::C_Register: | 
 |       return 1; | 
 |     case TargetLowering::C_RegisterClass: | 
 |       return 2; | 
 |     case TargetLowering::C_Memory: | 
 |       return 3; | 
 |   } | 
 | } | 
 |  | 
 | void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) { | 
 |   assert(!Codes.empty() && "Must have at least one constraint"); | 
 |    | 
 |   std::string *Current = &Codes[0]; | 
 |   TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current); | 
 |   if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common. | 
 |     ConstraintCode = *Current; | 
 |     ConstraintType = CurType; | 
 |     return; | 
 |   } | 
 |    | 
 |   unsigned CurGenerality = getConstraintGenerality(CurType); | 
 |    | 
 |   // If we have multiple constraints, try to pick the most general one ahead | 
 |   // of time.  This isn't a wonderful solution, but handles common cases. | 
 |   for (unsigned j = 1, e = Codes.size(); j != e; ++j) { | 
 |     TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]); | 
 |     unsigned ThisGenerality = getConstraintGenerality(ThisType); | 
 |     if (ThisGenerality > CurGenerality) { | 
 |       // This constraint letter is more general than the previous one, | 
 |       // use it. | 
 |       CurType = ThisType; | 
 |       Current = &Codes[j]; | 
 |       CurGenerality = ThisGenerality; | 
 |     } | 
 |   } | 
 |    | 
 |   ConstraintCode = *Current; | 
 |   ConstraintType = CurType; | 
 | } | 
 |  | 
 |  | 
 | void SelectionDAGLowering:: | 
 | GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber, | 
 |                      std::set<unsigned> &OutputRegs,  | 
 |                      std::set<unsigned> &InputRegs) { | 
 |   // Compute whether this value requires an input register, an output register, | 
 |   // or both. | 
 |   bool isOutReg = false; | 
 |   bool isInReg = false; | 
 |   switch (OpInfo.Type) { | 
 |   case InlineAsm::isOutput: | 
 |     isOutReg = true; | 
 |      | 
 |     // If this is an early-clobber output, or if there is an input | 
 |     // constraint that matches this, we need to reserve the input register | 
 |     // so no other inputs allocate to it. | 
 |     isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput; | 
 |     break; | 
 |   case InlineAsm::isInput: | 
 |     isInReg = true; | 
 |     isOutReg = false; | 
 |     break; | 
 |   case InlineAsm::isClobber: | 
 |     isOutReg = true; | 
 |     isInReg = true; | 
 |     break; | 
 |   } | 
 |    | 
 |    | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   std::vector<unsigned> Regs; | 
 |    | 
 |   // If this is a constraint for a single physreg, or a constraint for a | 
 |   // register class, find it. | 
 |   std::pair<unsigned, const TargetRegisterClass*> PhysReg =  | 
 |     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, | 
 |                                      OpInfo.ConstraintVT); | 
 |  | 
 |   unsigned NumRegs = 1; | 
 |   if (OpInfo.ConstraintVT != MVT::Other) | 
 |     NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT); | 
 |   MVT::ValueType RegVT; | 
 |   MVT::ValueType ValueVT = OpInfo.ConstraintVT; | 
 |    | 
 |  | 
 |   // If this is a constraint for a specific physical register, like {r17}, | 
 |   // assign it now. | 
 |   if (PhysReg.first) { | 
 |     if (OpInfo.ConstraintVT == MVT::Other) | 
 |       ValueVT = *PhysReg.second->vt_begin(); | 
 |      | 
 |     // Get the actual register value type.  This is important, because the user | 
 |     // may have asked for (e.g.) the AX register in i32 type.  We need to | 
 |     // remember that AX is actually i16 to get the right extension. | 
 |     RegVT = *PhysReg.second->vt_begin(); | 
 |      | 
 |     // This is a explicit reference to a physical register. | 
 |     Regs.push_back(PhysReg.first); | 
 |  | 
 |     // If this is an expanded reference, add the rest of the regs to Regs. | 
 |     if (NumRegs != 1) { | 
 |       TargetRegisterClass::iterator I = PhysReg.second->begin(); | 
 |       TargetRegisterClass::iterator E = PhysReg.second->end(); | 
 |       for (; *I != PhysReg.first; ++I) | 
 |         assert(I != E && "Didn't find reg!");  | 
 |        | 
 |       // Already added the first reg. | 
 |       --NumRegs; ++I; | 
 |       for (; NumRegs; --NumRegs, ++I) { | 
 |         assert(I != E && "Ran out of registers to allocate!"); | 
 |         Regs.push_back(*I); | 
 |       } | 
 |     } | 
 |     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); | 
 |     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs); | 
 |     return; | 
 |   } | 
 |    | 
 |   // Otherwise, if this was a reference to an LLVM register class, create vregs | 
 |   // for this reference. | 
 |   std::vector<unsigned> RegClassRegs; | 
 |   const TargetRegisterClass *RC = PhysReg.second; | 
 |   if (RC) { | 
 |     // If this is an early clobber or tied register, our regalloc doesn't know | 
 |     // how to maintain the constraint.  If it isn't, go ahead and create vreg | 
 |     // and let the regalloc do the right thing. | 
 |     if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber && | 
 |         // If there is some other early clobber and this is an input register, | 
 |         // then we are forced to pre-allocate the input reg so it doesn't | 
 |         // conflict with the earlyclobber. | 
 |         !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) { | 
 |       RegVT = *PhysReg.second->vt_begin(); | 
 |        | 
 |       if (OpInfo.ConstraintVT == MVT::Other) | 
 |         ValueVT = RegVT; | 
 |  | 
 |       // Create the appropriate number of virtual registers. | 
 |       SSARegMap *RegMap = MF.getSSARegMap(); | 
 |       for (; NumRegs; --NumRegs) | 
 |         Regs.push_back(RegMap->createVirtualRegister(PhysReg.second)); | 
 |        | 
 |       OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); | 
 |       OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs); | 
 |       return; | 
 |     } | 
 |      | 
 |     // Otherwise, we can't allocate it.  Let the code below figure out how to | 
 |     // maintain these constraints. | 
 |     RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end()); | 
 |      | 
 |   } else { | 
 |     // This is a reference to a register class that doesn't directly correspond | 
 |     // to an LLVM register class.  Allocate NumRegs consecutive, available, | 
 |     // registers from the class. | 
 |     RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, | 
 |                                                          OpInfo.ConstraintVT); | 
 |   } | 
 |    | 
 |   const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo(); | 
 |   unsigned NumAllocated = 0; | 
 |   for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { | 
 |     unsigned Reg = RegClassRegs[i]; | 
 |     // See if this register is available. | 
 |     if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used. | 
 |         (isInReg  && InputRegs.count(Reg))) {    // Already used. | 
 |       // Make sure we find consecutive registers. | 
 |       NumAllocated = 0; | 
 |       continue; | 
 |     } | 
 |      | 
 |     // Check to see if this register is allocatable (i.e. don't give out the | 
 |     // stack pointer). | 
 |     if (RC == 0) { | 
 |       RC = isAllocatableRegister(Reg, MF, TLI, MRI); | 
 |       if (!RC) {        // Couldn't allocate this register. | 
 |         // Reset NumAllocated to make sure we return consecutive registers. | 
 |         NumAllocated = 0; | 
 |         continue; | 
 |       } | 
 |     } | 
 |      | 
 |     // Okay, this register is good, we can use it. | 
 |     ++NumAllocated; | 
 |  | 
 |     // If we allocated enough consecutive registers, succeed. | 
 |     if (NumAllocated == NumRegs) { | 
 |       unsigned RegStart = (i-NumAllocated)+1; | 
 |       unsigned RegEnd   = i+1; | 
 |       // Mark all of the allocated registers used. | 
 |       for (unsigned i = RegStart; i != RegEnd; ++i) | 
 |         Regs.push_back(RegClassRegs[i]); | 
 |        | 
 |       OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),  | 
 |                                          OpInfo.ConstraintVT); | 
 |       OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs); | 
 |       return; | 
 |     } | 
 |   } | 
 |    | 
 |   // Otherwise, we couldn't allocate enough registers for this. | 
 |   return; | 
 | } | 
 |  | 
 |  | 
 | /// visitInlineAsm - Handle a call to an InlineAsm object. | 
 | /// | 
 | void SelectionDAGLowering::visitInlineAsm(CallInst &I) { | 
 |   InlineAsm *IA = cast<InlineAsm>(I.getOperand(0)); | 
 |  | 
 |   /// ConstraintOperands - Information about all of the constraints. | 
 |   std::vector<AsmOperandInfo> ConstraintOperands; | 
 |    | 
 |   SDOperand Chain = getRoot(); | 
 |   SDOperand Flag; | 
 |    | 
 |   std::set<unsigned> OutputRegs, InputRegs; | 
 |  | 
 |   // Do a prepass over the constraints, canonicalizing them, and building up the | 
 |   // ConstraintOperands list. | 
 |   std::vector<InlineAsm::ConstraintInfo> | 
 |     ConstraintInfos = IA->ParseConstraints(); | 
 |  | 
 |   // SawEarlyClobber - Keep track of whether we saw an earlyclobber output | 
 |   // constraint.  If so, we can't let the register allocator allocate any input | 
 |   // registers, because it will not know to avoid the earlyclobbered output reg. | 
 |   bool SawEarlyClobber = false; | 
 |    | 
 |   unsigned OpNo = 1;   // OpNo - The operand of the CallInst. | 
 |   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { | 
 |     ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i])); | 
 |     AsmOperandInfo &OpInfo = ConstraintOperands.back(); | 
 |      | 
 |     MVT::ValueType OpVT = MVT::Other; | 
 |  | 
 |     // Compute the value type for each operand. | 
 |     switch (OpInfo.Type) { | 
 |     case InlineAsm::isOutput: | 
 |       if (!OpInfo.isIndirect) { | 
 |         // The return value of the call is this value.  As such, there is no | 
 |         // corresponding argument. | 
 |         assert(I.getType() != Type::VoidTy && "Bad inline asm!"); | 
 |         OpVT = TLI.getValueType(I.getType()); | 
 |       } else { | 
 |         OpInfo.CallOperandVal = I.getOperand(OpNo++); | 
 |       } | 
 |       break; | 
 |     case InlineAsm::isInput: | 
 |       OpInfo.CallOperandVal = I.getOperand(OpNo++); | 
 |       break; | 
 |     case InlineAsm::isClobber: | 
 |       // Nothing to do. | 
 |       break; | 
 |     } | 
 |  | 
 |     // If this is an input or an indirect output, process the call argument. | 
 |     if (OpInfo.CallOperandVal) { | 
 |       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); | 
 |       const Type *OpTy = OpInfo.CallOperandVal->getType(); | 
 |       // If this is an indirect operand, the operand is a pointer to the | 
 |       // accessed type. | 
 |       if (OpInfo.isIndirect) | 
 |         OpTy = cast<PointerType>(OpTy)->getElementType(); | 
 |        | 
 |       // If OpTy is not a first-class value, it may be a struct/union that we | 
 |       // can tile with integers. | 
 |       if (!OpTy->isFirstClassType() && OpTy->isSized()) { | 
 |         unsigned BitSize = TD->getTypeSizeInBits(OpTy); | 
 |         switch (BitSize) { | 
 |         default: break; | 
 |         case 1: | 
 |         case 8: | 
 |         case 16: | 
 |         case 32: | 
 |         case 64: | 
 |           OpTy = IntegerType::get(BitSize); | 
 |           break; | 
 |         } | 
 |       } | 
 |        | 
 |       OpVT = TLI.getValueType(OpTy, true); | 
 |     } | 
 |      | 
 |     OpInfo.ConstraintVT = OpVT; | 
 |      | 
 |     // Compute the constraint code and ConstraintType to use. | 
 |     OpInfo.ComputeConstraintToUse(TLI); | 
 |  | 
 |     // Keep track of whether we see an earlyclobber. | 
 |     SawEarlyClobber |= OpInfo.isEarlyClobber; | 
 |      | 
 |     // If this is a memory input, and if the operand is not indirect, do what we | 
 |     // need to to provide an address for the memory input. | 
 |     if (OpInfo.ConstraintType == TargetLowering::C_Memory && | 
 |         !OpInfo.isIndirect) { | 
 |       assert(OpInfo.Type == InlineAsm::isInput && | 
 |              "Can only indirectify direct input operands!"); | 
 |        | 
 |       // Memory operands really want the address of the value.  If we don't have | 
 |       // an indirect input, put it in the constpool if we can, otherwise spill | 
 |       // it to a stack slot. | 
 |        | 
 |       // If the operand is a float, integer, or vector constant, spill to a | 
 |       // constant pool entry to get its address. | 
 |       Value *OpVal = OpInfo.CallOperandVal; | 
 |       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || | 
 |           isa<ConstantVector>(OpVal)) { | 
 |         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), | 
 |                                                  TLI.getPointerTy()); | 
 |       } else { | 
 |         // Otherwise, create a stack slot and emit a store to it before the | 
 |         // asm. | 
 |         const Type *Ty = OpVal->getType(); | 
 |         uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty); | 
 |         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty); | 
 |         MachineFunction &MF = DAG.getMachineFunction(); | 
 |         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align); | 
 |         SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); | 
 |         Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0); | 
 |         OpInfo.CallOperand = StackSlot; | 
 |       } | 
 |       | 
 |       // There is no longer a Value* corresponding to this operand. | 
 |       OpInfo.CallOperandVal = 0; | 
 |       // It is now an indirect operand. | 
 |       OpInfo.isIndirect = true; | 
 |     } | 
 |      | 
 |     // If this constraint is for a specific register, allocate it before | 
 |     // anything else. | 
 |     if (OpInfo.ConstraintType == TargetLowering::C_Register) | 
 |       GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs); | 
 |   } | 
 |   ConstraintInfos.clear(); | 
 |    | 
 |    | 
 |   // Second pass - Loop over all of the operands, assigning virtual or physregs | 
 |   // to registerclass operands. | 
 |   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { | 
 |     AsmOperandInfo &OpInfo = ConstraintOperands[i]; | 
 |      | 
 |     // C_Register operands have already been allocated, Other/Memory don't need | 
 |     // to be. | 
 |     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) | 
 |       GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs); | 
 |   }     | 
 |    | 
 |   // AsmNodeOperands - The operands for the ISD::INLINEASM node. | 
 |   std::vector<SDOperand> AsmNodeOperands; | 
 |   AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain | 
 |   AsmNodeOperands.push_back( | 
 |           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other)); | 
 |    | 
 |    | 
 |   // Loop over all of the inputs, copying the operand values into the | 
 |   // appropriate registers and processing the output regs. | 
 |   RegsForValue RetValRegs; | 
 |    | 
 |   // IndirectStoresToEmit - The set of stores to emit after the inline asm node. | 
 |   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; | 
 |    | 
 |   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { | 
 |     AsmOperandInfo &OpInfo = ConstraintOperands[i]; | 
 |  | 
 |     switch (OpInfo.Type) { | 
 |     case InlineAsm::isOutput: { | 
 |       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && | 
 |           OpInfo.ConstraintType != TargetLowering::C_Register) { | 
 |         // Memory output, or 'other' output (e.g. 'X' constraint). | 
 |         assert(OpInfo.isIndirect && "Memory output must be indirect operand"); | 
 |  | 
 |         // Add information to the INLINEASM node to know about this output. | 
 |         unsigned ResOpType = 4/*MEM*/ | (1 << 3); | 
 |         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,  | 
 |                                                         TLI.getPointerTy())); | 
 |         AsmNodeOperands.push_back(OpInfo.CallOperand); | 
 |         break; | 
 |       } | 
 |  | 
 |       // Otherwise, this is a register or register class output. | 
 |  | 
 |       // Copy the output from the appropriate register.  Find a register that | 
 |       // we can use. | 
 |       if (OpInfo.AssignedRegs.Regs.empty()) { | 
 |         cerr << "Couldn't allocate output reg for contraint '" | 
 |              << OpInfo.ConstraintCode << "'!\n"; | 
 |         exit(1); | 
 |       } | 
 |  | 
 |       if (!OpInfo.isIndirect) { | 
 |         // This is the result value of the call. | 
 |         assert(RetValRegs.Regs.empty() && | 
 |                "Cannot have multiple output constraints yet!"); | 
 |         assert(I.getType() != Type::VoidTy && "Bad inline asm!"); | 
 |         RetValRegs = OpInfo.AssignedRegs; | 
 |       } else { | 
 |         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, | 
 |                                                       OpInfo.CallOperandVal)); | 
 |       } | 
 |        | 
 |       // Add information to the INLINEASM node to know that this register is | 
 |       // set. | 
 |       OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, | 
 |                                                AsmNodeOperands); | 
 |       break; | 
 |     } | 
 |     case InlineAsm::isInput: { | 
 |       SDOperand InOperandVal = OpInfo.CallOperand; | 
 |        | 
 |       if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint? | 
 |         // If this is required to match an output register we have already set, | 
 |         // just use its register. | 
 |         unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str()); | 
 |          | 
 |         // Scan until we find the definition we already emitted of this operand. | 
 |         // When we find it, create a RegsForValue operand. | 
 |         unsigned CurOp = 2;  // The first operand. | 
 |         for (; OperandNo; --OperandNo) { | 
 |           // Advance to the next operand. | 
 |           unsigned NumOps =  | 
 |             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue(); | 
 |           assert(((NumOps & 7) == 2 /*REGDEF*/ || | 
 |                   (NumOps & 7) == 4 /*MEM*/) && | 
 |                  "Skipped past definitions?"); | 
 |           CurOp += (NumOps>>3)+1; | 
 |         } | 
 |  | 
 |         unsigned NumOps =  | 
 |           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue(); | 
 |         if ((NumOps & 7) == 2 /*REGDEF*/) { | 
 |           // Add NumOps>>3 registers to MatchedRegs. | 
 |           RegsForValue MatchedRegs; | 
 |           MatchedRegs.ValueVT = InOperandVal.getValueType(); | 
 |           MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType(); | 
 |           for (unsigned i = 0, e = NumOps>>3; i != e; ++i) { | 
 |             unsigned Reg = | 
 |               cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg(); | 
 |             MatchedRegs.Regs.push_back(Reg); | 
 |           } | 
 |          | 
 |           // Use the produced MatchedRegs object to  | 
 |           MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag); | 
 |           MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands); | 
 |           break; | 
 |         } else { | 
 |           assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!"); | 
 |           assert(0 && "matching constraints for memory operands unimp"); | 
 |         } | 
 |       } | 
 |        | 
 |       if (OpInfo.ConstraintType == TargetLowering::C_Other) { | 
 |         assert(!OpInfo.isIndirect &&  | 
 |                "Don't know how to handle indirect other inputs yet!"); | 
 |          | 
 |         std::vector<SDOperand> Ops; | 
 |         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], | 
 |                                          Ops, DAG); | 
 |         if (Ops.empty()) { | 
 |           cerr << "Invalid operand for inline asm constraint '" | 
 |                << OpInfo.ConstraintCode << "'!\n"; | 
 |           exit(1); | 
 |         } | 
 |          | 
 |         // Add information to the INLINEASM node to know about this input. | 
 |         unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); | 
 |         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,  | 
 |                                                         TLI.getPointerTy())); | 
 |         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); | 
 |         break; | 
 |       } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { | 
 |         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); | 
 |         assert(InOperandVal.getValueType() == TLI.getPointerTy() && | 
 |                "Memory operands expect pointer values"); | 
 |                 | 
 |         // Add information to the INLINEASM node to know about this input. | 
 |         unsigned ResOpType = 4/*MEM*/ | (1 << 3); | 
 |         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, | 
 |                                                         TLI.getPointerTy())); | 
 |         AsmNodeOperands.push_back(InOperandVal); | 
 |         break; | 
 |       } | 
 |          | 
 |       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || | 
 |               OpInfo.ConstraintType == TargetLowering::C_Register) && | 
 |              "Unknown constraint type!"); | 
 |       assert(!OpInfo.isIndirect &&  | 
 |              "Don't know how to handle indirect register inputs yet!"); | 
 |  | 
 |       // Copy the input into the appropriate registers. | 
 |       assert(!OpInfo.AssignedRegs.Regs.empty() && | 
 |              "Couldn't allocate input reg!"); | 
 |  | 
 |       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag); | 
 |        | 
 |       OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, | 
 |                                                AsmNodeOperands); | 
 |       break; | 
 |     } | 
 |     case InlineAsm::isClobber: { | 
 |       // Add the clobbered value to the operand list, so that the register | 
 |       // allocator is aware that the physreg got clobbered. | 
 |       if (!OpInfo.AssignedRegs.Regs.empty()) | 
 |         OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, | 
 |                                                  AsmNodeOperands); | 
 |       break; | 
 |     } | 
 |     } | 
 |   } | 
 |    | 
 |   // Finish up input operands. | 
 |   AsmNodeOperands[0] = Chain; | 
 |   if (Flag.Val) AsmNodeOperands.push_back(Flag); | 
 |    | 
 |   Chain = DAG.getNode(ISD::INLINEASM,  | 
 |                       DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2, | 
 |                       &AsmNodeOperands[0], AsmNodeOperands.size()); | 
 |   Flag = Chain.getValue(1); | 
 |  | 
 |   // If this asm returns a register value, copy the result from that register | 
 |   // and set it as the value of the call. | 
 |   if (!RetValRegs.Regs.empty()) { | 
 |     SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag); | 
 |      | 
 |     // If the result of the inline asm is a vector, it may have the wrong | 
 |     // width/num elts.  Make sure to convert it to the right type with | 
 |     // bit_convert. | 
 |     if (MVT::isVector(Val.getValueType())) { | 
 |       const VectorType *VTy = cast<VectorType>(I.getType()); | 
 |       MVT::ValueType DesiredVT = TLI.getValueType(VTy); | 
 |        | 
 |       Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val); | 
 |     } | 
 |      | 
 |     setValue(&I, Val); | 
 |   } | 
 |    | 
 |   std::vector<std::pair<SDOperand, Value*> > StoresToEmit; | 
 |    | 
 |   // Process indirect outputs, first output all of the flagged copies out of | 
 |   // physregs. | 
 |   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { | 
 |     RegsForValue &OutRegs = IndirectStoresToEmit[i].first; | 
 |     Value *Ptr = IndirectStoresToEmit[i].second; | 
 |     SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag); | 
 |     StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); | 
 |   } | 
 |    | 
 |   // Emit the non-flagged stores from the physregs. | 
 |   SmallVector<SDOperand, 8> OutChains; | 
 |   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) | 
 |     OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first, | 
 |                                     getValue(StoresToEmit[i].second), | 
 |                                     StoresToEmit[i].second, 0)); | 
 |   if (!OutChains.empty()) | 
 |     Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, | 
 |                         &OutChains[0], OutChains.size()); | 
 |   DAG.setRoot(Chain); | 
 | } | 
 |  | 
 |  | 
 | void SelectionDAGLowering::visitMalloc(MallocInst &I) { | 
 |   SDOperand Src = getValue(I.getOperand(0)); | 
 |  | 
 |   MVT::ValueType IntPtr = TLI.getPointerTy(); | 
 |  | 
 |   if (IntPtr < Src.getValueType()) | 
 |     Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src); | 
 |   else if (IntPtr > Src.getValueType()) | 
 |     Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src); | 
 |  | 
 |   // Scale the source by the type size. | 
 |   uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType()); | 
 |   Src = DAG.getNode(ISD::MUL, Src.getValueType(), | 
 |                     Src, getIntPtrConstant(ElementSize)); | 
 |  | 
 |   TargetLowering::ArgListTy Args; | 
 |   TargetLowering::ArgListEntry Entry; | 
 |   Entry.Node = Src; | 
 |   Entry.Ty = TLI.getTargetData()->getIntPtrType(); | 
 |   Args.push_back(Entry); | 
 |  | 
 |   std::pair<SDOperand,SDOperand> Result = | 
 |     TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true, | 
 |                     DAG.getExternalSymbol("malloc", IntPtr), | 
 |                     Args, DAG); | 
 |   setValue(&I, Result.first);  // Pointers always fit in registers | 
 |   DAG.setRoot(Result.second); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitFree(FreeInst &I) { | 
 |   TargetLowering::ArgListTy Args; | 
 |   TargetLowering::ArgListEntry Entry; | 
 |   Entry.Node = getValue(I.getOperand(0)); | 
 |   Entry.Ty = TLI.getTargetData()->getIntPtrType(); | 
 |   Args.push_back(Entry); | 
 |   MVT::ValueType IntPtr = TLI.getPointerTy(); | 
 |   std::pair<SDOperand,SDOperand> Result = | 
 |     TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true, | 
 |                     DAG.getExternalSymbol("free", IntPtr), Args, DAG); | 
 |   DAG.setRoot(Result.second); | 
 | } | 
 |  | 
 | // InsertAtEndOfBasicBlock - This method should be implemented by targets that | 
 | // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These | 
 | // instructions are special in various ways, which require special support to | 
 | // insert.  The specified MachineInstr is created but not inserted into any | 
 | // basic blocks, and the scheduler passes ownership of it to this method. | 
 | MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, | 
 |                                                        MachineBasicBlock *MBB) { | 
 |   cerr << "If a target marks an instruction with " | 
 |        << "'usesCustomDAGSchedInserter', it must implement " | 
 |        << "TargetLowering::InsertAtEndOfBasicBlock!\n"; | 
 |   abort(); | 
 |   return 0;   | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitVAStart(CallInst &I) { | 
 |   DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),  | 
 |                           getValue(I.getOperand(1)),  | 
 |                           DAG.getSrcValue(I.getOperand(1)))); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitVAArg(VAArgInst &I) { | 
 |   SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(), | 
 |                              getValue(I.getOperand(0)), | 
 |                              DAG.getSrcValue(I.getOperand(0))); | 
 |   setValue(&I, V); | 
 |   DAG.setRoot(V.getValue(1)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitVAEnd(CallInst &I) { | 
 |   DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(), | 
 |                           getValue(I.getOperand(1)),  | 
 |                           DAG.getSrcValue(I.getOperand(1)))); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitVACopy(CallInst &I) { | 
 |   DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),  | 
 |                           getValue(I.getOperand(1)),  | 
 |                           getValue(I.getOperand(2)), | 
 |                           DAG.getSrcValue(I.getOperand(1)), | 
 |                           DAG.getSrcValue(I.getOperand(2)))); | 
 | } | 
 |  | 
 | /// TargetLowering::LowerArguments - This is the default LowerArguments | 
 | /// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all | 
 | /// targets are migrated to using FORMAL_ARGUMENTS, this hook should be  | 
 | /// integrated into SDISel. | 
 | std::vector<SDOperand>  | 
 | TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { | 
 |   const FunctionType *FTy = F.getFunctionType(); | 
 |   const ParamAttrsList *Attrs = FTy->getParamAttrs(); | 
 |   // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node. | 
 |   std::vector<SDOperand> Ops; | 
 |   Ops.push_back(DAG.getRoot()); | 
 |   Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy())); | 
 |   Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy())); | 
 |  | 
 |   // Add one result value for each formal argument. | 
 |   std::vector<MVT::ValueType> RetVals; | 
 |   unsigned j = 1; | 
 |   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); | 
 |        I != E; ++I, ++j) { | 
 |     MVT::ValueType VT = getValueType(I->getType()); | 
 |     unsigned Flags = ISD::ParamFlags::NoFlagSet; | 
 |     unsigned OriginalAlignment = | 
 |       getTargetData()->getABITypeAlignment(I->getType()); | 
 |  | 
 |     // FIXME: Distinguish between a formal with no [sz]ext attribute from one | 
 |     // that is zero extended! | 
 |     if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt)) | 
 |       Flags &= ~(ISD::ParamFlags::SExt); | 
 |     if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt)) | 
 |       Flags |= ISD::ParamFlags::SExt; | 
 |     if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg)) | 
 |       Flags |= ISD::ParamFlags::InReg; | 
 |     if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet)) | 
 |       Flags |= ISD::ParamFlags::StructReturn; | 
 |     if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ByVal)) { | 
 |       Flags |= ISD::ParamFlags::ByVal; | 
 |       const PointerType *Ty = cast<PointerType>(I->getType()); | 
 |       const StructType *STy = cast<StructType>(Ty->getElementType()); | 
 |       unsigned StructAlign = Log2_32(getTargetData()->getABITypeAlignment(STy)); | 
 |       unsigned StructSize  = getTargetData()->getTypeSize(STy); | 
 |       Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs); | 
 |       Flags |= (StructSize  << ISD::ParamFlags::ByValSizeOffs); | 
 |     } | 
 |     if (Attrs && Attrs->paramHasAttr(j, ParamAttr::Nest)) | 
 |       Flags |= ISD::ParamFlags::Nest; | 
 |     Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs); | 
 |      | 
 |     switch (getTypeAction(VT)) { | 
 |     default: assert(0 && "Unknown type action!"); | 
 |     case Legal:  | 
 |       RetVals.push_back(VT); | 
 |       Ops.push_back(DAG.getConstant(Flags, MVT::i32)); | 
 |       break; | 
 |     case Promote: | 
 |       RetVals.push_back(getTypeToTransformTo(VT)); | 
 |       Ops.push_back(DAG.getConstant(Flags, MVT::i32)); | 
 |       break; | 
 |     case Expand: { | 
 |       // If this is an illegal type, it needs to be broken up to fit into  | 
 |       // registers. | 
 |       MVT::ValueType RegisterVT = getRegisterType(VT); | 
 |       unsigned NumRegs = getNumRegisters(VT); | 
 |       for (unsigned i = 0; i != NumRegs; ++i) { | 
 |         RetVals.push_back(RegisterVT); | 
 |         // if it isn't first piece, alignment must be 1 | 
 |         if (i > 0) | 
 |           Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) | | 
 |             (1 << ISD::ParamFlags::OrigAlignmentOffs); | 
 |         Ops.push_back(DAG.getConstant(Flags, MVT::i32)); | 
 |       } | 
 |       break; | 
 |     } | 
 |     } | 
 |   } | 
 |  | 
 |   RetVals.push_back(MVT::Other); | 
 |    | 
 |   // Create the node. | 
 |   SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS, | 
 |                                DAG.getNodeValueTypes(RetVals), RetVals.size(), | 
 |                                &Ops[0], Ops.size()).Val; | 
 |   unsigned NumArgRegs = Result->getNumValues() - 1; | 
 |   DAG.setRoot(SDOperand(Result, NumArgRegs)); | 
 |  | 
 |   // Set up the return result vector. | 
 |   Ops.clear(); | 
 |   unsigned i = 0; | 
 |   unsigned Idx = 1; | 
 |   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;  | 
 |       ++I, ++Idx) { | 
 |     MVT::ValueType VT = getValueType(I->getType()); | 
 |      | 
 |     switch (getTypeAction(VT)) { | 
 |     default: assert(0 && "Unknown type action!"); | 
 |     case Legal:  | 
 |       Ops.push_back(SDOperand(Result, i++)); | 
 |       break; | 
 |     case Promote: { | 
 |       SDOperand Op(Result, i++); | 
 |       if (MVT::isInteger(VT)) { | 
 |         if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt)) | 
 |           Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op, | 
 |                            DAG.getValueType(VT)); | 
 |         else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt)) | 
 |           Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op, | 
 |                            DAG.getValueType(VT)); | 
 |         Op = DAG.getNode(ISD::TRUNCATE, VT, Op); | 
 |       } else { | 
 |         assert(MVT::isFloatingPoint(VT) && "Not int or FP?"); | 
 |         Op = DAG.getNode(ISD::FP_ROUND, VT, Op); | 
 |       } | 
 |       Ops.push_back(Op); | 
 |       break; | 
 |     } | 
 |     case Expand: { | 
 |       MVT::ValueType PartVT = getRegisterType(VT); | 
 |       unsigned NumParts = getNumRegisters(VT); | 
 |       SmallVector<SDOperand, 4> Parts(NumParts); | 
 |       for (unsigned j = 0; j != NumParts; ++j) | 
 |         Parts[j] = SDOperand(Result, i++); | 
 |       Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT)); | 
 |       break; | 
 |     } | 
 |     } | 
 |   } | 
 |   assert(i == NumArgRegs && "Argument register count mismatch!"); | 
 |   return Ops; | 
 | } | 
 |  | 
 |  | 
 | /// TargetLowering::LowerCallTo - This is the default LowerCallTo | 
 | /// implementation, which just inserts an ISD::CALL node, which is later custom | 
 | /// lowered by the target to something concrete.  FIXME: When all targets are | 
 | /// migrated to using ISD::CALL, this hook should be integrated into SDISel. | 
 | std::pair<SDOperand, SDOperand> | 
 | TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,  | 
 |                             bool RetTyIsSigned, bool isVarArg, | 
 |                             unsigned CallingConv, bool isTailCall,  | 
 |                             SDOperand Callee, | 
 |                             ArgListTy &Args, SelectionDAG &DAG) { | 
 |   SmallVector<SDOperand, 32> Ops; | 
 |   Ops.push_back(Chain);   // Op#0 - Chain | 
 |   Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC | 
 |   Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg | 
 |   Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail | 
 |   Ops.push_back(Callee); | 
 |    | 
 |   // Handle all of the outgoing arguments. | 
 |   for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
 |     MVT::ValueType VT = getValueType(Args[i].Ty); | 
 |     SDOperand Op = Args[i].Node; | 
 |     unsigned Flags = ISD::ParamFlags::NoFlagSet; | 
 |     unsigned OriginalAlignment = | 
 |       getTargetData()->getABITypeAlignment(Args[i].Ty); | 
 |      | 
 |     if (Args[i].isSExt) | 
 |       Flags |= ISD::ParamFlags::SExt; | 
 |     if (Args[i].isZExt) | 
 |       Flags |= ISD::ParamFlags::ZExt; | 
 |     if (Args[i].isInReg) | 
 |       Flags |= ISD::ParamFlags::InReg; | 
 |     if (Args[i].isSRet) | 
 |       Flags |= ISD::ParamFlags::StructReturn; | 
 |     if (Args[i].isByVal) { | 
 |       Flags |= ISD::ParamFlags::ByVal; | 
 |       const PointerType *Ty = cast<PointerType>(Args[i].Ty); | 
 |       const StructType *STy = cast<StructType>(Ty->getElementType()); | 
 |       unsigned StructAlign = Log2_32(getTargetData()->getABITypeAlignment(STy)); | 
 |       unsigned StructSize  = getTargetData()->getTypeSize(STy); | 
 |       Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs); | 
 |       Flags |= (StructSize  << ISD::ParamFlags::ByValSizeOffs); | 
 |     } | 
 |     if (Args[i].isNest) | 
 |       Flags |= ISD::ParamFlags::Nest; | 
 |     Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs; | 
 |      | 
 |     switch (getTypeAction(VT)) { | 
 |     default: assert(0 && "Unknown type action!"); | 
 |     case Legal: | 
 |       Ops.push_back(Op); | 
 |       Ops.push_back(DAG.getConstant(Flags, MVT::i32)); | 
 |       break; | 
 |     case Promote: | 
 |       if (MVT::isInteger(VT)) { | 
 |         unsigned ExtOp; | 
 |         if (Args[i].isSExt) | 
 |           ExtOp = ISD::SIGN_EXTEND; | 
 |         else if (Args[i].isZExt) | 
 |           ExtOp = ISD::ZERO_EXTEND; | 
 |         else | 
 |           ExtOp = ISD::ANY_EXTEND; | 
 |         Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op); | 
 |       } else { | 
 |         assert(MVT::isFloatingPoint(VT) && "Not int or FP?"); | 
 |         Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op); | 
 |       } | 
 |       Ops.push_back(Op); | 
 |       Ops.push_back(DAG.getConstant(Flags, MVT::i32)); | 
 |       break; | 
 |     case Expand: { | 
 |       MVT::ValueType PartVT = getRegisterType(VT); | 
 |       unsigned NumParts = getNumRegisters(VT); | 
 |       SmallVector<SDOperand, 4> Parts(NumParts); | 
 |       getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT); | 
 |       for (unsigned i = 0; i != NumParts; ++i) { | 
 |         // if it isn't first piece, alignment must be 1 | 
 |         unsigned MyFlags = Flags; | 
 |         if (i != 0) | 
 |           MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) | | 
 |             (1 << ISD::ParamFlags::OrigAlignmentOffs); | 
 |  | 
 |         Ops.push_back(Parts[i]); | 
 |         Ops.push_back(DAG.getConstant(MyFlags, MVT::i32)); | 
 |       } | 
 |       break; | 
 |     } | 
 |     } | 
 |   } | 
 |    | 
 |   // Figure out the result value types. | 
 |   MVT::ValueType VT = getValueType(RetTy); | 
 |   MVT::ValueType RegisterVT = getRegisterType(VT); | 
 |   unsigned NumRegs = getNumRegisters(VT); | 
 |   SmallVector<MVT::ValueType, 4> RetTys(NumRegs); | 
 |   for (unsigned i = 0; i != NumRegs; ++i) | 
 |     RetTys[i] = RegisterVT; | 
 |    | 
 |   RetTys.push_back(MVT::Other);  // Always has a chain. | 
 |    | 
 |   // Create the CALL node. | 
 |   SDOperand Res = DAG.getNode(ISD::CALL, | 
 |                               DAG.getVTList(&RetTys[0], NumRegs + 1), | 
 |                               &Ops[0], Ops.size()); | 
 |   Chain = Res.getValue(NumRegs); | 
 |  | 
 |   // Gather up the call result into a single value. | 
 |   if (RetTy != Type::VoidTy) { | 
 |     ISD::NodeType AssertOp = ISD::AssertSext; | 
 |     if (!RetTyIsSigned) | 
 |       AssertOp = ISD::AssertZext; | 
 |     SmallVector<SDOperand, 4> Results(NumRegs); | 
 |     for (unsigned i = 0; i != NumRegs; ++i) | 
 |       Results[i] = Res.getValue(i); | 
 |     Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp); | 
 |   } | 
 |  | 
 |   return std::make_pair(Res, Chain); | 
 | } | 
 |  | 
 | SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { | 
 |   assert(0 && "LowerOperation not implemented for this target!"); | 
 |   abort(); | 
 |   return SDOperand(); | 
 | } | 
 |  | 
 | SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op, | 
 |                                                  SelectionDAG &DAG) { | 
 |   assert(0 && "CustomPromoteOperation not implemented for this target!"); | 
 |   abort(); | 
 |   return SDOperand(); | 
 | } | 
 |  | 
 | /// getMemsetValue - Vectorized representation of the memset value | 
 | /// operand. | 
 | static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT, | 
 |                                 SelectionDAG &DAG) { | 
 |   MVT::ValueType CurVT = VT; | 
 |   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { | 
 |     uint64_t Val   = C->getValue() & 255; | 
 |     unsigned Shift = 8; | 
 |     while (CurVT != MVT::i8) { | 
 |       Val = (Val << Shift) | Val; | 
 |       Shift <<= 1; | 
 |       CurVT = (MVT::ValueType)((unsigned)CurVT - 1); | 
 |     } | 
 |     return DAG.getConstant(Val, VT); | 
 |   } else { | 
 |     Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value); | 
 |     unsigned Shift = 8; | 
 |     while (CurVT != MVT::i8) { | 
 |       Value = | 
 |         DAG.getNode(ISD::OR, VT, | 
 |                     DAG.getNode(ISD::SHL, VT, Value, | 
 |                                 DAG.getConstant(Shift, MVT::i8)), Value); | 
 |       Shift <<= 1; | 
 |       CurVT = (MVT::ValueType)((unsigned)CurVT - 1); | 
 |     } | 
 |  | 
 |     return Value; | 
 |   } | 
 | } | 
 |  | 
 | /// getMemsetStringVal - Similar to getMemsetValue. Except this is only | 
 | /// used when a memcpy is turned into a memset when the source is a constant | 
 | /// string ptr. | 
 | static SDOperand getMemsetStringVal(MVT::ValueType VT, | 
 |                                     SelectionDAG &DAG, TargetLowering &TLI, | 
 |                                     std::string &Str, unsigned Offset) { | 
 |   uint64_t Val = 0; | 
 |   unsigned MSB = MVT::getSizeInBits(VT) / 8; | 
 |   if (TLI.isLittleEndian()) | 
 |     Offset = Offset + MSB - 1; | 
 |   for (unsigned i = 0; i != MSB; ++i) { | 
 |     Val = (Val << 8) | (unsigned char)Str[Offset]; | 
 |     Offset += TLI.isLittleEndian() ? -1 : 1; | 
 |   } | 
 |   return DAG.getConstant(Val, VT); | 
 | } | 
 |  | 
 | /// getMemBasePlusOffset - Returns base and offset node for the  | 
 | static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset, | 
 |                                       SelectionDAG &DAG, TargetLowering &TLI) { | 
 |   MVT::ValueType VT = Base.getValueType(); | 
 |   return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT)); | 
 | } | 
 |  | 
 | /// MeetsMaxMemopRequirement - Determines if the number of memory ops required | 
 | /// to replace the memset / memcpy is below the threshold. It also returns the | 
 | /// types of the sequence of  memory ops to perform memset / memcpy. | 
 | static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps, | 
 |                                      unsigned Limit, uint64_t Size, | 
 |                                      unsigned Align, TargetLowering &TLI) { | 
 |   MVT::ValueType VT; | 
 |  | 
 |   if (TLI.allowsUnalignedMemoryAccesses()) { | 
 |     VT = MVT::i64; | 
 |   } else { | 
 |     switch (Align & 7) { | 
 |     case 0: | 
 |       VT = MVT::i64; | 
 |       break; | 
 |     case 4: | 
 |       VT = MVT::i32; | 
 |       break; | 
 |     case 2: | 
 |       VT = MVT::i16; | 
 |       break; | 
 |     default: | 
 |       VT = MVT::i8; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   MVT::ValueType LVT = MVT::i64; | 
 |   while (!TLI.isTypeLegal(LVT)) | 
 |     LVT = (MVT::ValueType)((unsigned)LVT - 1); | 
 |   assert(MVT::isInteger(LVT)); | 
 |  | 
 |   if (VT > LVT) | 
 |     VT = LVT; | 
 |  | 
 |   unsigned NumMemOps = 0; | 
 |   while (Size != 0) { | 
 |     unsigned VTSize = MVT::getSizeInBits(VT) / 8; | 
 |     while (VTSize > Size) { | 
 |       VT = (MVT::ValueType)((unsigned)VT - 1); | 
 |       VTSize >>= 1; | 
 |     } | 
 |     assert(MVT::isInteger(VT)); | 
 |  | 
 |     if (++NumMemOps > Limit) | 
 |       return false; | 
 |     MemOps.push_back(VT); | 
 |     Size -= VTSize; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) { | 
 |   SDOperand Op1 = getValue(I.getOperand(1)); | 
 |   SDOperand Op2 = getValue(I.getOperand(2)); | 
 |   SDOperand Op3 = getValue(I.getOperand(3)); | 
 |   SDOperand Op4 = getValue(I.getOperand(4)); | 
 |   unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue(); | 
 |   if (Align == 0) Align = 1; | 
 |  | 
 |   // If the source and destination are known to not be aliases, we can | 
 |   // lower memmove as memcpy. | 
 |   if (Op == ISD::MEMMOVE) { | 
 |     uint64_t Size = -1; | 
 |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) | 
 |       Size = C->getValue(); | 
 |     if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) == | 
 |         AliasAnalysis::NoAlias) | 
 |       Op = ISD::MEMCPY; | 
 |   } | 
 |  | 
 |   if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) { | 
 |     std::vector<MVT::ValueType> MemOps; | 
 |  | 
 |     // Expand memset / memcpy to a series of load / store ops | 
 |     // if the size operand falls below a certain threshold. | 
 |     SmallVector<SDOperand, 8> OutChains; | 
 |     switch (Op) { | 
 |     default: break;  // Do nothing for now. | 
 |     case ISD::MEMSET: { | 
 |       if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(), | 
 |                                    Size->getValue(), Align, TLI)) { | 
 |         unsigned NumMemOps = MemOps.size(); | 
 |         unsigned Offset = 0; | 
 |         for (unsigned i = 0; i < NumMemOps; i++) { | 
 |           MVT::ValueType VT = MemOps[i]; | 
 |           unsigned VTSize = MVT::getSizeInBits(VT) / 8; | 
 |           SDOperand Value = getMemsetValue(Op2, VT, DAG); | 
 |           SDOperand Store = DAG.getStore(getRoot(), Value, | 
 |                                     getMemBasePlusOffset(Op1, Offset, DAG, TLI), | 
 |                                          I.getOperand(1), Offset); | 
 |           OutChains.push_back(Store); | 
 |           Offset += VTSize; | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |     case ISD::MEMCPY: { | 
 |       if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(), | 
 |                                    Size->getValue(), Align, TLI)) { | 
 |         unsigned NumMemOps = MemOps.size(); | 
 |         unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0; | 
 |         GlobalAddressSDNode *G = NULL; | 
 |         std::string Str; | 
 |         bool CopyFromStr = false; | 
 |  | 
 |         if (Op2.getOpcode() == ISD::GlobalAddress) | 
 |           G = cast<GlobalAddressSDNode>(Op2); | 
 |         else if (Op2.getOpcode() == ISD::ADD && | 
 |                  Op2.getOperand(0).getOpcode() == ISD::GlobalAddress && | 
 |                  Op2.getOperand(1).getOpcode() == ISD::Constant) { | 
 |           G = cast<GlobalAddressSDNode>(Op2.getOperand(0)); | 
 |           SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue(); | 
 |         } | 
 |         if (G) { | 
 |           GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal()); | 
 |           if (GV && GV->isConstant()) { | 
 |             Str = GV->getStringValue(false); | 
 |             if (!Str.empty()) { | 
 |               CopyFromStr = true; | 
 |               SrcOff += SrcDelta; | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |         for (unsigned i = 0; i < NumMemOps; i++) { | 
 |           MVT::ValueType VT = MemOps[i]; | 
 |           unsigned VTSize = MVT::getSizeInBits(VT) / 8; | 
 |           SDOperand Value, Chain, Store; | 
 |  | 
 |           if (CopyFromStr) { | 
 |             Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff); | 
 |             Chain = getRoot(); | 
 |             Store = | 
 |               DAG.getStore(Chain, Value, | 
 |                            getMemBasePlusOffset(Op1, DstOff, DAG, TLI), | 
 |                            I.getOperand(1), DstOff); | 
 |           } else { | 
 |             Value = DAG.getLoad(VT, getRoot(), | 
 |                         getMemBasePlusOffset(Op2, SrcOff, DAG, TLI), | 
 |                         I.getOperand(2), SrcOff); | 
 |             Chain = Value.getValue(1); | 
 |             Store = | 
 |               DAG.getStore(Chain, Value, | 
 |                            getMemBasePlusOffset(Op1, DstOff, DAG, TLI), | 
 |                            I.getOperand(1), DstOff); | 
 |           } | 
 |           OutChains.push_back(Store); | 
 |           SrcOff += VTSize; | 
 |           DstOff += VTSize; | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |     } | 
 |  | 
 |     if (!OutChains.empty()) { | 
 |       DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, | 
 |                   &OutChains[0], OutChains.size())); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4)); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // SelectionDAGISel code | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) { | 
 |   return RegMap->createVirtualRegister(TLI.getRegClassFor(VT)); | 
 | } | 
 |  | 
 | void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   AU.addRequired<AliasAnalysis>(); | 
 |   AU.setPreservesAll(); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | bool SelectionDAGISel::runOnFunction(Function &Fn) { | 
 |   // Get alias analysis for load/store combining. | 
 |   AA = &getAnalysis<AliasAnalysis>(); | 
 |  | 
 |   MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine()); | 
 |   RegMap = MF.getSSARegMap(); | 
 |   DOUT << "\n\n\n=== " << Fn.getName() << "\n"; | 
 |  | 
 |   FunctionLoweringInfo FuncInfo(TLI, Fn, MF); | 
 |  | 
 |   if (ExceptionHandling) | 
 |     for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) | 
 |       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator())) | 
 |         // Mark landing pad. | 
 |         FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); | 
 |  | 
 |   for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) | 
 |     SelectBasicBlock(I, MF, FuncInfo); | 
 |  | 
 |   // Add function live-ins to entry block live-in set. | 
 |   BasicBlock *EntryBB = &Fn.getEntryBlock(); | 
 |   BB = FuncInfo.MBBMap[EntryBB]; | 
 |   if (!MF.livein_empty()) | 
 |     for (MachineFunction::livein_iterator I = MF.livein_begin(), | 
 |            E = MF.livein_end(); I != E; ++I) | 
 |       BB->addLiveIn(I->first); | 
 |  | 
 | #ifndef NDEBUG | 
 |   assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() && | 
 |          "Not all catch info was assigned to a landing pad!"); | 
 | #endif | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,  | 
 |                                                            unsigned Reg) { | 
 |   SDOperand Op = getValue(V); | 
 |   assert((Op.getOpcode() != ISD::CopyFromReg || | 
 |           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && | 
 |          "Copy from a reg to the same reg!"); | 
 |    | 
 |   MVT::ValueType SrcVT = Op.getValueType(); | 
 |   MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT); | 
 |   unsigned NumRegs = TLI.getNumRegisters(SrcVT); | 
 |   SmallVector<SDOperand, 8> Regs(NumRegs); | 
 |   SmallVector<SDOperand, 8> Chains(NumRegs); | 
 |  | 
 |   // Copy the value by legal parts into sequential virtual registers. | 
 |   getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT); | 
 |   for (unsigned i = 0; i != NumRegs; ++i) | 
 |     Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]); | 
 |   return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs); | 
 | } | 
 |  | 
 | void SelectionDAGISel:: | 
 | LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL, | 
 |                std::vector<SDOperand> &UnorderedChains) { | 
 |   // If this is the entry block, emit arguments. | 
 |   Function &F = *LLVMBB->getParent(); | 
 |   FunctionLoweringInfo &FuncInfo = SDL.FuncInfo; | 
 |   SDOperand OldRoot = SDL.DAG.getRoot(); | 
 |   std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG); | 
 |  | 
 |   unsigned a = 0; | 
 |   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); | 
 |        AI != E; ++AI, ++a) | 
 |     if (!AI->use_empty()) { | 
 |       SDL.setValue(AI, Args[a]); | 
 |  | 
 |       // If this argument is live outside of the entry block, insert a copy from | 
 |       // whereever we got it to the vreg that other BB's will reference it as. | 
 |       DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI); | 
 |       if (VMI != FuncInfo.ValueMap.end()) { | 
 |         SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second); | 
 |         UnorderedChains.push_back(Copy); | 
 |       } | 
 |     } | 
 |  | 
 |   // Finally, if the target has anything special to do, allow it to do so. | 
 |   // FIXME: this should insert code into the DAG! | 
 |   EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction()); | 
 | } | 
 |  | 
 | static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB, | 
 |                           MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) { | 
 |   assert(!FLI.MBBMap[SrcBB]->isLandingPad() && | 
 |          "Copying catch info out of a landing pad!"); | 
 |   for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I) | 
 |     if (isSelector(I)) { | 
 |       // Apply the catch info to DestBB. | 
 |       addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]); | 
 | #ifndef NDEBUG | 
 |       FLI.CatchInfoFound.insert(I); | 
 | #endif | 
 |     } | 
 | } | 
 |  | 
 | void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB, | 
 |        std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate, | 
 |                                          FunctionLoweringInfo &FuncInfo) { | 
 |   SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo); | 
 |  | 
 |   std::vector<SDOperand> UnorderedChains; | 
 |  | 
 |   // Lower any arguments needed in this block if this is the entry block. | 
 |   if (LLVMBB == &LLVMBB->getParent()->getEntryBlock()) | 
 |     LowerArguments(LLVMBB, SDL, UnorderedChains); | 
 |  | 
 |   BB = FuncInfo.MBBMap[LLVMBB]; | 
 |   SDL.setCurrentBasicBlock(BB); | 
 |  | 
 |   MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
 |  | 
 |   if (ExceptionHandling && MMI && BB->isLandingPad()) { | 
 |     // Add a label to mark the beginning of the landing pad.  Deletion of the | 
 |     // landing pad can thus be detected via the MachineModuleInfo. | 
 |     unsigned LabelID = MMI->addLandingPad(BB); | 
 |     DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(), | 
 |                             DAG.getConstant(LabelID, MVT::i32))); | 
 |  | 
 |     // Mark exception register as live in. | 
 |     unsigned Reg = TLI.getExceptionAddressRegister(); | 
 |     if (Reg) BB->addLiveIn(Reg); | 
 |  | 
 |     // Mark exception selector register as live in. | 
 |     Reg = TLI.getExceptionSelectorRegister(); | 
 |     if (Reg) BB->addLiveIn(Reg); | 
 |  | 
 |     // FIXME: Hack around an exception handling flaw (PR1508): the personality | 
 |     // function and list of typeids logically belong to the invoke (or, if you | 
 |     // like, the basic block containing the invoke), and need to be associated | 
 |     // with it in the dwarf exception handling tables.  Currently however the | 
 |     // information is provided by an intrinsic (eh.selector) that can be moved | 
 |     // to unexpected places by the optimizers: if the unwind edge is critical, | 
 |     // then breaking it can result in the intrinsics being in the successor of | 
 |     // the landing pad, not the landing pad itself.  This results in exceptions | 
 |     // not being caught because no typeids are associated with the invoke. | 
 |     // This may not be the only way things can go wrong, but it is the only way | 
 |     // we try to work around for the moment. | 
 |     BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator()); | 
 |  | 
 |     if (Br && Br->isUnconditional()) { // Critical edge? | 
 |       BasicBlock::iterator I, E; | 
 |       for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I) | 
 |         if (isSelector(I)) | 
 |           break; | 
 |  | 
 |       if (I == E) | 
 |         // No catch info found - try to extract some from the successor. | 
 |         copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo); | 
 |     } | 
 |   } | 
 |  | 
 |   // Lower all of the non-terminator instructions. | 
 |   for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end(); | 
 |        I != E; ++I) | 
 |     SDL.visit(*I); | 
 |  | 
 |   // Ensure that all instructions which are used outside of their defining | 
 |   // blocks are available as virtual registers.  Invoke is handled elsewhere. | 
 |   for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I) | 
 |     if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) { | 
 |       DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I); | 
 |       if (VMI != FuncInfo.ValueMap.end()) | 
 |         UnorderedChains.push_back( | 
 |                                 SDL.CopyValueToVirtualRegister(I, VMI->second)); | 
 |     } | 
 |  | 
 |   // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to | 
 |   // ensure constants are generated when needed.  Remember the virtual registers | 
 |   // that need to be added to the Machine PHI nodes as input.  We cannot just | 
 |   // directly add them, because expansion might result in multiple MBB's for one | 
 |   // BB.  As such, the start of the BB might correspond to a different MBB than | 
 |   // the end. | 
 |   // | 
 |   TerminatorInst *TI = LLVMBB->getTerminator(); | 
 |  | 
 |   // Emit constants only once even if used by multiple PHI nodes. | 
 |   std::map<Constant*, unsigned> ConstantsOut; | 
 |    | 
 |   // Vector bool would be better, but vector<bool> is really slow. | 
 |   std::vector<unsigned char> SuccsHandled; | 
 |   if (TI->getNumSuccessors()) | 
 |     SuccsHandled.resize(BB->getParent()->getNumBlockIDs()); | 
 |      | 
 |   // Check successor nodes' PHI nodes that expect a constant to be available | 
 |   // from this block. | 
 |   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { | 
 |     BasicBlock *SuccBB = TI->getSuccessor(succ); | 
 |     if (!isa<PHINode>(SuccBB->begin())) continue; | 
 |     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; | 
 |      | 
 |     // If this terminator has multiple identical successors (common for | 
 |     // switches), only handle each succ once. | 
 |     unsigned SuccMBBNo = SuccMBB->getNumber(); | 
 |     if (SuccsHandled[SuccMBBNo]) continue; | 
 |     SuccsHandled[SuccMBBNo] = true; | 
 |      | 
 |     MachineBasicBlock::iterator MBBI = SuccMBB->begin(); | 
 |     PHINode *PN; | 
 |  | 
 |     // At this point we know that there is a 1-1 correspondence between LLVM PHI | 
 |     // nodes and Machine PHI nodes, but the incoming operands have not been | 
 |     // emitted yet. | 
 |     for (BasicBlock::iterator I = SuccBB->begin(); | 
 |          (PN = dyn_cast<PHINode>(I)); ++I) { | 
 |       // Ignore dead phi's. | 
 |       if (PN->use_empty()) continue; | 
 |        | 
 |       unsigned Reg; | 
 |       Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); | 
 |        | 
 |       if (Constant *C = dyn_cast<Constant>(PHIOp)) { | 
 |         unsigned &RegOut = ConstantsOut[C]; | 
 |         if (RegOut == 0) { | 
 |           RegOut = FuncInfo.CreateRegForValue(C); | 
 |           UnorderedChains.push_back( | 
 |                            SDL.CopyValueToVirtualRegister(C, RegOut)); | 
 |         } | 
 |         Reg = RegOut; | 
 |       } else { | 
 |         Reg = FuncInfo.ValueMap[PHIOp]; | 
 |         if (Reg == 0) { | 
 |           assert(isa<AllocaInst>(PHIOp) && | 
 |                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && | 
 |                  "Didn't codegen value into a register!??"); | 
 |           Reg = FuncInfo.CreateRegForValue(PHIOp); | 
 |           UnorderedChains.push_back( | 
 |                            SDL.CopyValueToVirtualRegister(PHIOp, Reg)); | 
 |         } | 
 |       } | 
 |  | 
 |       // Remember that this register needs to added to the machine PHI node as | 
 |       // the input for this MBB. | 
 |       MVT::ValueType VT = TLI.getValueType(PN->getType()); | 
 |       unsigned NumRegisters = TLI.getNumRegisters(VT); | 
 |       for (unsigned i = 0, e = NumRegisters; i != e; ++i) | 
 |         PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); | 
 |     } | 
 |   } | 
 |   ConstantsOut.clear(); | 
 |  | 
 |   // Turn all of the unordered chains into one factored node. | 
 |   if (!UnorderedChains.empty()) { | 
 |     SDOperand Root = SDL.getRoot(); | 
 |     if (Root.getOpcode() != ISD::EntryToken) { | 
 |       unsigned i = 0, e = UnorderedChains.size(); | 
 |       for (; i != e; ++i) { | 
 |         assert(UnorderedChains[i].Val->getNumOperands() > 1); | 
 |         if (UnorderedChains[i].Val->getOperand(0) == Root) | 
 |           break;  // Don't add the root if we already indirectly depend on it. | 
 |       } | 
 |          | 
 |       if (i == e) | 
 |         UnorderedChains.push_back(Root); | 
 |     } | 
 |     DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, | 
 |                             &UnorderedChains[0], UnorderedChains.size())); | 
 |   } | 
 |  | 
 |   // Lower the terminator after the copies are emitted. | 
 |   SDL.visit(*LLVMBB->getTerminator()); | 
 |  | 
 |   // Copy over any CaseBlock records that may now exist due to SwitchInst | 
 |   // lowering, as well as any jump table information. | 
 |   SwitchCases.clear(); | 
 |   SwitchCases = SDL.SwitchCases; | 
 |   JTCases.clear(); | 
 |   JTCases = SDL.JTCases; | 
 |   BitTestCases.clear(); | 
 |   BitTestCases = SDL.BitTestCases; | 
 |      | 
 |   // Make sure the root of the DAG is up-to-date. | 
 |   DAG.setRoot(SDL.getRoot()); | 
 | } | 
 |  | 
 | void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) { | 
 |   // Run the DAG combiner in pre-legalize mode. | 
 |   DAG.Combine(false, *AA); | 
 |    | 
 |   DOUT << "Lowered selection DAG:\n"; | 
 |   DEBUG(DAG.dump()); | 
 |    | 
 |   // Second step, hack on the DAG until it only uses operations and types that | 
 |   // the target supports. | 
 |   DAG.Legalize(); | 
 |    | 
 |   DOUT << "Legalized selection DAG:\n"; | 
 |   DEBUG(DAG.dump()); | 
 |    | 
 |   // Run the DAG combiner in post-legalize mode. | 
 |   DAG.Combine(true, *AA); | 
 |    | 
 |   if (ViewISelDAGs) DAG.viewGraph(); | 
 |  | 
 |   // Third, instruction select all of the operations to machine code, adding the | 
 |   // code to the MachineBasicBlock. | 
 |   InstructionSelectBasicBlock(DAG); | 
 |    | 
 |   DOUT << "Selected machine code:\n"; | 
 |   DEBUG(BB->dump()); | 
 | }   | 
 |  | 
 | void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF, | 
 |                                         FunctionLoweringInfo &FuncInfo) { | 
 |   std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate; | 
 |   { | 
 |     SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>()); | 
 |     CurDAG = &DAG; | 
 |    | 
 |     // First step, lower LLVM code to some DAG.  This DAG may use operations and | 
 |     // types that are not supported by the target. | 
 |     BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo); | 
 |  | 
 |     // Second step, emit the lowered DAG as machine code. | 
 |     CodeGenAndEmitDAG(DAG); | 
 |   } | 
 |  | 
 |   DOUT << "Total amount of phi nodes to update: " | 
 |        << PHINodesToUpdate.size() << "\n"; | 
 |   DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) | 
 |           DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first | 
 |                << ", " << PHINodesToUpdate[i].second << ")\n";); | 
 |    | 
 |   // Next, now that we know what the last MBB the LLVM BB expanded is, update | 
 |   // PHI nodes in successors. | 
 |   if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) { | 
 |     for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) { | 
 |       MachineInstr *PHI = PHINodesToUpdate[i].first; | 
 |       assert(PHI->getOpcode() == TargetInstrInfo::PHI && | 
 |              "This is not a machine PHI node that we are updating!"); | 
 |       PHI->addRegOperand(PHINodesToUpdate[i].second, false); | 
 |       PHI->addMachineBasicBlockOperand(BB); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) { | 
 |     // Lower header first, if it wasn't already lowered | 
 |     if (!BitTestCases[i].Emitted) { | 
 |       SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>()); | 
 |       CurDAG = &HSDAG; | 
 |       SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo); | 
 |       // Set the current basic block to the mbb we wish to insert the code into | 
 |       BB = BitTestCases[i].Parent; | 
 |       HSDL.setCurrentBasicBlock(BB); | 
 |       // Emit the code | 
 |       HSDL.visitBitTestHeader(BitTestCases[i]); | 
 |       HSDAG.setRoot(HSDL.getRoot()); | 
 |       CodeGenAndEmitDAG(HSDAG); | 
 |     }     | 
 |  | 
 |     for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) { | 
 |       SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>()); | 
 |       CurDAG = &BSDAG; | 
 |       SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo); | 
 |       // Set the current basic block to the mbb we wish to insert the code into | 
 |       BB = BitTestCases[i].Cases[j].ThisBB; | 
 |       BSDL.setCurrentBasicBlock(BB); | 
 |       // Emit the code | 
 |       if (j+1 != ej) | 
 |         BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB, | 
 |                               BitTestCases[i].Reg, | 
 |                               BitTestCases[i].Cases[j]); | 
 |       else | 
 |         BSDL.visitBitTestCase(BitTestCases[i].Default, | 
 |                               BitTestCases[i].Reg, | 
 |                               BitTestCases[i].Cases[j]); | 
 |          | 
 |          | 
 |       BSDAG.setRoot(BSDL.getRoot()); | 
 |       CodeGenAndEmitDAG(BSDAG); | 
 |     } | 
 |  | 
 |     // Update PHI Nodes | 
 |     for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) { | 
 |       MachineInstr *PHI = PHINodesToUpdate[pi].first; | 
 |       MachineBasicBlock *PHIBB = PHI->getParent(); | 
 |       assert(PHI->getOpcode() == TargetInstrInfo::PHI && | 
 |              "This is not a machine PHI node that we are updating!"); | 
 |       // This is "default" BB. We have two jumps to it. From "header" BB and | 
 |       // from last "case" BB. | 
 |       if (PHIBB == BitTestCases[i].Default) { | 
 |         PHI->addRegOperand(PHINodesToUpdate[pi].second, false); | 
 |         PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent); | 
 |         PHI->addRegOperand(PHINodesToUpdate[pi].second, false); | 
 |         PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB); | 
 |       } | 
 |       // One of "cases" BB. | 
 |       for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) { | 
 |         MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB; | 
 |         if (cBB->succ_end() != | 
 |             std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) { | 
 |           PHI->addRegOperand(PHINodesToUpdate[pi].second, false); | 
 |           PHI->addMachineBasicBlockOperand(cBB); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // If the JumpTable record is filled in, then we need to emit a jump table. | 
 |   // Updating the PHI nodes is tricky in this case, since we need to determine | 
 |   // whether the PHI is a successor of the range check MBB or the jump table MBB | 
 |   for (unsigned i = 0, e = JTCases.size(); i != e; ++i) { | 
 |     // Lower header first, if it wasn't already lowered | 
 |     if (!JTCases[i].first.Emitted) { | 
 |       SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>()); | 
 |       CurDAG = &HSDAG; | 
 |       SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo); | 
 |       // Set the current basic block to the mbb we wish to insert the code into | 
 |       BB = JTCases[i].first.HeaderBB; | 
 |       HSDL.setCurrentBasicBlock(BB); | 
 |       // Emit the code | 
 |       HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first); | 
 |       HSDAG.setRoot(HSDL.getRoot()); | 
 |       CodeGenAndEmitDAG(HSDAG); | 
 |     } | 
 |      | 
 |     SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>()); | 
 |     CurDAG = &JSDAG; | 
 |     SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo); | 
 |     // Set the current basic block to the mbb we wish to insert the code into | 
 |     BB = JTCases[i].second.MBB; | 
 |     JSDL.setCurrentBasicBlock(BB); | 
 |     // Emit the code | 
 |     JSDL.visitJumpTable(JTCases[i].second); | 
 |     JSDAG.setRoot(JSDL.getRoot()); | 
 |     CodeGenAndEmitDAG(JSDAG); | 
 |      | 
 |     // Update PHI Nodes | 
 |     for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) { | 
 |       MachineInstr *PHI = PHINodesToUpdate[pi].first; | 
 |       MachineBasicBlock *PHIBB = PHI->getParent(); | 
 |       assert(PHI->getOpcode() == TargetInstrInfo::PHI && | 
 |              "This is not a machine PHI node that we are updating!"); | 
 |       // "default" BB. We can go there only from header BB. | 
 |       if (PHIBB == JTCases[i].second.Default) { | 
 |         PHI->addRegOperand(PHINodesToUpdate[pi].second, false); | 
 |         PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB); | 
 |       } | 
 |       // JT BB. Just iterate over successors here | 
 |       if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) { | 
 |         PHI->addRegOperand(PHINodesToUpdate[pi].second, false); | 
 |         PHI->addMachineBasicBlockOperand(BB); | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   // If the switch block involved a branch to one of the actual successors, we | 
 |   // need to update PHI nodes in that block. | 
 |   for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) { | 
 |     MachineInstr *PHI = PHINodesToUpdate[i].first; | 
 |     assert(PHI->getOpcode() == TargetInstrInfo::PHI && | 
 |            "This is not a machine PHI node that we are updating!"); | 
 |     if (BB->isSuccessor(PHI->getParent())) { | 
 |       PHI->addRegOperand(PHINodesToUpdate[i].second, false); | 
 |       PHI->addMachineBasicBlockOperand(BB); | 
 |     } | 
 |   } | 
 |    | 
 |   // If we generated any switch lowering information, build and codegen any | 
 |   // additional DAGs necessary. | 
 |   for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) { | 
 |     SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>()); | 
 |     CurDAG = &SDAG; | 
 |     SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo); | 
 |      | 
 |     // Set the current basic block to the mbb we wish to insert the code into | 
 |     BB = SwitchCases[i].ThisBB; | 
 |     SDL.setCurrentBasicBlock(BB); | 
 |      | 
 |     // Emit the code | 
 |     SDL.visitSwitchCase(SwitchCases[i]); | 
 |     SDAG.setRoot(SDL.getRoot()); | 
 |     CodeGenAndEmitDAG(SDAG); | 
 |      | 
 |     // Handle any PHI nodes in successors of this chunk, as if we were coming | 
 |     // from the original BB before switch expansion.  Note that PHI nodes can | 
 |     // occur multiple times in PHINodesToUpdate.  We have to be very careful to | 
 |     // handle them the right number of times. | 
 |     while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS. | 
 |       for (MachineBasicBlock::iterator Phi = BB->begin(); | 
 |            Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){ | 
 |         // This value for this PHI node is recorded in PHINodesToUpdate, get it. | 
 |         for (unsigned pn = 0; ; ++pn) { | 
 |           assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!"); | 
 |           if (PHINodesToUpdate[pn].first == Phi) { | 
 |             Phi->addRegOperand(PHINodesToUpdate[pn].second, false); | 
 |             Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB); | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |        | 
 |       // Don't process RHS if same block as LHS. | 
 |       if (BB == SwitchCases[i].FalseBB) | 
 |         SwitchCases[i].FalseBB = 0; | 
 |        | 
 |       // If we haven't handled the RHS, do so now.  Otherwise, we're done. | 
 |       SwitchCases[i].TrueBB = SwitchCases[i].FalseBB; | 
 |       SwitchCases[i].FalseBB = 0; | 
 |     } | 
 |     assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | /// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each | 
 | /// target node in the graph. | 
 | void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) { | 
 |   if (ViewSchedDAGs) DAG.viewGraph(); | 
 |  | 
 |   RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault(); | 
 |    | 
 |   if (!Ctor) { | 
 |     Ctor = ISHeuristic; | 
 |     RegisterScheduler::setDefault(Ctor); | 
 |   } | 
 |    | 
 |   ScheduleDAG *SL = Ctor(this, &DAG, BB); | 
 |   BB = SL->Run(); | 
 |  | 
 |   if (ViewSUnitDAGs) SL->viewGraph(); | 
 |  | 
 |   delete SL; | 
 | } | 
 |  | 
 |  | 
 | HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() { | 
 |   return new HazardRecognizer(); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Helper functions used by the generated instruction selector. | 
 | //===----------------------------------------------------------------------===// | 
 | // Calls to these methods are generated by tblgen. | 
 |  | 
 | /// CheckAndMask - The isel is trying to match something like (and X, 255).  If | 
 | /// the dag combiner simplified the 255, we still want to match.  RHS is the | 
 | /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value | 
 | /// specified in the .td file (e.g. 255). | 
 | bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,  | 
 |                                     int64_t DesiredMaskS) const { | 
 |   uint64_t ActualMask = RHS->getValue(); | 
 |   uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType()); | 
 |    | 
 |   // If the actual mask exactly matches, success! | 
 |   if (ActualMask == DesiredMask) | 
 |     return true; | 
 |    | 
 |   // If the actual AND mask is allowing unallowed bits, this doesn't match. | 
 |   if (ActualMask & ~DesiredMask) | 
 |     return false; | 
 |    | 
 |   // Otherwise, the DAG Combiner may have proven that the value coming in is | 
 |   // either already zero or is not demanded.  Check for known zero input bits. | 
 |   uint64_t NeededMask = DesiredMask & ~ActualMask; | 
 |   if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) | 
 |     return true; | 
 |    | 
 |   // TODO: check to see if missing bits are just not demanded. | 
 |  | 
 |   // Otherwise, this pattern doesn't match. | 
 |   return false; | 
 | } | 
 |  | 
 | /// CheckOrMask - The isel is trying to match something like (or X, 255).  If | 
 | /// the dag combiner simplified the 255, we still want to match.  RHS is the | 
 | /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value | 
 | /// specified in the .td file (e.g. 255). | 
 | bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,  | 
 |                                     int64_t DesiredMaskS) const { | 
 |   uint64_t ActualMask = RHS->getValue(); | 
 |   uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType()); | 
 |    | 
 |   // If the actual mask exactly matches, success! | 
 |   if (ActualMask == DesiredMask) | 
 |     return true; | 
 |    | 
 |   // If the actual AND mask is allowing unallowed bits, this doesn't match. | 
 |   if (ActualMask & ~DesiredMask) | 
 |     return false; | 
 |    | 
 |   // Otherwise, the DAG Combiner may have proven that the value coming in is | 
 |   // either already zero or is not demanded.  Check for known zero input bits. | 
 |   uint64_t NeededMask = DesiredMask & ~ActualMask; | 
 |    | 
 |   uint64_t KnownZero, KnownOne; | 
 |   CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne); | 
 |    | 
 |   // If all the missing bits in the or are already known to be set, match! | 
 |   if ((NeededMask & KnownOne) == NeededMask) | 
 |     return true; | 
 |    | 
 |   // TODO: check to see if missing bits are just not demanded. | 
 |    | 
 |   // Otherwise, this pattern doesn't match. | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated | 
 | /// by tblgen.  Others should not call it. | 
 | void SelectionDAGISel:: | 
 | SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) { | 
 |   std::vector<SDOperand> InOps; | 
 |   std::swap(InOps, Ops); | 
 |  | 
 |   Ops.push_back(InOps[0]);  // input chain. | 
 |   Ops.push_back(InOps[1]);  // input asm string. | 
 |  | 
 |   unsigned i = 2, e = InOps.size(); | 
 |   if (InOps[e-1].getValueType() == MVT::Flag) | 
 |     --e;  // Don't process a flag operand if it is here. | 
 |    | 
 |   while (i != e) { | 
 |     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue(); | 
 |     if ((Flags & 7) != 4 /*MEM*/) { | 
 |       // Just skip over this operand, copying the operands verbatim. | 
 |       Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1); | 
 |       i += (Flags >> 3) + 1; | 
 |     } else { | 
 |       assert((Flags >> 3) == 1 && "Memory operand with multiple values?"); | 
 |       // Otherwise, this is a memory operand.  Ask the target to select it. | 
 |       std::vector<SDOperand> SelOps; | 
 |       if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) { | 
 |         cerr << "Could not match memory address.  Inline asm failure!\n"; | 
 |         exit(1); | 
 |       } | 
 |        | 
 |       // Add this to the output node. | 
 |       MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); | 
 |       Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3), | 
 |                                           IntPtrTy)); | 
 |       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); | 
 |       i += 2; | 
 |     } | 
 |   } | 
 |    | 
 |   // Add the flag input back if present. | 
 |   if (e != InOps.size()) | 
 |     Ops.push_back(InOps.back()); | 
 | } | 
 |  | 
 | char SelectionDAGISel::ID = 0; |