| //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==// |
| // |
| // This file implements the generic AliasAnalysis interface which is used as the |
| // common interface used by all clients and implementations of alias analysis. |
| // |
| // This file also implements the default version of the AliasAnalysis interface |
| // that is to be used when no other implementation is specified. This does some |
| // simple tests that detect obvious cases: two different global pointers cannot |
| // alias, a global cannot alias a malloc, two different mallocs cannot alias, |
| // etc. |
| // |
| // This alias analysis implementation really isn't very good for anything, but |
| // it is very fast, and makes a nice clean default implementation. Because it |
| // handles lots of little corner cases, other, more complex, alias analysis |
| // implementations may choose to rely on this pass to resolve these simple and |
| // easy cases. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/iOther.h" |
| #include "llvm/Constants.h" |
| #include "llvm/ConstantHandling.h" |
| #include "llvm/GlobalValue.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Target/TargetData.h" |
| |
| // Register the AliasAnalysis interface, providing a nice name to refer to. |
| namespace { |
| RegisterAnalysisGroup<AliasAnalysis> Z("Alias Analysis"); |
| } |
| |
| AliasAnalysis::ModRefResult |
| AliasAnalysis::getModRefInfo(LoadInst *L, Value *P, unsigned Size) { |
| return alias(L->getOperand(0), TD->getTypeSize(L->getType()), |
| P, Size) ? Ref : NoModRef; |
| } |
| |
| AliasAnalysis::ModRefResult |
| AliasAnalysis::getModRefInfo(StoreInst *S, Value *P, unsigned Size) { |
| return alias(S->getOperand(1), TD->getTypeSize(S->getOperand(0)->getType()), |
| P, Size) ? Mod : NoModRef; |
| } |
| |
| |
| // AliasAnalysis destructor: DO NOT move this to the header file for |
| // AliasAnalysis or else clients of the AliasAnalysis class may not depend on |
| // the AliasAnalysis.o file in the current .a file, causing alias analysis |
| // support to not be included in the tool correctly! |
| // |
| AliasAnalysis::~AliasAnalysis() {} |
| |
| /// setTargetData - Subclasses must call this method to initialize the |
| /// AliasAnalysis interface before any other methods are called. |
| /// |
| void AliasAnalysis::InitializeAliasAnalysis(Pass *P) { |
| TD = &P->getAnalysis<TargetData>(); |
| } |
| |
| // getAnalysisUsage - All alias analysis implementations should invoke this |
| // directly (using AliasAnalysis::getAnalysisUsage(AU)) to make sure that |
| // TargetData is required by the pass. |
| void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<TargetData>(); // All AA's need TargetData. |
| } |
| |
| /// canBasicBlockModify - Return true if it is possible for execution of the |
| /// specified basic block to modify the value pointed to by Ptr. |
| /// |
| bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB, |
| const Value *Ptr, unsigned Size) { |
| return canInstructionRangeModify(BB.front(), BB.back(), Ptr, Size); |
| } |
| |
| /// canInstructionRangeModify - Return true if it is possible for the execution |
| /// of the specified instructions to modify the value pointed to by Ptr. The |
| /// instructions to consider are all of the instructions in the range of [I1,I2] |
| /// INCLUSIVE. I1 and I2 must be in the same basic block. |
| /// |
| bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1, |
| const Instruction &I2, |
| const Value *Ptr, unsigned Size) { |
| assert(I1.getParent() == I2.getParent() && |
| "Instructions not in same basic block!"); |
| BasicBlock::iterator I = const_cast<Instruction*>(&I1); |
| BasicBlock::iterator E = const_cast<Instruction*>(&I2); |
| ++E; // Convert from inclusive to exclusive range. |
| |
| for (; I != E; ++I) // Check every instruction in range |
| if (getModRefInfo(I, const_cast<Value*>(Ptr), Size) & Mod) |
| return true; |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // BasicAliasAnalysis Pass Implementation |
| //===----------------------------------------------------------------------===// |
| // |
| // Because of the way .a files work, the implementation of the |
| // BasicAliasAnalysis class MUST be in the AliasAnalysis file itself, or else we |
| // run the risk of AliasAnalysis being used, but the default implementation not |
| // being linked into the tool that uses it. As such, we register and implement |
| // the class here. |
| // |
| namespace { |
| // Register this pass... |
| RegisterOpt<BasicAliasAnalysis> |
| X("basicaa", "Basic Alias Analysis (default AA impl)"); |
| |
| // Declare that we implement the AliasAnalysis interface |
| RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y; |
| } // End of anonymous namespace |
| |
| void BasicAliasAnalysis::initializePass() { |
| InitializeAliasAnalysis(this); |
| } |
| |
| |
| |
| // hasUniqueAddress - Return true if the |
| static inline bool hasUniqueAddress(const Value *V) { |
| return isa<GlobalValue>(V) || isa<MallocInst>(V) || isa<AllocaInst>(V); |
| } |
| |
| static const Value *getUnderlyingObject(const Value *V) { |
| if (!isa<PointerType>(V->getType())) return 0; |
| |
| // If we are at some type of object... return it. |
| if (hasUniqueAddress(V)) return V; |
| |
| // Traverse through different addressing mechanisms... |
| if (const Instruction *I = dyn_cast<Instruction>(V)) { |
| if (isa<CastInst>(I) || isa<GetElementPtrInst>(I)) |
| return getUnderlyingObject(I->getOperand(0)); |
| } |
| return 0; |
| } |
| |
| |
| // alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such |
| // as array references. Note that this function is heavily tail recursive. |
| // Hopefully we have a smart C++ compiler. :) |
| // |
| AliasAnalysis::AliasResult |
| BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size) { |
| // Strip off constant pointer refs if they exist |
| if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1)) |
| V1 = CPR->getValue(); |
| if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2)) |
| V2 = CPR->getValue(); |
| |
| // Are we checking for alias of the same value? |
| if (V1 == V2) return MustAlias; |
| |
| if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) && |
| V1->getType() != Type::LongTy && V2->getType() != Type::LongTy) |
| return NoAlias; // Scalars cannot alias each other |
| |
| // Strip off cast instructions... |
| if (const Instruction *I = dyn_cast<CastInst>(V1)) |
| return alias(I->getOperand(0), V1Size, V2, V2Size); |
| if (const Instruction *I = dyn_cast<CastInst>(V2)) |
| return alias(V1, V1Size, I->getOperand(0), V2Size); |
| |
| // Figure out what objects these things are pointing to if we can... |
| const Value *O1 = getUnderlyingObject(V1); |
| const Value *O2 = getUnderlyingObject(V2); |
| |
| // Pointing at a discernable object? |
| if (O1 && O2) { |
| // If they are two different objects, we know that we have no alias... |
| if (O1 != O2) return NoAlias; |
| |
| // If they are the same object, they we can look at the indexes. If they |
| // index off of the object is the same for both pointers, they must alias. |
| // If they are provably different, they must not alias. Otherwise, we can't |
| // tell anything. |
| } else if (O1 && isa<ConstantPointerNull>(V2)) { |
| return NoAlias; // Unique values don't alias null |
| } else if (O2 && isa<ConstantPointerNull>(V1)) { |
| return NoAlias; // Unique values don't alias null |
| } |
| |
| // If we have two gep instructions with identical indices, return an alias |
| // result equal to the alias result of the original pointer... |
| // |
| if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(V1)) |
| if (const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(V2)) |
| if (GEP1->getNumOperands() == GEP2->getNumOperands() && |
| GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType()) { |
| AliasResult GAlias = |
| CheckGEPInstructions((GetElementPtrInst*)GEP1, V1Size, |
| (GetElementPtrInst*)GEP2, V2Size); |
| if (GAlias != MayAlias) |
| return GAlias; |
| } |
| |
| // Check to see if these two pointers are related by a getelementptr |
| // instruction. If one pointer is a GEP with a non-zero index of the other |
| // pointer, we know they cannot alias. |
| // |
| if (isa<GetElementPtrInst>(V2)) { |
| std::swap(V1, V2); |
| std::swap(V1Size, V2Size); |
| } |
| |
| if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V1)) |
| if (GEP->getOperand(0) == V2) { |
| // If there is at least one non-zero constant index, we know they cannot |
| // alias. |
| for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i) |
| if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i))) |
| if (!C->isNullValue()) |
| return NoAlias; |
| } |
| |
| return MayAlias; |
| } |
| |
| // CheckGEPInstructions - Check two GEP instructions of compatible types and |
| // equal number of arguments. This checks to see if the index expressions |
| // preclude the pointers from aliasing... |
| // |
| AliasAnalysis::AliasResult |
| BasicAliasAnalysis::CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1S, |
| GetElementPtrInst *GEP2, unsigned G2S){ |
| // Do the base pointers alias? |
| AliasResult BaseAlias = alias(GEP1->getOperand(0), G1S, |
| GEP2->getOperand(0), G2S); |
| if (BaseAlias != MustAlias) // No or May alias: We cannot add anything... |
| return BaseAlias; |
| |
| // Find the (possibly empty) initial sequence of equal values... |
| unsigned NumGEPOperands = GEP1->getNumOperands(); |
| unsigned UnequalOper = 1; |
| while (UnequalOper != NumGEPOperands && |
| GEP1->getOperand(UnequalOper) == GEP2->getOperand(UnequalOper)) |
| ++UnequalOper; |
| |
| // If all operands equal each other, then the derived pointers must |
| // alias each other... |
| if (UnequalOper == NumGEPOperands) return MustAlias; |
| |
| // So now we know that the indexes derived from the base pointers, |
| // which are known to alias, are different. We can still determine a |
| // no-alias result if there are differing constant pairs in the index |
| // chain. For example: |
| // A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S)) |
| // |
| unsigned SizeMax = std::max(G1S, G2S); |
| if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work... |
| |
| // Scan for the first operand that is constant and unequal in the |
| // two getelemenptrs... |
| unsigned FirstConstantOper = UnequalOper; |
| for (; FirstConstantOper != NumGEPOperands; ++FirstConstantOper) { |
| const Value *G1Oper = GEP1->getOperand(FirstConstantOper); |
| const Value *G2Oper = GEP2->getOperand(FirstConstantOper); |
| if (G1Oper != G2Oper && // Found non-equal constant indexes... |
| isa<Constant>(G1Oper) && isa<Constant>(G2Oper)) { |
| // Make sure they are comparable... and make sure the GEP with |
| // the smaller leading constant is GEP1. |
| ConstantBool *Compare = |
| *cast<Constant>(GEP1->getOperand(FirstConstantOper)) > |
| *cast<Constant>(GEP2->getOperand(FirstConstantOper)); |
| if (Compare) { // If they are comparable... |
| if (Compare->getValue()) |
| std::swap(GEP1, GEP2); // Make GEP1 < GEP2 |
| break; |
| } |
| } |
| } |
| |
| // No constant operands, we cannot tell anything... |
| if (FirstConstantOper == NumGEPOperands) return MayAlias; |
| |
| // If there are non-equal constants arguments, then we can figure |
| // out a minimum known delta between the two index expressions... at |
| // this point we know that the first constant index of GEP1 is less |
| // than the first constant index of GEP2. |
| // |
| std::vector<Value*> Indices1; |
| Indices1.reserve(NumGEPOperands-1); |
| for (unsigned i = 1; i != FirstConstantOper; ++i) |
| Indices1.push_back(Constant::getNullValue(GEP1->getOperand(i) |
| ->getType())); |
| std::vector<Value*> Indices2; |
| Indices2.reserve(NumGEPOperands-1); |
| Indices2 = Indices1; // Copy the zeros prefix... |
| |
| // Add the two known constant operands... |
| Indices1.push_back((Value*)GEP1->getOperand(FirstConstantOper)); |
| Indices2.push_back((Value*)GEP2->getOperand(FirstConstantOper)); |
| |
| const Type *GEPPointerTy = GEP1->getOperand(0)->getType(); |
| |
| // Loop over the rest of the operands... |
| for (unsigned i = FirstConstantOper+1; i!=NumGEPOperands; ++i){ |
| const Value *Op1 = GEP1->getOperand(i); |
| const Value *Op2 = GEP1->getOperand(i); |
| if (Op1 == Op2) { // If they are equal, use a zero index... |
| Indices1.push_back(Constant::getNullValue(Op1->getType())); |
| Indices2.push_back(Indices1.back()); |
| } else { |
| if (isa<Constant>(Op1)) |
| Indices1.push_back((Value*)Op1); |
| else { |
| // GEP1 is known to produce a value less than GEP2. To be |
| // conservatively correct, we must assume the largest |
| // possible constant is used in this position. This cannot |
| // be the initial index to the GEP instructions (because we |
| // know we have at least one element before this one with |
| // the different constant arguments), so we know that the |
| // current index must be into either a struct or array. |
| // Because of this, we can calculate the maximum value |
| // possible. |
| // |
| const Type *ElTy = GEP1->getIndexedType(GEPPointerTy, |
| Indices1, true); |
| if (const StructType *STy = dyn_cast<StructType>(ElTy)) { |
| Indices1.push_back(ConstantUInt::get(Type::UByteTy, |
| STy->getNumContainedTypes())); |
| } else { |
| Indices1.push_back(ConstantSInt::get(Type::LongTy, |
| cast<ArrayType>(ElTy)->getNumElements())); |
| } |
| } |
| |
| if (isa<Constant>(Op2)) |
| Indices2.push_back((Value*)Op2); |
| else // Conservatively assume the minimum value for this index |
| Indices2.push_back(Constant::getNullValue(Op1->getType())); |
| } |
| } |
| |
| unsigned Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, Indices1); |
| unsigned Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, Indices2); |
| assert(Offset1 < Offset2 &&"There is at least one different constant here!"); |
| |
| if (Offset2-Offset1 >= SizeMax) { |
| //std::cerr << "Determined that these two GEP's don't alias [" |
| // << SizeMax << " bytes]: \n" << *GEP1 << *GEP2; |
| return NoAlias; |
| } |
| return MayAlias; |
| } |
| |