| //===- Intervals.cpp - Interval partition Calculation ------------*- C++ -*--=// |
| // |
| // This file contains the declaration of the cfg::IntervalPartition class, which |
| // calculates and represent the interval partition of a method. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/Intervals.h" |
| #include "llvm/Method.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/CFG.h" |
| |
| using namespace cfg; |
| |
| // getNodeHeader - Given a source graph node and the source graph, return the |
| // BasicBlock that is the header node. This is the opposite of |
| // getSourceGraphNode. |
| // |
| inline static BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; } |
| inline static BasicBlock *getNodeHeader(Interval *I) { return I->HeaderNode; } |
| |
| |
| // getSourceGraphNode - Given a BasicBlock and the source graph, return the |
| // source graph node that corresponds to the BasicBlock. This is the opposite |
| // of getNodeHeader. |
| // |
| inline static BasicBlock *getSourceGraphNode(Method *, BasicBlock *BB) { |
| return BB; |
| } |
| inline static Interval *getSourceGraphNode(IntervalPartition *IP, |
| BasicBlock *BB) { |
| return IP->getBlockInterval(BB); |
| } |
| |
| |
| // addNodeToInterval - This method exists to assist the generic ProcessNode |
| // with the task of adding a node to the new interval, depending on the |
| // type of the source node. In the case of a CFG source graph (BasicBlock |
| // case), the BasicBlock itself is added to the interval. |
| // |
| inline void IntervalPartition::addNodeToInterval(Interval *Int, BasicBlock *BB){ |
| Int->Nodes.push_back(BB); |
| IntervalMap.insert(make_pair(BB, Int)); |
| } |
| |
| // addNodeToInterval - This method exists to assist the generic ProcessNode |
| // with the task of adding a node to the new interval, depending on the |
| // type of the source node. In the case of a CFG source graph (BasicBlock |
| // case), the BasicBlock itself is added to the interval. In the case of |
| // an IntervalPartition source graph (Interval case), all of the member |
| // BasicBlocks are added to the interval. |
| // |
| inline void IntervalPartition::addNodeToInterval(Interval *Int, Interval *I) { |
| // Add all of the nodes in I as new nodes in Int. |
| copy(I->Nodes.begin(), I->Nodes.end(), back_inserter(Int->Nodes)); |
| |
| // Add mappings for all of the basic blocks in I to the IntervalPartition |
| for (Interval::node_iterator It = I->Nodes.begin(), End = I->Nodes.end(); |
| It != End; ++It) |
| IntervalMap.insert(make_pair(*It, Int)); |
| } |
| |
| |
| // ProcessNode - This method is called by ProcessInterval to add nodes to the |
| // interval being constructed, and it is also called recursively as it walks |
| // the source graph. A node is added to the current interval only if all of |
| // its predecessors are already in the graph. This also takes care of keeping |
| // the successor set of an interval up to date. |
| // |
| // This method is templated because it may operate on two different source |
| // graphs: a basic block graph, or a preexisting interval graph. |
| // |
| template<class NodeTy, class OrigContainer> |
| void IntervalPartition::ProcessNode(Interval *Int, |
| NodeTy *Node, OrigContainer *OC) { |
| assert(Int && "Null interval == bad!"); |
| assert(Node && "Null Node == bad!"); |
| |
| BasicBlock *NodeHeader = getNodeHeader(Node); |
| Interval *CurInt = getBlockInterval(NodeHeader); |
| if (CurInt == Int) { // Already in this interval... |
| return; |
| } else if (CurInt != 0) { // In another interval, add as successor |
| if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set |
| Int->Successors.push_back(NodeHeader); |
| } else { // Otherwise, not in interval yet |
| for (typename NodeTy::pred_iterator I = pred_begin(Node), |
| E = pred_end(Node); I != E; ++I) { |
| if (!Int->contains(*I)) { // If pred not in interval, we can't be |
| if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set |
| Int->Successors.push_back(NodeHeader); |
| return; // See you later |
| } |
| } |
| |
| // If we get here, then all of the predecessors of BB are in the interval |
| // already. In this case, we must add BB to the interval! |
| addNodeToInterval(Int, Node); |
| |
| if (Int->isSuccessor(NodeHeader)) { |
| // If we were in the successor list from before... remove from succ list |
| Int->Successors.erase(remove(Int->Successors.begin(), |
| Int->Successors.end(), NodeHeader), |
| Int->Successors.end()); |
| } |
| |
| // Now that we have discovered that Node is in the interval, perhaps some of |
| // its successors are as well? |
| for (typename NodeTy::succ_iterator It = succ_begin(Node), |
| End = succ_end(Node); It != End; ++It) |
| ProcessNode(Int, getSourceGraphNode(OC, *It), OC); |
| } |
| } |
| |
| |
| // ProcessInterval - This method is used during the construction of the |
| // interval graph. It walks through the source graph, recursively creating |
| // an interval per invokation until the entire graph is covered. This uses |
| // the ProcessNode method to add all of the nodes to the interval. |
| // |
| // This method is templated because it may operate on two different source |
| // graphs: a basic block graph, or a preexisting interval graph. |
| // |
| template<class NodeTy, class OrigContainer> |
| void IntervalPartition::ProcessInterval(NodeTy *Node, OrigContainer *OC) { |
| BasicBlock *Header = getNodeHeader(Node); |
| if (getBlockInterval(Header)) return; // Interval already constructed? |
| |
| // Create a new interval and add the interval to our current set |
| Interval *Int = new Interval(Header); |
| IntervalList.push_back(Int); |
| IntervalMap.insert(make_pair(Header, Int)); |
| |
| // Check all of our successors to see if they are in the interval... |
| for (typename NodeTy::succ_iterator I = succ_begin(Node), E = succ_end(Node); |
| I != E; ++I) |
| ProcessNode(Int, getSourceGraphNode(OC, *I), OC); |
| |
| // Build all of the successor intervals of this interval now... |
| for(Interval::succ_iterator I = Int->Successors.begin(), |
| E = Int->Successors.end(); I != E; ++I) { |
| ProcessInterval(getSourceGraphNode(OC, *I), OC); |
| } |
| } |
| |
| |
| |
| // updatePredecessors - Interval generation only sets the successor fields of |
| // the interval data structures. After interval generation is complete, |
| // run through all of the intervals and propogate successor info as |
| // predecessor info. |
| // |
| void IntervalPartition::updatePredecessors(cfg::Interval *Int) { |
| BasicBlock *Header = Int->HeaderNode; |
| for (Interval::succ_iterator I = Int->Successors.begin(), |
| E = Int->Successors.end(); I != E; ++I) |
| getBlockInterval(*I)->Predecessors.push_back(Header); |
| } |
| |
| |
| |
| // IntervalPartition ctor - Build the first level interval partition for the |
| // specified method... |
| // |
| IntervalPartition::IntervalPartition(Method *M) { |
| BasicBlock *MethodStart = M->getBasicBlocks().front(); |
| assert(MethodStart && "Cannot operate on prototypes!"); |
| |
| ProcessInterval(MethodStart, M); |
| RootInterval = getBlockInterval(MethodStart); |
| |
| // Now that we know all of the successor information, propogate this to the |
| // predecessors for each block... |
| for(iterator I = begin(), E = end(); I != E; ++I) |
| updatePredecessors(*I); |
| } |
| |
| |
| // IntervalPartition ctor - Build a reduced interval partition from an |
| // existing interval graph. This takes an additional boolean parameter to |
| // distinguish it from a copy constructor. Always pass in false for now. |
| // |
| IntervalPartition::IntervalPartition(IntervalPartition &I, bool) { |
| Interval *MethodStart = I.getRootInterval(); |
| assert(MethodStart && "Cannot operate on empty IntervalPartitions!"); |
| |
| ProcessInterval(MethodStart, &I); |
| RootInterval = getBlockInterval(*MethodStart->Nodes.begin()); |
| |
| // Now that we know all of the successor information, propogate this to the |
| // predecessors for each block... |
| for(iterator I = begin(), E = end(); I != E; ++I) |
| updatePredecessors(*I); |
| } |