| //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements bookkeeping for "interesting" users of expressions |
| // computed from induction variables. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "iv-users" |
| #include "llvm/Analysis/IVUsers.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Type.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| char IVUsers::ID = 0; |
| static RegisterPass<IVUsers> |
| X("iv-users", "Induction Variable Users", false, true); |
| |
| Pass *llvm::createIVUsersPass() { |
| return new IVUsers(); |
| } |
| |
| /// containsAddRecFromDifferentLoop - Determine whether expression S involves a |
| /// subexpression that is an AddRec from a loop other than L. An outer loop |
| /// of L is OK, but not an inner loop nor a disjoint loop. |
| static bool containsAddRecFromDifferentLoop(SCEVHandle S, Loop *L) { |
| // This is very common, put it first. |
| if (isa<SCEVConstant>(S)) |
| return false; |
| if (const SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) { |
| for (unsigned int i=0; i< AE->getNumOperands(); i++) |
| if (containsAddRecFromDifferentLoop(AE->getOperand(i), L)) |
| return true; |
| return false; |
| } |
| if (const SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) { |
| if (const Loop *newLoop = AE->getLoop()) { |
| if (newLoop == L) |
| return false; |
| // if newLoop is an outer loop of L, this is OK. |
| if (!LoopInfoBase<BasicBlock>::isNotAlreadyContainedIn(L, newLoop)) |
| return false; |
| } |
| return true; |
| } |
| if (const SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S)) |
| return containsAddRecFromDifferentLoop(DE->getLHS(), L) || |
| containsAddRecFromDifferentLoop(DE->getRHS(), L); |
| #if 0 |
| // SCEVSDivExpr has been backed out temporarily, but will be back; we'll |
| // need this when it is. |
| if (const SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S)) |
| return containsAddRecFromDifferentLoop(DE->getLHS(), L) || |
| containsAddRecFromDifferentLoop(DE->getRHS(), L); |
| #endif |
| if (const SCEVCastExpr *CE = dyn_cast<SCEVCastExpr>(S)) |
| return containsAddRecFromDifferentLoop(CE->getOperand(), L); |
| return false; |
| } |
| |
| /// getSCEVStartAndStride - Compute the start and stride of this expression, |
| /// returning false if the expression is not a start/stride pair, or true if it |
| /// is. The stride must be a loop invariant expression, but the start may be |
| /// a mix of loop invariant and loop variant expressions. The start cannot, |
| /// however, contain an AddRec from a different loop, unless that loop is an |
| /// outer loop of the current loop. |
| static bool getSCEVStartAndStride(const SCEVHandle &SH, Loop *L, Loop *UseLoop, |
| SCEVHandle &Start, SCEVHandle &Stride, |
| bool &isSigned, |
| ScalarEvolution *SE, DominatorTree *DT) { |
| SCEVHandle TheAddRec = Start; // Initialize to zero. |
| bool isSExt = false; |
| bool isZExt = false; |
| |
| // If the outer level is an AddExpr, the operands are all start values except |
| // for a nested AddRecExpr. |
| if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(SH)) { |
| for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i) |
| if (const SCEVAddRecExpr *AddRec = |
| dyn_cast<SCEVAddRecExpr>(AE->getOperand(i))) { |
| if (AddRec->getLoop() == L) |
| TheAddRec = SE->getAddExpr(AddRec, TheAddRec); |
| else |
| return false; // Nested IV of some sort? |
| } else { |
| Start = SE->getAddExpr(Start, AE->getOperand(i)); |
| } |
| |
| } else if (const SCEVZeroExtendExpr *Z = dyn_cast<SCEVZeroExtendExpr>(SH)) { |
| TheAddRec = Z->getOperand(); |
| isZExt = true; |
| } else if (const SCEVSignExtendExpr *S = dyn_cast<SCEVSignExtendExpr>(SH)) { |
| TheAddRec = S->getOperand(); |
| isSExt = true; |
| } else if (isa<SCEVAddRecExpr>(SH)) { |
| TheAddRec = SH; |
| } else { |
| return false; // not analyzable. |
| } |
| |
| const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(TheAddRec); |
| if (!AddRec || AddRec->getLoop() != L) return false; |
| |
| // Use getSCEVAtScope to attempt to simplify other loops out of |
| // the picture. |
| SCEVHandle AddRecStart = AddRec->getStart(); |
| SCEVHandle BetterAddRecStart = SE->getSCEVAtScope(AddRecStart, UseLoop); |
| if (!isa<SCEVCouldNotCompute>(BetterAddRecStart)) |
| AddRecStart = BetterAddRecStart; |
| |
| // FIXME: If Start contains an SCEVAddRecExpr from a different loop, other |
| // than an outer loop of the current loop, reject it. LSR has no concept of |
| // operating on more than one loop at a time so don't confuse it with such |
| // expressions. |
| if (containsAddRecFromDifferentLoop(AddRecStart, L)) |
| return false; |
| |
| if (isSExt || isZExt) |
| Start = SE->getTruncateExpr(Start, AddRec->getType()); |
| |
| Start = SE->getAddExpr(Start, AddRecStart); |
| |
| if (!isa<SCEVConstant>(AddRec->getStepRecurrence(*SE))) { |
| // If stride is an instruction, make sure it dominates the loop preheader. |
| // Otherwise we could end up with a use before def situation. |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| if (!AddRec->getStepRecurrence(*SE)->dominates(Preheader, DT)) |
| return false; |
| |
| DOUT << "[" << L->getHeader()->getName() |
| << "] Variable stride: " << *AddRec << "\n"; |
| } |
| |
| Stride = AddRec->getStepRecurrence(*SE); |
| isSigned = isSExt; |
| return true; |
| } |
| |
| /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression |
| /// and now we need to decide whether the user should use the preinc or post-inc |
| /// value. If this user should use the post-inc version of the IV, return true. |
| /// |
| /// Choosing wrong here can break dominance properties (if we choose to use the |
| /// post-inc value when we cannot) or it can end up adding extra live-ranges to |
| /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we |
| /// should use the post-inc value). |
| static bool IVUseShouldUsePostIncValue(Instruction *User, Instruction *IV, |
| Loop *L, LoopInfo *LI, DominatorTree *DT, |
| Pass *P) { |
| // If the user is in the loop, use the preinc value. |
| if (L->contains(User->getParent())) return false; |
| |
| BasicBlock *LatchBlock = L->getLoopLatch(); |
| |
| // Ok, the user is outside of the loop. If it is dominated by the latch |
| // block, use the post-inc value. |
| if (DT->dominates(LatchBlock, User->getParent())) |
| return true; |
| |
| // There is one case we have to be careful of: PHI nodes. These little guys |
| // can live in blocks that are not dominated by the latch block, but (since |
| // their uses occur in the predecessor block, not the block the PHI lives in) |
| // should still use the post-inc value. Check for this case now. |
| PHINode *PN = dyn_cast<PHINode>(User); |
| if (!PN) return false; // not a phi, not dominated by latch block. |
| |
| // Look at all of the uses of IV by the PHI node. If any use corresponds to |
| // a block that is not dominated by the latch block, give up and use the |
| // preincremented value. |
| unsigned NumUses = 0; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (PN->getIncomingValue(i) == IV) { |
| ++NumUses; |
| if (!DT->dominates(LatchBlock, PN->getIncomingBlock(i))) |
| return false; |
| } |
| |
| // Okay, all uses of IV by PN are in predecessor blocks that really are |
| // dominated by the latch block. Use the post-incremented value. |
| return true; |
| } |
| |
| /// AddUsersIfInteresting - Inspect the specified instruction. If it is a |
| /// reducible SCEV, recursively add its users to the IVUsesByStride set and |
| /// return true. Otherwise, return false. |
| bool IVUsers::AddUsersIfInteresting(Instruction *I) { |
| if (!SE->isSCEVable(I->getType())) |
| return false; // Void and FP expressions cannot be reduced. |
| |
| // LSR is not APInt clean, do not touch integers bigger than 64-bits. |
| if (SE->getTypeSizeInBits(I->getType()) > 64) |
| return false; |
| |
| if (!Processed.insert(I)) |
| return true; // Instruction already handled. |
| |
| // Get the symbolic expression for this instruction. |
| SCEVHandle ISE = SE->getSCEV(I); |
| if (isa<SCEVCouldNotCompute>(ISE)) return false; |
| |
| // Get the start and stride for this expression. |
| Loop *UseLoop = LI->getLoopFor(I->getParent()); |
| SCEVHandle Start = SE->getIntegerSCEV(0, ISE->getType()); |
| SCEVHandle Stride = Start; |
| bool isSigned = false; // Arbitrary initial value - pacifies compiler. |
| |
| if (!getSCEVStartAndStride(ISE, L, UseLoop, Start, Stride, isSigned, SE, DT)) |
| return false; // Non-reducible symbolic expression, bail out. |
| |
| SmallPtrSet<Instruction *, 4> UniqueUsers; |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); |
| UI != E; ++UI) { |
| Instruction *User = cast<Instruction>(*UI); |
| if (!UniqueUsers.insert(User)) |
| continue; |
| |
| // Do not infinitely recurse on PHI nodes. |
| if (isa<PHINode>(User) && Processed.count(User)) |
| continue; |
| |
| // Descend recursively, but not into PHI nodes outside the current loop. |
| // It's important to see the entire expression outside the loop to get |
| // choices that depend on addressing mode use right, although we won't |
| // consider references ouside the loop in all cases. |
| // If User is already in Processed, we don't want to recurse into it again, |
| // but do want to record a second reference in the same instruction. |
| bool AddUserToIVUsers = false; |
| if (LI->getLoopFor(User->getParent()) != L) { |
| if (isa<PHINode>(User) || Processed.count(User) || |
| !AddUsersIfInteresting(User)) { |
| DOUT << "FOUND USER in other loop: " << *User |
| << " OF SCEV: " << *ISE << "\n"; |
| AddUserToIVUsers = true; |
| } |
| } else if (Processed.count(User) || |
| !AddUsersIfInteresting(User)) { |
| DOUT << "FOUND USER: " << *User |
| << " OF SCEV: " << *ISE << "\n"; |
| AddUserToIVUsers = true; |
| } |
| |
| if (AddUserToIVUsers) { |
| IVUsersOfOneStride *StrideUses = IVUsesByStride[Stride]; |
| if (!StrideUses) { // First occurrence of this stride? |
| StrideOrder.push_back(Stride); |
| StrideUses = new IVUsersOfOneStride(Stride); |
| IVUses.push_back(StrideUses); |
| IVUsesByStride[Stride] = StrideUses; |
| } |
| |
| // Okay, we found a user that we cannot reduce. Analyze the instruction |
| // and decide what to do with it. If we are a use inside of the loop, use |
| // the value before incrementation, otherwise use it after incrementation. |
| if (IVUseShouldUsePostIncValue(User, I, L, LI, DT, this)) { |
| // The value used will be incremented by the stride more than we are |
| // expecting, so subtract this off. |
| SCEVHandle NewStart = SE->getMinusSCEV(Start, Stride); |
| StrideUses->addUser(NewStart, User, I, isSigned); |
| StrideUses->Users.back().setIsUseOfPostIncrementedValue(true); |
| DOUT << " USING POSTINC SCEV, START=" << *NewStart<< "\n"; |
| } else { |
| StrideUses->addUser(Start, User, I, isSigned); |
| } |
| } |
| } |
| return true; |
| } |
| |
| IVUsers::IVUsers() |
| : LoopPass(&ID) { |
| } |
| |
| void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<LoopInfo>(); |
| AU.addRequired<DominatorTree>(); |
| AU.addRequired<ScalarEvolution>(); |
| AU.setPreservesAll(); |
| } |
| |
| bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) { |
| |
| L = l; |
| LI = &getAnalysis<LoopInfo>(); |
| DT = &getAnalysis<DominatorTree>(); |
| SE = &getAnalysis<ScalarEvolution>(); |
| |
| // Find all uses of induction variables in this loop, and categorize |
| // them by stride. Start by finding all of the PHI nodes in the header for |
| // this loop. If they are induction variables, inspect their uses. |
| for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) |
| AddUsersIfInteresting(I); |
| |
| return false; |
| } |
| |
| /// getReplacementExpr - Return a SCEV expression which computes the |
| /// value of the OperandValToReplace of the given IVStrideUse. |
| SCEVHandle IVUsers::getReplacementExpr(const IVStrideUse &U) const { |
| const Type *UseTy = U.getOperandValToReplace()->getType(); |
| // Start with zero. |
| SCEVHandle RetVal = SE->getIntegerSCEV(0, U.getParent()->Stride->getType()); |
| // Create the basic add recurrence. |
| RetVal = SE->getAddRecExpr(RetVal, U.getParent()->Stride, L); |
| // Add the offset in a separate step, because it may be loop-variant. |
| RetVal = SE->getAddExpr(RetVal, U.getOffset()); |
| // For uses of post-incremented values, add an extra stride to compute |
| // the actual replacement value. |
| if (U.isUseOfPostIncrementedValue()) |
| RetVal = SE->getAddExpr(RetVal, U.getParent()->Stride); |
| // Evaluate the expression out of the loop, if possible. |
| if (!L->contains(U.getUser()->getParent())) { |
| SCEVHandle ExitVal = SE->getSCEVAtScope(RetVal, L->getParentLoop()); |
| if (!isa<SCEVCouldNotCompute>(ExitVal) && ExitVal->isLoopInvariant(L)) |
| RetVal = ExitVal; |
| } |
| // Promote the result to the type of the use. |
| if (SE->getTypeSizeInBits(RetVal->getType()) != |
| SE->getTypeSizeInBits(UseTy)) { |
| if (U.isSigned()) |
| RetVal = SE->getSignExtendExpr(RetVal, UseTy); |
| else |
| RetVal = SE->getZeroExtendExpr(RetVal, UseTy); |
| } |
| return RetVal; |
| } |
| |
| void IVUsers::print(raw_ostream &OS, const Module *M) const { |
| OS << "IV Users for loop "; |
| WriteAsOperand(OS, L->getHeader(), false); |
| if (SE->hasLoopInvariantBackedgeTakenCount(L)) { |
| OS << " with backedge-taken count " |
| << *SE->getBackedgeTakenCount(L); |
| } |
| OS << ":\n"; |
| |
| for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) { |
| std::map<SCEVHandle, IVUsersOfOneStride*>::const_iterator SI = |
| IVUsesByStride.find(StrideOrder[Stride]); |
| assert(SI != IVUsesByStride.end() && "Stride doesn't exist!"); |
| OS << " Stride " << *SI->first->getType() << " " << *SI->first << ":\n"; |
| |
| for (ilist<IVStrideUse>::const_iterator UI = SI->second->Users.begin(), |
| E = SI->second->Users.end(); UI != E; ++UI) { |
| OS << " "; |
| WriteAsOperand(OS, UI->getOperandValToReplace(), false); |
| OS << " = "; |
| OS << *getReplacementExpr(*UI); |
| if (UI->isUseOfPostIncrementedValue()) |
| OS << " (post-inc)"; |
| OS << " in "; |
| UI->getUser()->print(OS); |
| } |
| } |
| } |
| |
| void IVUsers::print(std::ostream &o, const Module *M) const { |
| raw_os_ostream OS(o); |
| print(OS, M); |
| } |
| |
| void IVUsers::dump() const { |
| print(errs()); |
| } |
| |
| void IVUsers::releaseMemory() { |
| IVUsesByStride.clear(); |
| StrideOrder.clear(); |
| Processed.clear(); |
| } |
| |
| void IVStrideUse::deleted() { |
| // Remove this user from the list. |
| Parent->Users.erase(this); |
| // this now dangles! |
| } |