| //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the LoopInfo class that is used to identify natural loops |
| // and determine the loop depth of various nodes of the CFG. Note that the |
| // loops identified may actually be several natural loops that share the same |
| // header node... not just a single natural loop. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| // Always verify loopinfo if expensive checking is enabled. |
| #ifdef XDEBUG |
| bool VerifyLoopInfo = true; |
| #else |
| bool VerifyLoopInfo = false; |
| #endif |
| static cl::opt<bool,true> |
| VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), |
| cl::desc("Verify loop info (time consuming)")); |
| |
| char LoopInfo::ID = 0; |
| static RegisterPass<LoopInfo> |
| X("loops", "Natural Loop Information", true, true); |
| |
| //===----------------------------------------------------------------------===// |
| // Loop implementation |
| // |
| |
| /// isLoopInvariant - Return true if the specified value is loop invariant |
| /// |
| bool Loop::isLoopInvariant(Value *V) const { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| return isLoopInvariant(I); |
| return true; // All non-instructions are loop invariant |
| } |
| |
| /// isLoopInvariant - Return true if the specified instruction is |
| /// loop-invariant. |
| /// |
| bool Loop::isLoopInvariant(Instruction *I) const { |
| return !contains(I->getParent()); |
| } |
| |
| /// makeLoopInvariant - If the given value is an instruciton inside of the |
| /// loop and it can be hoisted, do so to make it trivially loop-invariant. |
| /// Return true if the value after any hoisting is loop invariant. This |
| /// function can be used as a slightly more aggressive replacement for |
| /// isLoopInvariant. |
| /// |
| /// If InsertPt is specified, it is the point to hoist instructions to. |
| /// If null, the terminator of the loop preheader is used. |
| /// |
| bool Loop::makeLoopInvariant(Value *V, bool &Changed, |
| Instruction *InsertPt) const { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| return makeLoopInvariant(I, Changed, InsertPt); |
| return true; // All non-instructions are loop-invariant. |
| } |
| |
| /// makeLoopInvariant - If the given instruction is inside of the |
| /// loop and it can be hoisted, do so to make it trivially loop-invariant. |
| /// Return true if the instruction after any hoisting is loop invariant. This |
| /// function can be used as a slightly more aggressive replacement for |
| /// isLoopInvariant. |
| /// |
| /// If InsertPt is specified, it is the point to hoist instructions to. |
| /// If null, the terminator of the loop preheader is used. |
| /// |
| bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, |
| Instruction *InsertPt) const { |
| // Test if the value is already loop-invariant. |
| if (isLoopInvariant(I)) |
| return true; |
| if (!I->isSafeToSpeculativelyExecute()) |
| return false; |
| if (I->mayReadFromMemory()) |
| return false; |
| // Determine the insertion point, unless one was given. |
| if (!InsertPt) { |
| BasicBlock *Preheader = getLoopPreheader(); |
| // Without a preheader, hoisting is not feasible. |
| if (!Preheader) |
| return false; |
| InsertPt = Preheader->getTerminator(); |
| } |
| // Don't hoist instructions with loop-variant operands. |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt)) |
| return false; |
| // Hoist. |
| I->moveBefore(InsertPt); |
| Changed = true; |
| return true; |
| } |
| |
| /// getCanonicalInductionVariable - Check to see if the loop has a canonical |
| /// induction variable: an integer recurrence that starts at 0 and increments |
| /// by one each time through the loop. If so, return the phi node that |
| /// corresponds to it. |
| /// |
| /// The IndVarSimplify pass transforms loops to have a canonical induction |
| /// variable. |
| /// |
| PHINode *Loop::getCanonicalInductionVariable() const { |
| BasicBlock *H = getHeader(); |
| |
| BasicBlock *Incoming = 0, *Backedge = 0; |
| typedef GraphTraits<Inverse<BasicBlock*> > InvBlockTraits; |
| InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(H); |
| assert(PI != InvBlockTraits::child_end(H) && |
| "Loop must have at least one backedge!"); |
| Backedge = *PI++; |
| if (PI == InvBlockTraits::child_end(H)) return 0; // dead loop |
| Incoming = *PI++; |
| if (PI != InvBlockTraits::child_end(H)) return 0; // multiple backedges? |
| |
| if (contains(Incoming)) { |
| if (contains(Backedge)) |
| return 0; |
| std::swap(Incoming, Backedge); |
| } else if (!contains(Backedge)) |
| return 0; |
| |
| // Loop over all of the PHI nodes, looking for a canonical indvar. |
| for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| if (ConstantInt *CI = |
| dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) |
| if (CI->isNullValue()) |
| if (Instruction *Inc = |
| dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) |
| if (Inc->getOpcode() == Instruction::Add && |
| Inc->getOperand(0) == PN) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) |
| if (CI->equalsInt(1)) |
| return PN; |
| } |
| return 0; |
| } |
| |
| /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds |
| /// the canonical induction variable value for the "next" iteration of the |
| /// loop. This always succeeds if getCanonicalInductionVariable succeeds. |
| /// |
| Instruction *Loop::getCanonicalInductionVariableIncrement() const { |
| if (PHINode *PN = getCanonicalInductionVariable()) { |
| bool P1InLoop = contains(PN->getIncomingBlock(1)); |
| return cast<Instruction>(PN->getIncomingValue(P1InLoop)); |
| } |
| return 0; |
| } |
| |
| /// getTripCount - Return a loop-invariant LLVM value indicating the number of |
| /// times the loop will be executed. Note that this means that the backedge |
| /// of the loop executes N-1 times. If the trip-count cannot be determined, |
| /// this returns null. |
| /// |
| /// The IndVarSimplify pass transforms loops to have a form that this |
| /// function easily understands. |
| /// |
| Value *Loop::getTripCount() const { |
| // Canonical loops will end with a 'cmp ne I, V', where I is the incremented |
| // canonical induction variable and V is the trip count of the loop. |
| Instruction *Inc = getCanonicalInductionVariableIncrement(); |
| if (Inc == 0) return 0; |
| PHINode *IV = cast<PHINode>(Inc->getOperand(0)); |
| |
| BasicBlock *BackedgeBlock = |
| IV->getIncomingBlock(contains(IV->getIncomingBlock(1))); |
| |
| if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator())) |
| if (BI->isConditional()) { |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { |
| if (ICI->getOperand(0) == Inc) { |
| if (BI->getSuccessor(0) == getHeader()) { |
| if (ICI->getPredicate() == ICmpInst::ICMP_NE) |
| return ICI->getOperand(1); |
| } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) { |
| return ICI->getOperand(1); |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /// getSmallConstantTripCount - Returns the trip count of this loop as a |
| /// normal unsigned value, if possible. Returns 0 if the trip count is unknown |
| /// of not constant. Will also return 0 if the trip count is very large |
| /// (>= 2^32) |
| unsigned Loop::getSmallConstantTripCount() const { |
| Value* TripCount = this->getTripCount(); |
| if (TripCount) { |
| if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) { |
| // Guard against huge trip counts. |
| if (TripCountC->getValue().getActiveBits() <= 32) { |
| return (unsigned)TripCountC->getZExtValue(); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /// getSmallConstantTripMultiple - Returns the largest constant divisor of the |
| /// trip count of this loop as a normal unsigned value, if possible. This |
| /// means that the actual trip count is always a multiple of the returned |
| /// value (don't forget the trip count could very well be zero as well!). |
| /// |
| /// Returns 1 if the trip count is unknown or not guaranteed to be the |
| /// multiple of a constant (which is also the case if the trip count is simply |
| /// constant, use getSmallConstantTripCount for that case), Will also return 1 |
| /// if the trip count is very large (>= 2^32). |
| unsigned Loop::getSmallConstantTripMultiple() const { |
| Value* TripCount = this->getTripCount(); |
| // This will hold the ConstantInt result, if any |
| ConstantInt *Result = NULL; |
| if (TripCount) { |
| // See if the trip count is constant itself |
| Result = dyn_cast<ConstantInt>(TripCount); |
| // if not, see if it is a multiplication |
| if (!Result) |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) { |
| switch (BO->getOpcode()) { |
| case BinaryOperator::Mul: |
| Result = dyn_cast<ConstantInt>(BO->getOperand(1)); |
| break; |
| case BinaryOperator::Shl: |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) |
| if (CI->getValue().getActiveBits() <= 5) |
| return 1u << CI->getZExtValue(); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| // Guard against huge trip counts. |
| if (Result && Result->getValue().getActiveBits() <= 32) { |
| return (unsigned)Result->getZExtValue(); |
| } else { |
| return 1; |
| } |
| } |
| |
| /// isLCSSAForm - Return true if the Loop is in LCSSA form |
| bool Loop::isLCSSAForm() const { |
| // Sort the blocks vector so that we can use binary search to do quick |
| // lookups. |
| SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end()); |
| |
| for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { |
| BasicBlock *BB = *BI; |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I) |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; |
| ++UI) { |
| BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); |
| if (PHINode *P = dyn_cast<PHINode>(*UI)) |
| UserBB = P->getIncomingBlock(UI); |
| |
| // Check the current block, as a fast-path. Most values are used in |
| // the same block they are defined in. |
| if (UserBB != BB && !LoopBBs.count(UserBB)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// isLoopSimplifyForm - Return true if the Loop is in the form that |
| /// the LoopSimplify form transforms loops to, which is sometimes called |
| /// normal form. |
| bool Loop::isLoopSimplifyForm() const { |
| // Normal-form loops have a preheader, a single backedge, and all of their |
| // exits have all their predecessors inside the loop. |
| return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); |
| } |
| |
| /// hasDedicatedExits - Return true if no exit block for the loop |
| /// has a predecessor that is outside the loop. |
| bool Loop::hasDedicatedExits() const { |
| // Sort the blocks vector so that we can use binary search to do quick |
| // lookups. |
| SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end()); |
| // Each predecessor of each exit block of a normal loop is contained |
| // within the loop. |
| SmallVector<BasicBlock *, 4> ExitBlocks; |
| getExitBlocks(ExitBlocks); |
| for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) |
| for (pred_iterator PI = pred_begin(ExitBlocks[i]), |
| PE = pred_end(ExitBlocks[i]); PI != PE; ++PI) |
| if (!LoopBBs.count(*PI)) |
| return false; |
| // All the requirements are met. |
| return true; |
| } |
| |
| /// getUniqueExitBlocks - Return all unique successor blocks of this loop. |
| /// These are the blocks _outside of the current loop_ which are branched to. |
| /// This assumes that loop exits are in canonical form. |
| /// |
| void |
| Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { |
| assert(hasDedicatedExits() && |
| "getUniqueExitBlocks assumes the loop has canonical form exits!"); |
| |
| // Sort the blocks vector so that we can use binary search to do quick |
| // lookups. |
| SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end()); |
| std::sort(LoopBBs.begin(), LoopBBs.end()); |
| |
| SmallVector<BasicBlock *, 32> switchExitBlocks; |
| |
| for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) { |
| |
| BasicBlock *current = *BI; |
| switchExitBlocks.clear(); |
| |
| typedef GraphTraits<BasicBlock *> BlockTraits; |
| typedef GraphTraits<Inverse<BasicBlock *> > InvBlockTraits; |
| for (BlockTraits::ChildIteratorType I = |
| BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI); |
| I != E; ++I) { |
| // If block is inside the loop then it is not a exit block. |
| if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) |
| continue; |
| |
| InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(*I); |
| BasicBlock *firstPred = *PI; |
| |
| // If current basic block is this exit block's first predecessor |
| // then only insert exit block in to the output ExitBlocks vector. |
| // This ensures that same exit block is not inserted twice into |
| // ExitBlocks vector. |
| if (current != firstPred) |
| continue; |
| |
| // If a terminator has more then two successors, for example SwitchInst, |
| // then it is possible that there are multiple edges from current block |
| // to one exit block. |
| if (std::distance(BlockTraits::child_begin(current), |
| BlockTraits::child_end(current)) <= 2) { |
| ExitBlocks.push_back(*I); |
| continue; |
| } |
| |
| // In case of multiple edges from current block to exit block, collect |
| // only one edge in ExitBlocks. Use switchExitBlocks to keep track of |
| // duplicate edges. |
| if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) |
| == switchExitBlocks.end()) { |
| switchExitBlocks.push_back(*I); |
| ExitBlocks.push_back(*I); |
| } |
| } |
| } |
| } |
| |
| /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one |
| /// block, return that block. Otherwise return null. |
| BasicBlock *Loop::getUniqueExitBlock() const { |
| SmallVector<BasicBlock *, 8> UniqueExitBlocks; |
| getUniqueExitBlocks(UniqueExitBlocks); |
| if (UniqueExitBlocks.size() == 1) |
| return UniqueExitBlocks[0]; |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LoopInfo implementation |
| // |
| bool LoopInfo::runOnFunction(Function &) { |
| releaseMemory(); |
| LI.Calculate(getAnalysis<DominatorTree>().getBase()); // Update |
| return false; |
| } |
| |
| void LoopInfo::verifyAnalysis() const { |
| // LoopInfo is a FunctionPass, but verifying every loop in the function |
| // each time verifyAnalysis is called is very expensive. The |
| // -verify-loop-info option can enable this. In order to perform some |
| // checking by default, LoopPass has been taught to call verifyLoop |
| // manually during loop pass sequences. |
| |
| if (!VerifyLoopInfo) return; |
| |
| for (iterator I = begin(), E = end(); I != E; ++I) { |
| assert(!(*I)->getParentLoop() && "Top-level loop has a parent!"); |
| (*I)->verifyLoopNest(); |
| } |
| |
| // TODO: check BBMap consistency. |
| } |
| |
| void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequired<DominatorTree>(); |
| } |
| |
| void LoopInfo::print(raw_ostream &OS, const Module*) const { |
| LI.print(OS); |
| } |
| |