| //===-- MachOWriter.cpp - Target-independent Mach-O Writer code -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the target-independent Mach-O writer. This file writes |
| // out the Mach-O file in the following order: |
| // |
| // #1 FatHeader (universal-only) |
| // #2 FatArch (universal-only, 1 per universal arch) |
| // Per arch: |
| // #3 Header |
| // #4 Load Commands |
| // #5 Sections |
| // #6 Relocations |
| // #7 Symbols |
| // #8 Strings |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MachO.h" |
| #include "MachOWriter.h" |
| #include "MachOCodeEmitter.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Module.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetMachOWriterInfo.h" |
| #include "llvm/Support/Mangler.h" |
| #include "llvm/Support/OutputBuffer.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| namespace llvm { |
| |
| /// AddMachOWriter - Concrete function to add the Mach-O writer to the function |
| /// pass manager. |
| ObjectCodeEmitter *AddMachOWriter(PassManagerBase &PM, |
| raw_ostream &O, |
| TargetMachine &TM) { |
| MachOWriter *MOW = new MachOWriter(O, TM); |
| PM.add(MOW); |
| return MOW->getObjectCodeEmitter(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MachOWriter Implementation |
| //===----------------------------------------------------------------------===// |
| |
| char MachOWriter::ID = 0; |
| |
| MachOWriter::MachOWriter(raw_ostream &o, TargetMachine &tm) |
| : MachineFunctionPass(&ID), O(o), TM(tm) { |
| is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64; |
| isLittleEndian = TM.getTargetData()->isLittleEndian(); |
| |
| MAI = TM.getMCAsmInfo(); |
| |
| // Create the machine code emitter object for this target. |
| MachOCE = new MachOCodeEmitter(*this, *getTextSection(true)); |
| } |
| |
| MachOWriter::~MachOWriter() { |
| delete MachOCE; |
| } |
| |
| bool MachOWriter::doInitialization(Module &M) { |
| // Set the magic value, now that we know the pointer size and endianness |
| Header.setMagic(isLittleEndian, is64Bit); |
| |
| // Set the file type |
| // FIXME: this only works for object files, we do not support the creation |
| // of dynamic libraries or executables at this time. |
| Header.filetype = MachOHeader::MH_OBJECT; |
| |
| Mang = new Mangler(M); |
| return false; |
| } |
| |
| bool MachOWriter::runOnMachineFunction(MachineFunction &MF) { |
| return false; |
| } |
| |
| /// doFinalization - Now that the module has been completely processed, emit |
| /// the Mach-O file to 'O'. |
| bool MachOWriter::doFinalization(Module &M) { |
| // FIXME: we don't handle debug info yet, we should probably do that. |
| // Okay, the.text section has been completed, build the .data, .bss, and |
| // "common" sections next. |
| |
| for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) |
| EmitGlobal(I); |
| |
| // Emit the header and load commands. |
| EmitHeaderAndLoadCommands(); |
| |
| // Emit the various sections and their relocation info. |
| EmitSections(); |
| EmitRelocations(); |
| |
| // Write the symbol table and the string table to the end of the file. |
| O.write((char*)&SymT[0], SymT.size()); |
| O.write((char*)&StrT[0], StrT.size()); |
| |
| // We are done with the abstract symbols. |
| SectionList.clear(); |
| SymbolTable.clear(); |
| DynamicSymbolTable.clear(); |
| |
| // Release the name mangler object. |
| delete Mang; Mang = 0; |
| return false; |
| } |
| |
| // getConstSection - Get constant section for Constant 'C' |
| MachOSection *MachOWriter::getConstSection(Constant *C) { |
| const ConstantArray *CVA = dyn_cast<ConstantArray>(C); |
| if (CVA && CVA->isCString()) |
| return getSection("__TEXT", "__cstring", |
| MachOSection::S_CSTRING_LITERALS); |
| |
| const Type *Ty = C->getType(); |
| if (Ty->isPrimitiveType() || Ty->isInteger()) { |
| unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty); |
| switch(Size) { |
| default: break; // Fall through to __TEXT,__const |
| case 4: |
| return getSection("__TEXT", "__literal4", |
| MachOSection::S_4BYTE_LITERALS); |
| case 8: |
| return getSection("__TEXT", "__literal8", |
| MachOSection::S_8BYTE_LITERALS); |
| case 16: |
| return getSection("__TEXT", "__literal16", |
| MachOSection::S_16BYTE_LITERALS); |
| } |
| } |
| return getSection("__TEXT", "__const"); |
| } |
| |
| // getJumpTableSection - Select the Jump Table section |
| MachOSection *MachOWriter::getJumpTableSection() { |
| if (TM.getRelocationModel() == Reloc::PIC_) |
| return getTextSection(false); |
| else |
| return getSection("__TEXT", "__const"); |
| } |
| |
| // getSection - Return the section with the specified name, creating a new |
| // section if one does not already exist. |
| MachOSection *MachOWriter::getSection(const std::string &seg, |
| const std::string §, |
| unsigned Flags /* = 0 */ ) { |
| MachOSection *MOS = SectionLookup[seg+sect]; |
| if (MOS) return MOS; |
| |
| MOS = new MachOSection(seg, sect); |
| SectionList.push_back(MOS); |
| MOS->Index = SectionList.size(); |
| MOS->flags = MachOSection::S_REGULAR | Flags; |
| SectionLookup[seg+sect] = MOS; |
| return MOS; |
| } |
| |
| // getTextSection - Return text section with different flags for code/data |
| MachOSection *MachOWriter::getTextSection(bool isCode /* = true */ ) { |
| if (isCode) |
| return getSection("__TEXT", "__text", |
| MachOSection::S_ATTR_PURE_INSTRUCTIONS | |
| MachOSection::S_ATTR_SOME_INSTRUCTIONS); |
| else |
| return getSection("__TEXT", "__text"); |
| } |
| |
| MachOSection *MachOWriter::getBSSSection() { |
| return getSection("__DATA", "__bss", MachOSection::S_ZEROFILL); |
| } |
| |
| // GetJTRelocation - Get a relocation a new BB relocation based |
| // on target information. |
| MachineRelocation MachOWriter::GetJTRelocation(unsigned Offset, |
| MachineBasicBlock *MBB) const { |
| return TM.getMachOWriterInfo()->GetJTRelocation(Offset, MBB); |
| } |
| |
| // GetTargetRelocation - Returns the number of relocations. |
| unsigned MachOWriter::GetTargetRelocation(MachineRelocation &MR, |
| unsigned FromIdx, unsigned ToAddr, |
| unsigned ToIndex, OutputBuffer &RelocOut, |
| OutputBuffer &SecOut, bool Scattered, |
| bool Extern) { |
| return TM.getMachOWriterInfo()->GetTargetRelocation(MR, FromIdx, ToAddr, |
| ToIndex, RelocOut, |
| SecOut, Scattered, |
| Extern); |
| } |
| |
| void MachOWriter::AddSymbolToSection(MachOSection *Sec, GlobalVariable *GV) { |
| const Type *Ty = GV->getType()->getElementType(); |
| unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty); |
| unsigned Align = TM.getTargetData()->getPreferredAlignment(GV); |
| |
| // Reserve space in the .bss section for this symbol while maintaining the |
| // desired section alignment, which must be at least as much as required by |
| // this symbol. |
| OutputBuffer SecDataOut(Sec->getData(), is64Bit, isLittleEndian); |
| |
| if (Align) { |
| Align = Log2_32(Align); |
| Sec->align = std::max(unsigned(Sec->align), Align); |
| |
| Sec->emitAlignment(Sec->align); |
| } |
| // Globals without external linkage apparently do not go in the symbol table. |
| if (!GV->hasLocalLinkage()) { |
| MachOSym Sym(GV, Mang->getMangledName(GV), Sec->Index, MAI); |
| Sym.n_value = Sec->size(); |
| SymbolTable.push_back(Sym); |
| } |
| |
| // Record the offset of the symbol, and then allocate space for it. |
| // FIXME: remove when we have unified size + output buffer |
| |
| // Now that we know what section the GlovalVariable is going to be emitted |
| // into, update our mappings. |
| // FIXME: We may also need to update this when outputting non-GlobalVariable |
| // GlobalValues such as functions. |
| |
| GVSection[GV] = Sec; |
| GVOffset[GV] = Sec->size(); |
| |
| // Allocate space in the section for the global. |
| for (unsigned i = 0; i < Size; ++i) |
| SecDataOut.outbyte(0); |
| } |
| |
| void MachOWriter::EmitGlobal(GlobalVariable *GV) { |
| const Type *Ty = GV->getType()->getElementType(); |
| unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty); |
| bool NoInit = !GV->hasInitializer(); |
| |
| // If this global has a zero initializer, it is part of the .bss or common |
| // section. |
| if (NoInit || GV->getInitializer()->isNullValue()) { |
| // If this global is part of the common block, add it now. Variables are |
| // part of the common block if they are zero initialized and allowed to be |
| // merged with other symbols. |
| if (NoInit || GV->hasLinkOnceLinkage() || GV->hasWeakLinkage() || |
| GV->hasCommonLinkage()) { |
| MachOSym ExtOrCommonSym(GV, Mang->getMangledName(GV), |
| MachOSym::NO_SECT, MAI); |
| // For undefined (N_UNDF) external (N_EXT) types, n_value is the size in |
| // bytes of the symbol. |
| ExtOrCommonSym.n_value = Size; |
| SymbolTable.push_back(ExtOrCommonSym); |
| // Remember that we've seen this symbol |
| GVOffset[GV] = Size; |
| return; |
| } |
| // Otherwise, this symbol is part of the .bss section. |
| MachOSection *BSS = getBSSSection(); |
| AddSymbolToSection(BSS, GV); |
| return; |
| } |
| |
| // Scalar read-only data goes in a literal section if the scalar is 4, 8, or |
| // 16 bytes, or a cstring. Other read only data goes into a regular const |
| // section. Read-write data goes in the data section. |
| MachOSection *Sec = GV->isConstant() ? getConstSection(GV->getInitializer()) : |
| getDataSection(); |
| AddSymbolToSection(Sec, GV); |
| InitMem(GV->getInitializer(), GVOffset[GV], TM.getTargetData(), Sec); |
| } |
| |
| |
| |
| void MachOWriter::EmitHeaderAndLoadCommands() { |
| // Step #0: Fill in the segment load command size, since we need it to figure |
| // out the rest of the header fields |
| |
| MachOSegment SEG("", is64Bit); |
| SEG.nsects = SectionList.size(); |
| SEG.cmdsize = SEG.cmdSize(is64Bit) + |
| SEG.nsects * SectionList[0]->cmdSize(is64Bit); |
| |
| // Step #1: calculate the number of load commands. We always have at least |
| // one, for the LC_SEGMENT load command, plus two for the normal |
| // and dynamic symbol tables, if there are any symbols. |
| Header.ncmds = SymbolTable.empty() ? 1 : 3; |
| |
| // Step #2: calculate the size of the load commands |
| Header.sizeofcmds = SEG.cmdsize; |
| if (!SymbolTable.empty()) |
| Header.sizeofcmds += SymTab.cmdsize + DySymTab.cmdsize; |
| |
| // Step #3: write the header to the file |
| // Local alias to shortenify coming code. |
| std::vector<unsigned char> &FH = Header.HeaderData; |
| OutputBuffer FHOut(FH, is64Bit, isLittleEndian); |
| |
| FHOut.outword(Header.magic); |
| FHOut.outword(TM.getMachOWriterInfo()->getCPUType()); |
| FHOut.outword(TM.getMachOWriterInfo()->getCPUSubType()); |
| FHOut.outword(Header.filetype); |
| FHOut.outword(Header.ncmds); |
| FHOut.outword(Header.sizeofcmds); |
| FHOut.outword(Header.flags); |
| if (is64Bit) |
| FHOut.outword(Header.reserved); |
| |
| // Step #4: Finish filling in the segment load command and write it out |
| for (std::vector<MachOSection*>::iterator I = SectionList.begin(), |
| E = SectionList.end(); I != E; ++I) |
| SEG.filesize += (*I)->size(); |
| |
| SEG.vmsize = SEG.filesize; |
| SEG.fileoff = Header.cmdSize(is64Bit) + Header.sizeofcmds; |
| |
| FHOut.outword(SEG.cmd); |
| FHOut.outword(SEG.cmdsize); |
| FHOut.outstring(SEG.segname, 16); |
| FHOut.outaddr(SEG.vmaddr); |
| FHOut.outaddr(SEG.vmsize); |
| FHOut.outaddr(SEG.fileoff); |
| FHOut.outaddr(SEG.filesize); |
| FHOut.outword(SEG.maxprot); |
| FHOut.outword(SEG.initprot); |
| FHOut.outword(SEG.nsects); |
| FHOut.outword(SEG.flags); |
| |
| // Step #5: Finish filling in the fields of the MachOSections |
| uint64_t currentAddr = 0; |
| for (std::vector<MachOSection*>::iterator I = SectionList.begin(), |
| E = SectionList.end(); I != E; ++I) { |
| MachOSection *MOS = *I; |
| MOS->addr = currentAddr; |
| MOS->offset = currentAddr + SEG.fileoff; |
| // FIXME: do we need to do something with alignment here? |
| currentAddr += MOS->size(); |
| } |
| |
| // Step #6: Emit the symbol table to temporary buffers, so that we know the |
| // size of the string table when we write the next load command. This also |
| // sorts and assigns indices to each of the symbols, which is necessary for |
| // emitting relocations to externally-defined objects. |
| BufferSymbolAndStringTable(); |
| |
| // Step #7: Calculate the number of relocations for each section and write out |
| // the section commands for each section |
| currentAddr += SEG.fileoff; |
| for (std::vector<MachOSection*>::iterator I = SectionList.begin(), |
| E = SectionList.end(); I != E; ++I) { |
| MachOSection *MOS = *I; |
| |
| // Convert the relocations to target-specific relocations, and fill in the |
| // relocation offset for this section. |
| CalculateRelocations(*MOS); |
| MOS->reloff = MOS->nreloc ? currentAddr : 0; |
| currentAddr += MOS->nreloc * 8; |
| |
| // write the finalized section command to the output buffer |
| FHOut.outstring(MOS->sectname, 16); |
| FHOut.outstring(MOS->segname, 16); |
| FHOut.outaddr(MOS->addr); |
| FHOut.outaddr(MOS->size()); |
| FHOut.outword(MOS->offset); |
| FHOut.outword(MOS->align); |
| FHOut.outword(MOS->reloff); |
| FHOut.outword(MOS->nreloc); |
| FHOut.outword(MOS->flags); |
| FHOut.outword(MOS->reserved1); |
| FHOut.outword(MOS->reserved2); |
| if (is64Bit) |
| FHOut.outword(MOS->reserved3); |
| } |
| |
| // Step #8: Emit LC_SYMTAB/LC_DYSYMTAB load commands |
| SymTab.symoff = currentAddr; |
| SymTab.nsyms = SymbolTable.size(); |
| SymTab.stroff = SymTab.symoff + SymT.size(); |
| SymTab.strsize = StrT.size(); |
| FHOut.outword(SymTab.cmd); |
| FHOut.outword(SymTab.cmdsize); |
| FHOut.outword(SymTab.symoff); |
| FHOut.outword(SymTab.nsyms); |
| FHOut.outword(SymTab.stroff); |
| FHOut.outword(SymTab.strsize); |
| |
| // FIXME: set DySymTab fields appropriately |
| // We should probably just update these in BufferSymbolAndStringTable since |
| // thats where we're partitioning up the different kinds of symbols. |
| FHOut.outword(DySymTab.cmd); |
| FHOut.outword(DySymTab.cmdsize); |
| FHOut.outword(DySymTab.ilocalsym); |
| FHOut.outword(DySymTab.nlocalsym); |
| FHOut.outword(DySymTab.iextdefsym); |
| FHOut.outword(DySymTab.nextdefsym); |
| FHOut.outword(DySymTab.iundefsym); |
| FHOut.outword(DySymTab.nundefsym); |
| FHOut.outword(DySymTab.tocoff); |
| FHOut.outword(DySymTab.ntoc); |
| FHOut.outword(DySymTab.modtaboff); |
| FHOut.outword(DySymTab.nmodtab); |
| FHOut.outword(DySymTab.extrefsymoff); |
| FHOut.outword(DySymTab.nextrefsyms); |
| FHOut.outword(DySymTab.indirectsymoff); |
| FHOut.outword(DySymTab.nindirectsyms); |
| FHOut.outword(DySymTab.extreloff); |
| FHOut.outword(DySymTab.nextrel); |
| FHOut.outword(DySymTab.locreloff); |
| FHOut.outword(DySymTab.nlocrel); |
| |
| O.write((char*)&FH[0], FH.size()); |
| } |
| |
| /// EmitSections - Now that we have constructed the file header and load |
| /// commands, emit the data for each section to the file. |
| void MachOWriter::EmitSections() { |
| for (std::vector<MachOSection*>::iterator I = SectionList.begin(), |
| E = SectionList.end(); I != E; ++I) |
| // Emit the contents of each section |
| if ((*I)->size()) |
| O.write((char*)&(*I)->getData()[0], (*I)->size()); |
| } |
| |
| /// EmitRelocations - emit relocation data from buffer. |
| void MachOWriter::EmitRelocations() { |
| for (std::vector<MachOSection*>::iterator I = SectionList.begin(), |
| E = SectionList.end(); I != E; ++I) |
| // Emit the relocation entry data for each section. |
| if ((*I)->RelocBuffer.size()) |
| O.write((char*)&(*I)->RelocBuffer[0], (*I)->RelocBuffer.size()); |
| } |
| |
| /// BufferSymbolAndStringTable - Sort the symbols we encountered and assign them |
| /// each a string table index so that they appear in the correct order in the |
| /// output file. |
| void MachOWriter::BufferSymbolAndStringTable() { |
| // The order of the symbol table is: |
| // 1. local symbols |
| // 2. defined external symbols (sorted by name) |
| // 3. undefined external symbols (sorted by name) |
| |
| // Before sorting the symbols, check the PendingGlobals for any undefined |
| // globals that need to be put in the symbol table. |
| for (std::vector<GlobalValue*>::iterator I = PendingGlobals.begin(), |
| E = PendingGlobals.end(); I != E; ++I) { |
| if (GVOffset[*I] == 0 && GVSection[*I] == 0) { |
| MachOSym UndfSym(*I, Mang->getMangledName(*I), MachOSym::NO_SECT, MAI); |
| SymbolTable.push_back(UndfSym); |
| GVOffset[*I] = -1; |
| } |
| } |
| |
| // Sort the symbols by name, so that when we partition the symbols by scope |
| // of definition, we won't have to sort by name within each partition. |
| std::sort(SymbolTable.begin(), SymbolTable.end(), MachOSym::SymCmp()); |
| |
| // Parition the symbol table entries so that all local symbols come before |
| // all symbols with external linkage. { 1 | 2 3 } |
| std::partition(SymbolTable.begin(), SymbolTable.end(), |
| MachOSym::PartitionByLocal); |
| |
| // Advance iterator to beginning of external symbols and partition so that |
| // all external symbols defined in this module come before all external |
| // symbols defined elsewhere. { 1 | 2 | 3 } |
| for (std::vector<MachOSym>::iterator I = SymbolTable.begin(), |
| E = SymbolTable.end(); I != E; ++I) { |
| if (!MachOSym::PartitionByLocal(*I)) { |
| std::partition(I, E, MachOSym::PartitionByDefined); |
| break; |
| } |
| } |
| |
| // Calculate the starting index for each of the local, extern defined, and |
| // undefined symbols, as well as the number of each to put in the LC_DYSYMTAB |
| // load command. |
| for (std::vector<MachOSym>::iterator I = SymbolTable.begin(), |
| E = SymbolTable.end(); I != E; ++I) { |
| if (MachOSym::PartitionByLocal(*I)) { |
| ++DySymTab.nlocalsym; |
| ++DySymTab.iextdefsym; |
| ++DySymTab.iundefsym; |
| } else if (MachOSym::PartitionByDefined(*I)) { |
| ++DySymTab.nextdefsym; |
| ++DySymTab.iundefsym; |
| } else { |
| ++DySymTab.nundefsym; |
| } |
| } |
| |
| // Write out a leading zero byte when emitting string table, for n_strx == 0 |
| // which means an empty string. |
| OutputBuffer StrTOut(StrT, is64Bit, isLittleEndian); |
| StrTOut.outbyte(0); |
| |
| // The order of the string table is: |
| // 1. strings for external symbols |
| // 2. strings for local symbols |
| // Since this is the opposite order from the symbol table, which we have just |
| // sorted, we can walk the symbol table backwards to output the string table. |
| for (std::vector<MachOSym>::reverse_iterator I = SymbolTable.rbegin(), |
| E = SymbolTable.rend(); I != E; ++I) { |
| if (I->GVName == "") { |
| I->n_strx = 0; |
| } else { |
| I->n_strx = StrT.size(); |
| StrTOut.outstring(I->GVName, I->GVName.length()+1); |
| } |
| } |
| |
| OutputBuffer SymTOut(SymT, is64Bit, isLittleEndian); |
| |
| unsigned index = 0; |
| for (std::vector<MachOSym>::iterator I = SymbolTable.begin(), |
| E = SymbolTable.end(); I != E; ++I, ++index) { |
| // Add the section base address to the section offset in the n_value field |
| // to calculate the full address. |
| // FIXME: handle symbols where the n_value field is not the address |
| GlobalValue *GV = const_cast<GlobalValue*>(I->GV); |
| if (GV && GVSection[GV]) |
| I->n_value += GVSection[GV]->addr; |
| if (GV && (GVOffset[GV] == -1)) |
| GVOffset[GV] = index; |
| |
| // Emit nlist to buffer |
| SymTOut.outword(I->n_strx); |
| SymTOut.outbyte(I->n_type); |
| SymTOut.outbyte(I->n_sect); |
| SymTOut.outhalf(I->n_desc); |
| SymTOut.outaddr(I->n_value); |
| } |
| } |
| |
| /// CalculateRelocations - For each MachineRelocation in the current section, |
| /// calculate the index of the section containing the object to be relocated, |
| /// and the offset into that section. From this information, create the |
| /// appropriate target-specific MachORelocation type and add buffer it to be |
| /// written out after we are finished writing out sections. |
| void MachOWriter::CalculateRelocations(MachOSection &MOS) { |
| std::vector<MachineRelocation> Relocations = MOS.getRelocations(); |
| for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { |
| MachineRelocation &MR = Relocations[i]; |
| unsigned TargetSection = MR.getConstantVal(); |
| unsigned TargetAddr = 0; |
| unsigned TargetIndex = 0; |
| |
| // This is a scattered relocation entry if it points to a global value with |
| // a non-zero offset. |
| bool Scattered = false; |
| bool Extern = false; |
| |
| // Since we may not have seen the GlobalValue we were interested in yet at |
| // the time we emitted the relocation for it, fix it up now so that it |
| // points to the offset into the correct section. |
| if (MR.isGlobalValue()) { |
| GlobalValue *GV = MR.getGlobalValue(); |
| MachOSection *MOSPtr = GVSection[GV]; |
| intptr_t Offset = GVOffset[GV]; |
| |
| // If we have never seen the global before, it must be to a symbol |
| // defined in another module (N_UNDF). |
| if (!MOSPtr) { |
| // FIXME: need to append stub suffix |
| Extern = true; |
| TargetAddr = 0; |
| TargetIndex = GVOffset[GV]; |
| } else { |
| Scattered = TargetSection != 0; |
| TargetSection = MOSPtr->Index; |
| } |
| MR.setResultPointer((void*)Offset); |
| } |
| |
| // If the symbol is locally defined, pass in the address of the section and |
| // the section index to the code which will generate the target relocation. |
| if (!Extern) { |
| MachOSection &To = *SectionList[TargetSection - 1]; |
| TargetAddr = To.addr; |
| TargetIndex = To.Index; |
| } |
| |
| OutputBuffer RelocOut(MOS.RelocBuffer, is64Bit, isLittleEndian); |
| OutputBuffer SecOut(MOS.getData(), is64Bit, isLittleEndian); |
| |
| MOS.nreloc += GetTargetRelocation(MR, MOS.Index, TargetAddr, TargetIndex, |
| RelocOut, SecOut, Scattered, Extern); |
| } |
| } |
| |
| // InitMem - Write the value of a Constant to the specified memory location, |
| // converting it into bytes and relocations. |
| void MachOWriter::InitMem(const Constant *C, uintptr_t Offset, |
| const TargetData *TD, MachOSection* mos) { |
| typedef std::pair<const Constant*, intptr_t> CPair; |
| std::vector<CPair> WorkList; |
| uint8_t *Addr = &mos->getData()[0]; |
| |
| WorkList.push_back(CPair(C,(intptr_t)Addr + Offset)); |
| |
| intptr_t ScatteredOffset = 0; |
| |
| while (!WorkList.empty()) { |
| const Constant *PC = WorkList.back().first; |
| intptr_t PA = WorkList.back().second; |
| WorkList.pop_back(); |
| |
| if (isa<UndefValue>(PC)) { |
| continue; |
| } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(PC)) { |
| unsigned ElementSize = |
| TD->getTypeAllocSize(CP->getType()->getElementType()); |
| for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) |
| WorkList.push_back(CPair(CP->getOperand(i), PA+i*ElementSize)); |
| } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(PC)) { |
| // |
| // FIXME: Handle ConstantExpression. See EE::getConstantValue() |
| // |
| switch (CE->getOpcode()) { |
| case Instruction::GetElementPtr: { |
| SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); |
| ScatteredOffset = TD->getIndexedOffset(CE->getOperand(0)->getType(), |
| &Indices[0], Indices.size()); |
| WorkList.push_back(CPair(CE->getOperand(0), PA)); |
| break; |
| } |
| case Instruction::Add: |
| default: |
| errs() << "ConstantExpr not handled as global var init: " << *CE <<"\n"; |
| llvm_unreachable(0); |
| } |
| } else if (PC->getType()->isSingleValueType()) { |
| unsigned char *ptr = (unsigned char *)PA; |
| switch (PC->getType()->getTypeID()) { |
| case Type::IntegerTyID: { |
| unsigned NumBits = cast<IntegerType>(PC->getType())->getBitWidth(); |
| uint64_t val = cast<ConstantInt>(PC)->getZExtValue(); |
| if (NumBits <= 8) |
| ptr[0] = val; |
| else if (NumBits <= 16) { |
| if (TD->isBigEndian()) |
| val = ByteSwap_16(val); |
| ptr[0] = val; |
| ptr[1] = val >> 8; |
| } else if (NumBits <= 32) { |
| if (TD->isBigEndian()) |
| val = ByteSwap_32(val); |
| ptr[0] = val; |
| ptr[1] = val >> 8; |
| ptr[2] = val >> 16; |
| ptr[3] = val >> 24; |
| } else if (NumBits <= 64) { |
| if (TD->isBigEndian()) |
| val = ByteSwap_64(val); |
| ptr[0] = val; |
| ptr[1] = val >> 8; |
| ptr[2] = val >> 16; |
| ptr[3] = val >> 24; |
| ptr[4] = val >> 32; |
| ptr[5] = val >> 40; |
| ptr[6] = val >> 48; |
| ptr[7] = val >> 56; |
| } else { |
| llvm_unreachable("Not implemented: bit widths > 64"); |
| } |
| break; |
| } |
| case Type::FloatTyID: { |
| uint32_t val = cast<ConstantFP>(PC)->getValueAPF().bitcastToAPInt(). |
| getZExtValue(); |
| if (TD->isBigEndian()) |
| val = ByteSwap_32(val); |
| ptr[0] = val; |
| ptr[1] = val >> 8; |
| ptr[2] = val >> 16; |
| ptr[3] = val >> 24; |
| break; |
| } |
| case Type::DoubleTyID: { |
| uint64_t val = cast<ConstantFP>(PC)->getValueAPF().bitcastToAPInt(). |
| getZExtValue(); |
| if (TD->isBigEndian()) |
| val = ByteSwap_64(val); |
| ptr[0] = val; |
| ptr[1] = val >> 8; |
| ptr[2] = val >> 16; |
| ptr[3] = val >> 24; |
| ptr[4] = val >> 32; |
| ptr[5] = val >> 40; |
| ptr[6] = val >> 48; |
| ptr[7] = val >> 56; |
| break; |
| } |
| case Type::PointerTyID: |
| if (isa<ConstantPointerNull>(PC)) |
| memset(ptr, 0, TD->getPointerSize()); |
| else if (const GlobalValue* GV = dyn_cast<GlobalValue>(PC)) { |
| // FIXME: what about function stubs? |
| mos->addRelocation(MachineRelocation::getGV(PA-(intptr_t)Addr, |
| MachineRelocation::VANILLA, |
| const_cast<GlobalValue*>(GV), |
| ScatteredOffset)); |
| ScatteredOffset = 0; |
| } else |
| llvm_unreachable("Unknown constant pointer type!"); |
| break; |
| default: |
| std::string msg; |
| raw_string_ostream Msg(msg); |
| Msg << "ERROR: Constant unimp for type: " << *PC->getType(); |
| llvm_report_error(Msg.str()); |
| } |
| } else if (isa<ConstantAggregateZero>(PC)) { |
| memset((void*)PA, 0, (size_t)TD->getTypeAllocSize(PC->getType())); |
| } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(PC)) { |
| unsigned ElementSize = |
| TD->getTypeAllocSize(CPA->getType()->getElementType()); |
| for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) |
| WorkList.push_back(CPair(CPA->getOperand(i), PA+i*ElementSize)); |
| } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(PC)) { |
| const StructLayout *SL = |
| TD->getStructLayout(cast<StructType>(CPS->getType())); |
| for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) |
| WorkList.push_back(CPair(CPS->getOperand(i), |
| PA+SL->getElementOffset(i))); |
| } else { |
| errs() << "Bad Type: " << *PC->getType() << "\n"; |
| llvm_unreachable("Unknown constant type to initialize memory with!"); |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MachOSym Implementation |
| //===----------------------------------------------------------------------===// |
| |
| MachOSym::MachOSym(const GlobalValue *gv, std::string name, uint8_t sect, |
| const MCAsmInfo *MAI) : |
| GV(gv), n_strx(0), n_type(sect == NO_SECT ? N_UNDF : N_SECT), n_sect(sect), |
| n_desc(0), n_value(0) { |
| |
| // FIXME: This is completely broken, it should use the mangler interface. |
| switch (GV->getLinkage()) { |
| default: |
| llvm_unreachable("Unexpected linkage type!"); |
| break; |
| case GlobalValue::WeakAnyLinkage: |
| case GlobalValue::WeakODRLinkage: |
| case GlobalValue::LinkOnceAnyLinkage: |
| case GlobalValue::LinkOnceODRLinkage: |
| case GlobalValue::CommonLinkage: |
| assert(!isa<Function>(gv) && "Unexpected linkage type for Function!"); |
| case GlobalValue::ExternalLinkage: |
| GVName = MAI->getGlobalPrefix() + name; |
| n_type |= GV->hasHiddenVisibility() ? N_PEXT : N_EXT; |
| break; |
| case GlobalValue::PrivateLinkage: |
| GVName = MAI->getPrivateGlobalPrefix() + name; |
| break; |
| case GlobalValue::LinkerPrivateLinkage: |
| GVName = MAI->getLinkerPrivateGlobalPrefix() + name; |
| break; |
| case GlobalValue::InternalLinkage: |
| GVName = MAI->getGlobalPrefix() + name; |
| break; |
| } |
| } |
| |
| } // end namespace llvm |