| //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the X86 implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86InstrInfo.h" |
| #include "X86.h" |
| #include "X86GenInstrInfo.inc" |
| #include "X86InstrBuilder.h" |
| #include "X86MachineFunctionInfo.h" |
| #include "X86Subtarget.h" |
| #include "X86TargetMachine.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include <limits> |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> |
| NoFusing("disable-spill-fusing", |
| cl::desc("Disable fusing of spill code into instructions")); |
| static cl::opt<bool> |
| PrintFailedFusing("print-failed-fuse-candidates", |
| cl::desc("Print instructions that the allocator wants to" |
| " fuse, but the X86 backend currently can't"), |
| cl::Hidden); |
| static cl::opt<bool> |
| ReMatPICStubLoad("remat-pic-stub-load", |
| cl::desc("Re-materialize load from stub in PIC mode"), |
| cl::init(false), cl::Hidden); |
| |
| X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) |
| : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)), |
| TM(tm), RI(tm, *this) { |
| enum { |
| TB_NOT_REVERSABLE = 1U << 31, |
| TB_FLAGS = TB_NOT_REVERSABLE |
| }; |
| |
| static const unsigned OpTbl2Addr[][2] = { |
| { X86::ADC32ri, X86::ADC32mi }, |
| { X86::ADC32ri8, X86::ADC32mi8 }, |
| { X86::ADC32rr, X86::ADC32mr }, |
| { X86::ADC64ri32, X86::ADC64mi32 }, |
| { X86::ADC64ri8, X86::ADC64mi8 }, |
| { X86::ADC64rr, X86::ADC64mr }, |
| { X86::ADD16ri, X86::ADD16mi }, |
| { X86::ADD16ri8, X86::ADD16mi8 }, |
| { X86::ADD16ri_DB, X86::ADD16mi | TB_NOT_REVERSABLE }, |
| { X86::ADD16ri8_DB, X86::ADD16mi8 | TB_NOT_REVERSABLE }, |
| { X86::ADD16rr, X86::ADD16mr }, |
| { X86::ADD16rr_DB, X86::ADD16mr | TB_NOT_REVERSABLE }, |
| { X86::ADD32ri, X86::ADD32mi }, |
| { X86::ADD32ri8, X86::ADD32mi8 }, |
| { X86::ADD32ri_DB, X86::ADD32mi | TB_NOT_REVERSABLE }, |
| { X86::ADD32ri8_DB, X86::ADD32mi8 | TB_NOT_REVERSABLE }, |
| { X86::ADD32rr, X86::ADD32mr }, |
| { X86::ADD32rr_DB, X86::ADD32mr | TB_NOT_REVERSABLE }, |
| { X86::ADD64ri32, X86::ADD64mi32 }, |
| { X86::ADD64ri8, X86::ADD64mi8 }, |
| { X86::ADD64ri32_DB,X86::ADD64mi32 | TB_NOT_REVERSABLE }, |
| { X86::ADD64ri8_DB, X86::ADD64mi8 | TB_NOT_REVERSABLE }, |
| { X86::ADD64rr, X86::ADD64mr }, |
| { X86::ADD64rr_DB, X86::ADD64mr | TB_NOT_REVERSABLE }, |
| { X86::ADD8ri, X86::ADD8mi }, |
| { X86::ADD8rr, X86::ADD8mr }, |
| { X86::AND16ri, X86::AND16mi }, |
| { X86::AND16ri8, X86::AND16mi8 }, |
| { X86::AND16rr, X86::AND16mr }, |
| { X86::AND32ri, X86::AND32mi }, |
| { X86::AND32ri8, X86::AND32mi8 }, |
| { X86::AND32rr, X86::AND32mr }, |
| { X86::AND64ri32, X86::AND64mi32 }, |
| { X86::AND64ri8, X86::AND64mi8 }, |
| { X86::AND64rr, X86::AND64mr }, |
| { X86::AND8ri, X86::AND8mi }, |
| { X86::AND8rr, X86::AND8mr }, |
| { X86::DEC16r, X86::DEC16m }, |
| { X86::DEC32r, X86::DEC32m }, |
| { X86::DEC64_16r, X86::DEC64_16m }, |
| { X86::DEC64_32r, X86::DEC64_32m }, |
| { X86::DEC64r, X86::DEC64m }, |
| { X86::DEC8r, X86::DEC8m }, |
| { X86::INC16r, X86::INC16m }, |
| { X86::INC32r, X86::INC32m }, |
| { X86::INC64_16r, X86::INC64_16m }, |
| { X86::INC64_32r, X86::INC64_32m }, |
| { X86::INC64r, X86::INC64m }, |
| { X86::INC8r, X86::INC8m }, |
| { X86::NEG16r, X86::NEG16m }, |
| { X86::NEG32r, X86::NEG32m }, |
| { X86::NEG64r, X86::NEG64m }, |
| { X86::NEG8r, X86::NEG8m }, |
| { X86::NOT16r, X86::NOT16m }, |
| { X86::NOT32r, X86::NOT32m }, |
| { X86::NOT64r, X86::NOT64m }, |
| { X86::NOT8r, X86::NOT8m }, |
| { X86::OR16ri, X86::OR16mi }, |
| { X86::OR16ri8, X86::OR16mi8 }, |
| { X86::OR16rr, X86::OR16mr }, |
| { X86::OR32ri, X86::OR32mi }, |
| { X86::OR32ri8, X86::OR32mi8 }, |
| { X86::OR32rr, X86::OR32mr }, |
| { X86::OR64ri32, X86::OR64mi32 }, |
| { X86::OR64ri8, X86::OR64mi8 }, |
| { X86::OR64rr, X86::OR64mr }, |
| { X86::OR8ri, X86::OR8mi }, |
| { X86::OR8rr, X86::OR8mr }, |
| { X86::ROL16r1, X86::ROL16m1 }, |
| { X86::ROL16rCL, X86::ROL16mCL }, |
| { X86::ROL16ri, X86::ROL16mi }, |
| { X86::ROL32r1, X86::ROL32m1 }, |
| { X86::ROL32rCL, X86::ROL32mCL }, |
| { X86::ROL32ri, X86::ROL32mi }, |
| { X86::ROL64r1, X86::ROL64m1 }, |
| { X86::ROL64rCL, X86::ROL64mCL }, |
| { X86::ROL64ri, X86::ROL64mi }, |
| { X86::ROL8r1, X86::ROL8m1 }, |
| { X86::ROL8rCL, X86::ROL8mCL }, |
| { X86::ROL8ri, X86::ROL8mi }, |
| { X86::ROR16r1, X86::ROR16m1 }, |
| { X86::ROR16rCL, X86::ROR16mCL }, |
| { X86::ROR16ri, X86::ROR16mi }, |
| { X86::ROR32r1, X86::ROR32m1 }, |
| { X86::ROR32rCL, X86::ROR32mCL }, |
| { X86::ROR32ri, X86::ROR32mi }, |
| { X86::ROR64r1, X86::ROR64m1 }, |
| { X86::ROR64rCL, X86::ROR64mCL }, |
| { X86::ROR64ri, X86::ROR64mi }, |
| { X86::ROR8r1, X86::ROR8m1 }, |
| { X86::ROR8rCL, X86::ROR8mCL }, |
| { X86::ROR8ri, X86::ROR8mi }, |
| { X86::SAR16r1, X86::SAR16m1 }, |
| { X86::SAR16rCL, X86::SAR16mCL }, |
| { X86::SAR16ri, X86::SAR16mi }, |
| { X86::SAR32r1, X86::SAR32m1 }, |
| { X86::SAR32rCL, X86::SAR32mCL }, |
| { X86::SAR32ri, X86::SAR32mi }, |
| { X86::SAR64r1, X86::SAR64m1 }, |
| { X86::SAR64rCL, X86::SAR64mCL }, |
| { X86::SAR64ri, X86::SAR64mi }, |
| { X86::SAR8r1, X86::SAR8m1 }, |
| { X86::SAR8rCL, X86::SAR8mCL }, |
| { X86::SAR8ri, X86::SAR8mi }, |
| { X86::SBB32ri, X86::SBB32mi }, |
| { X86::SBB32ri8, X86::SBB32mi8 }, |
| { X86::SBB32rr, X86::SBB32mr }, |
| { X86::SBB64ri32, X86::SBB64mi32 }, |
| { X86::SBB64ri8, X86::SBB64mi8 }, |
| { X86::SBB64rr, X86::SBB64mr }, |
| { X86::SHL16rCL, X86::SHL16mCL }, |
| { X86::SHL16ri, X86::SHL16mi }, |
| { X86::SHL32rCL, X86::SHL32mCL }, |
| { X86::SHL32ri, X86::SHL32mi }, |
| { X86::SHL64rCL, X86::SHL64mCL }, |
| { X86::SHL64ri, X86::SHL64mi }, |
| { X86::SHL8rCL, X86::SHL8mCL }, |
| { X86::SHL8ri, X86::SHL8mi }, |
| { X86::SHLD16rrCL, X86::SHLD16mrCL }, |
| { X86::SHLD16rri8, X86::SHLD16mri8 }, |
| { X86::SHLD32rrCL, X86::SHLD32mrCL }, |
| { X86::SHLD32rri8, X86::SHLD32mri8 }, |
| { X86::SHLD64rrCL, X86::SHLD64mrCL }, |
| { X86::SHLD64rri8, X86::SHLD64mri8 }, |
| { X86::SHR16r1, X86::SHR16m1 }, |
| { X86::SHR16rCL, X86::SHR16mCL }, |
| { X86::SHR16ri, X86::SHR16mi }, |
| { X86::SHR32r1, X86::SHR32m1 }, |
| { X86::SHR32rCL, X86::SHR32mCL }, |
| { X86::SHR32ri, X86::SHR32mi }, |
| { X86::SHR64r1, X86::SHR64m1 }, |
| { X86::SHR64rCL, X86::SHR64mCL }, |
| { X86::SHR64ri, X86::SHR64mi }, |
| { X86::SHR8r1, X86::SHR8m1 }, |
| { X86::SHR8rCL, X86::SHR8mCL }, |
| { X86::SHR8ri, X86::SHR8mi }, |
| { X86::SHRD16rrCL, X86::SHRD16mrCL }, |
| { X86::SHRD16rri8, X86::SHRD16mri8 }, |
| { X86::SHRD32rrCL, X86::SHRD32mrCL }, |
| { X86::SHRD32rri8, X86::SHRD32mri8 }, |
| { X86::SHRD64rrCL, X86::SHRD64mrCL }, |
| { X86::SHRD64rri8, X86::SHRD64mri8 }, |
| { X86::SUB16ri, X86::SUB16mi }, |
| { X86::SUB16ri8, X86::SUB16mi8 }, |
| { X86::SUB16rr, X86::SUB16mr }, |
| { X86::SUB32ri, X86::SUB32mi }, |
| { X86::SUB32ri8, X86::SUB32mi8 }, |
| { X86::SUB32rr, X86::SUB32mr }, |
| { X86::SUB64ri32, X86::SUB64mi32 }, |
| { X86::SUB64ri8, X86::SUB64mi8 }, |
| { X86::SUB64rr, X86::SUB64mr }, |
| { X86::SUB8ri, X86::SUB8mi }, |
| { X86::SUB8rr, X86::SUB8mr }, |
| { X86::XOR16ri, X86::XOR16mi }, |
| { X86::XOR16ri8, X86::XOR16mi8 }, |
| { X86::XOR16rr, X86::XOR16mr }, |
| { X86::XOR32ri, X86::XOR32mi }, |
| { X86::XOR32ri8, X86::XOR32mi8 }, |
| { X86::XOR32rr, X86::XOR32mr }, |
| { X86::XOR64ri32, X86::XOR64mi32 }, |
| { X86::XOR64ri8, X86::XOR64mi8 }, |
| { X86::XOR64rr, X86::XOR64mr }, |
| { X86::XOR8ri, X86::XOR8mi }, |
| { X86::XOR8rr, X86::XOR8mr } |
| }; |
| |
| for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) { |
| unsigned RegOp = OpTbl2Addr[i][0]; |
| unsigned MemOp = OpTbl2Addr[i][1] & ~TB_FLAGS; |
| assert(!RegOp2MemOpTable2Addr.count(RegOp) && "Duplicated entries?"); |
| RegOp2MemOpTable2Addr[RegOp] = std::make_pair(MemOp, 0U); |
| |
| // If this is not a reversible operation (because there is a many->one) |
| // mapping, don't insert the reverse of the operation into MemOp2RegOpTable. |
| if (OpTbl2Addr[i][1] & TB_NOT_REVERSABLE) |
| continue; |
| |
| // Index 0, folded load and store, no alignment requirement. |
| unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); |
| |
| assert(!MemOp2RegOpTable.count(MemOp) && |
| "Duplicated entries in unfolding maps?"); |
| MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo); |
| } |
| |
| // If the third value is 1, then it's folding either a load or a store. |
| static const unsigned OpTbl0[][4] = { |
| { X86::BT16ri8, X86::BT16mi8, 1, 0 }, |
| { X86::BT32ri8, X86::BT32mi8, 1, 0 }, |
| { X86::BT64ri8, X86::BT64mi8, 1, 0 }, |
| { X86::CALL32r, X86::CALL32m, 1, 0 }, |
| { X86::CALL64r, X86::CALL64m, 1, 0 }, |
| { X86::WINCALL64r, X86::WINCALL64m, 1, 0 }, |
| { X86::CMP16ri, X86::CMP16mi, 1, 0 }, |
| { X86::CMP16ri8, X86::CMP16mi8, 1, 0 }, |
| { X86::CMP16rr, X86::CMP16mr, 1, 0 }, |
| { X86::CMP32ri, X86::CMP32mi, 1, 0 }, |
| { X86::CMP32ri8, X86::CMP32mi8, 1, 0 }, |
| { X86::CMP32rr, X86::CMP32mr, 1, 0 }, |
| { X86::CMP64ri32, X86::CMP64mi32, 1, 0 }, |
| { X86::CMP64ri8, X86::CMP64mi8, 1, 0 }, |
| { X86::CMP64rr, X86::CMP64mr, 1, 0 }, |
| { X86::CMP8ri, X86::CMP8mi, 1, 0 }, |
| { X86::CMP8rr, X86::CMP8mr, 1, 0 }, |
| { X86::DIV16r, X86::DIV16m, 1, 0 }, |
| { X86::DIV32r, X86::DIV32m, 1, 0 }, |
| { X86::DIV64r, X86::DIV64m, 1, 0 }, |
| { X86::DIV8r, X86::DIV8m, 1, 0 }, |
| { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 }, |
| { X86::FsMOVAPDrr, X86::MOVSDmr | TB_NOT_REVERSABLE , 0, 0 }, |
| { X86::FsMOVAPSrr, X86::MOVSSmr | TB_NOT_REVERSABLE , 0, 0 }, |
| { X86::IDIV16r, X86::IDIV16m, 1, 0 }, |
| { X86::IDIV32r, X86::IDIV32m, 1, 0 }, |
| { X86::IDIV64r, X86::IDIV64m, 1, 0 }, |
| { X86::IDIV8r, X86::IDIV8m, 1, 0 }, |
| { X86::IMUL16r, X86::IMUL16m, 1, 0 }, |
| { X86::IMUL32r, X86::IMUL32m, 1, 0 }, |
| { X86::IMUL64r, X86::IMUL64m, 1, 0 }, |
| { X86::IMUL8r, X86::IMUL8m, 1, 0 }, |
| { X86::JMP32r, X86::JMP32m, 1, 0 }, |
| { X86::JMP64r, X86::JMP64m, 1, 0 }, |
| { X86::MOV16ri, X86::MOV16mi, 0, 0 }, |
| { X86::MOV16rr, X86::MOV16mr, 0, 0 }, |
| { X86::MOV32ri, X86::MOV32mi, 0, 0 }, |
| { X86::MOV32rr, X86::MOV32mr, 0, 0 }, |
| { X86::MOV64ri32, X86::MOV64mi32, 0, 0 }, |
| { X86::MOV64rr, X86::MOV64mr, 0, 0 }, |
| { X86::MOV8ri, X86::MOV8mi, 0, 0 }, |
| { X86::MOV8rr, X86::MOV8mr, 0, 0 }, |
| { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 }, |
| { X86::MOVAPDrr, X86::MOVAPDmr, 0, 16 }, |
| { X86::MOVAPSrr, X86::MOVAPSmr, 0, 16 }, |
| { X86::MOVDQArr, X86::MOVDQAmr, 0, 16 }, |
| { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 }, |
| { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 }, |
| { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 }, |
| { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0, 0 }, |
| { X86::MOVUPDrr, X86::MOVUPDmr, 0, 0 }, |
| { X86::MOVUPSrr, X86::MOVUPSmr, 0, 0 }, |
| { X86::MUL16r, X86::MUL16m, 1, 0 }, |
| { X86::MUL32r, X86::MUL32m, 1, 0 }, |
| { X86::MUL64r, X86::MUL64m, 1, 0 }, |
| { X86::MUL8r, X86::MUL8m, 1, 0 }, |
| { X86::SETAEr, X86::SETAEm, 0, 0 }, |
| { X86::SETAr, X86::SETAm, 0, 0 }, |
| { X86::SETBEr, X86::SETBEm, 0, 0 }, |
| { X86::SETBr, X86::SETBm, 0, 0 }, |
| { X86::SETEr, X86::SETEm, 0, 0 }, |
| { X86::SETGEr, X86::SETGEm, 0, 0 }, |
| { X86::SETGr, X86::SETGm, 0, 0 }, |
| { X86::SETLEr, X86::SETLEm, 0, 0 }, |
| { X86::SETLr, X86::SETLm, 0, 0 }, |
| { X86::SETNEr, X86::SETNEm, 0, 0 }, |
| { X86::SETNOr, X86::SETNOm, 0, 0 }, |
| { X86::SETNPr, X86::SETNPm, 0, 0 }, |
| { X86::SETNSr, X86::SETNSm, 0, 0 }, |
| { X86::SETOr, X86::SETOm, 0, 0 }, |
| { X86::SETPr, X86::SETPm, 0, 0 }, |
| { X86::SETSr, X86::SETSm, 0, 0 }, |
| { X86::TAILJMPr, X86::TAILJMPm, 1, 0 }, |
| { X86::TAILJMPr64, X86::TAILJMPm64, 1, 0 }, |
| { X86::TEST16ri, X86::TEST16mi, 1, 0 }, |
| { X86::TEST32ri, X86::TEST32mi, 1, 0 }, |
| { X86::TEST64ri32, X86::TEST64mi32, 1, 0 }, |
| { X86::TEST8ri, X86::TEST8mi, 1, 0 } |
| }; |
| |
| for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) { |
| unsigned RegOp = OpTbl0[i][0]; |
| unsigned MemOp = OpTbl0[i][1] & ~TB_FLAGS; |
| unsigned FoldedLoad = OpTbl0[i][2]; |
| unsigned Align = OpTbl0[i][3]; |
| assert(!RegOp2MemOpTable0.count(RegOp) && "Duplicated entries?"); |
| RegOp2MemOpTable0[RegOp] = std::make_pair(MemOp, Align); |
| |
| // If this is not a reversible operation (because there is a many->one) |
| // mapping, don't insert the reverse of the operation into MemOp2RegOpTable. |
| if (OpTbl0[i][1] & TB_NOT_REVERSABLE) |
| continue; |
| |
| // Index 0, folded load or store. |
| unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5); |
| assert(!MemOp2RegOpTable.count(MemOp) && "Duplicated entries?"); |
| MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo); |
| } |
| |
| static const unsigned OpTbl1[][3] = { |
| { X86::CMP16rr, X86::CMP16rm, 0 }, |
| { X86::CMP32rr, X86::CMP32rm, 0 }, |
| { X86::CMP64rr, X86::CMP64rm, 0 }, |
| { X86::CMP8rr, X86::CMP8rm, 0 }, |
| { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 }, |
| { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 }, |
| { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 }, |
| { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 }, |
| { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 }, |
| { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 }, |
| { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 }, |
| { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 }, |
| { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 }, |
| { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 }, |
| { X86::FsMOVAPDrr, X86::MOVSDrm | TB_NOT_REVERSABLE , 0 }, |
| { X86::FsMOVAPSrr, X86::MOVSSrm | TB_NOT_REVERSABLE , 0 }, |
| { X86::IMUL16rri, X86::IMUL16rmi, 0 }, |
| { X86::IMUL16rri8, X86::IMUL16rmi8, 0 }, |
| { X86::IMUL32rri, X86::IMUL32rmi, 0 }, |
| { X86::IMUL32rri8, X86::IMUL32rmi8, 0 }, |
| { X86::IMUL64rri32, X86::IMUL64rmi32, 0 }, |
| { X86::IMUL64rri8, X86::IMUL64rmi8, 0 }, |
| { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 }, |
| { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 }, |
| { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, 16 }, |
| { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, 16 }, |
| { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, 16 }, |
| { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, 16 }, |
| { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, 16 }, |
| { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 }, |
| { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 }, |
| { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 }, |
| { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 }, |
| { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 }, |
| { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 }, |
| { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 }, |
| { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 }, |
| { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 }, |
| { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 }, |
| { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm, 0 }, |
| { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, 16 }, |
| { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, 16 }, |
| { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 }, |
| { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 }, |
| { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 }, |
| { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 }, |
| { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 }, |
| { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 }, |
| { X86::MOV16rr, X86::MOV16rm, 0 }, |
| { X86::MOV32rr, X86::MOV32rm, 0 }, |
| { X86::MOV64rr, X86::MOV64rm, 0 }, |
| { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 }, |
| { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 }, |
| { X86::MOV8rr, X86::MOV8rm, 0 }, |
| { X86::MOVAPDrr, X86::MOVAPDrm, 16 }, |
| { X86::MOVAPSrr, X86::MOVAPSrm, 16 }, |
| { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 }, |
| { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 }, |
| { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 }, |
| { X86::MOVDQArr, X86::MOVDQArm, 16 }, |
| { X86::MOVSHDUPrr, X86::MOVSHDUPrm, 16 }, |
| { X86::MOVSLDUPrr, X86::MOVSLDUPrm, 16 }, |
| { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 }, |
| { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 }, |
| { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 }, |
| { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 }, |
| { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 }, |
| { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 }, |
| { X86::MOVUPDrr, X86::MOVUPDrm, 16 }, |
| { X86::MOVUPSrr, X86::MOVUPSrm, 0 }, |
| { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 }, |
| { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 }, |
| { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 }, |
| { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 }, |
| { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 }, |
| { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 }, |
| { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 }, |
| { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 }, |
| { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 }, |
| { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 }, |
| { X86::PSHUFDri, X86::PSHUFDmi, 16 }, |
| { X86::PSHUFHWri, X86::PSHUFHWmi, 16 }, |
| { X86::PSHUFLWri, X86::PSHUFLWmi, 16 }, |
| { X86::RCPPSr, X86::RCPPSm, 16 }, |
| { X86::RCPPSr_Int, X86::RCPPSm_Int, 16 }, |
| { X86::RSQRTPSr, X86::RSQRTPSm, 16 }, |
| { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, 16 }, |
| { X86::RSQRTSSr, X86::RSQRTSSm, 0 }, |
| { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 }, |
| { X86::SQRTPDr, X86::SQRTPDm, 16 }, |
| { X86::SQRTPDr_Int, X86::SQRTPDm_Int, 16 }, |
| { X86::SQRTPSr, X86::SQRTPSm, 16 }, |
| { X86::SQRTPSr_Int, X86::SQRTPSm_Int, 16 }, |
| { X86::SQRTSDr, X86::SQRTSDm, 0 }, |
| { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 }, |
| { X86::SQRTSSr, X86::SQRTSSm, 0 }, |
| { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 }, |
| { X86::TEST16rr, X86::TEST16rm, 0 }, |
| { X86::TEST32rr, X86::TEST32rm, 0 }, |
| { X86::TEST64rr, X86::TEST64rm, 0 }, |
| { X86::TEST8rr, X86::TEST8rm, 0 }, |
| // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 |
| { X86::UCOMISDrr, X86::UCOMISDrm, 0 }, |
| { X86::UCOMISSrr, X86::UCOMISSrm, 0 } |
| }; |
| |
| for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) { |
| unsigned RegOp = OpTbl1[i][0]; |
| unsigned MemOp = OpTbl1[i][1] & ~TB_FLAGS; |
| unsigned Align = OpTbl1[i][2]; |
| assert(!RegOp2MemOpTable1.count(RegOp) && "Duplicate entries"); |
| RegOp2MemOpTable1[RegOp] = std::make_pair(MemOp, Align); |
| |
| // If this is not a reversible operation (because there is a many->one) |
| // mapping, don't insert the reverse of the operation into MemOp2RegOpTable. |
| if (OpTbl1[i][1] & TB_NOT_REVERSABLE) |
| continue; |
| |
| // Index 1, folded load |
| unsigned AuxInfo = 1 | (1 << 4); |
| assert(!MemOp2RegOpTable.count(MemOp) && "Duplicate entries"); |
| MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo); |
| } |
| |
| static const unsigned OpTbl2[][3] = { |
| { X86::ADC32rr, X86::ADC32rm, 0 }, |
| { X86::ADC64rr, X86::ADC64rm, 0 }, |
| { X86::ADD16rr, X86::ADD16rm, 0 }, |
| { X86::ADD16rr_DB, X86::ADD16rm | TB_NOT_REVERSABLE, 0 }, |
| { X86::ADD32rr, X86::ADD32rm, 0 }, |
| { X86::ADD32rr_DB, X86::ADD32rm | TB_NOT_REVERSABLE, 0 }, |
| { X86::ADD64rr, X86::ADD64rm, 0 }, |
| { X86::ADD64rr_DB, X86::ADD64rm | TB_NOT_REVERSABLE, 0 }, |
| { X86::ADD8rr, X86::ADD8rm, 0 }, |
| { X86::ADDPDrr, X86::ADDPDrm, 16 }, |
| { X86::ADDPSrr, X86::ADDPSrm, 16 }, |
| { X86::ADDSDrr, X86::ADDSDrm, 0 }, |
| { X86::ADDSSrr, X86::ADDSSrm, 0 }, |
| { X86::ADDSUBPDrr, X86::ADDSUBPDrm, 16 }, |
| { X86::ADDSUBPSrr, X86::ADDSUBPSrm, 16 }, |
| { X86::AND16rr, X86::AND16rm, 0 }, |
| { X86::AND32rr, X86::AND32rm, 0 }, |
| { X86::AND64rr, X86::AND64rm, 0 }, |
| { X86::AND8rr, X86::AND8rm, 0 }, |
| { X86::ANDNPDrr, X86::ANDNPDrm, 16 }, |
| { X86::ANDNPSrr, X86::ANDNPSrm, 16 }, |
| { X86::ANDPDrr, X86::ANDPDrm, 16 }, |
| { X86::ANDPSrr, X86::ANDPSrm, 16 }, |
| { X86::CMOVA16rr, X86::CMOVA16rm, 0 }, |
| { X86::CMOVA32rr, X86::CMOVA32rm, 0 }, |
| { X86::CMOVA64rr, X86::CMOVA64rm, 0 }, |
| { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 }, |
| { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 }, |
| { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 }, |
| { X86::CMOVB16rr, X86::CMOVB16rm, 0 }, |
| { X86::CMOVB32rr, X86::CMOVB32rm, 0 }, |
| { X86::CMOVB64rr, X86::CMOVB64rm, 0 }, |
| { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 }, |
| { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 }, |
| { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 }, |
| { X86::CMOVE16rr, X86::CMOVE16rm, 0 }, |
| { X86::CMOVE32rr, X86::CMOVE32rm, 0 }, |
| { X86::CMOVE64rr, X86::CMOVE64rm, 0 }, |
| { X86::CMOVG16rr, X86::CMOVG16rm, 0 }, |
| { X86::CMOVG32rr, X86::CMOVG32rm, 0 }, |
| { X86::CMOVG64rr, X86::CMOVG64rm, 0 }, |
| { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 }, |
| { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 }, |
| { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 }, |
| { X86::CMOVL16rr, X86::CMOVL16rm, 0 }, |
| { X86::CMOVL32rr, X86::CMOVL32rm, 0 }, |
| { X86::CMOVL64rr, X86::CMOVL64rm, 0 }, |
| { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 }, |
| { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 }, |
| { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 }, |
| { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 }, |
| { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 }, |
| { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 }, |
| { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 }, |
| { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 }, |
| { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 }, |
| { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 }, |
| { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 }, |
| { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 }, |
| { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 }, |
| { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 }, |
| { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 }, |
| { X86::CMOVO16rr, X86::CMOVO16rm, 0 }, |
| { X86::CMOVO32rr, X86::CMOVO32rm, 0 }, |
| { X86::CMOVO64rr, X86::CMOVO64rm, 0 }, |
| { X86::CMOVP16rr, X86::CMOVP16rm, 0 }, |
| { X86::CMOVP32rr, X86::CMOVP32rm, 0 }, |
| { X86::CMOVP64rr, X86::CMOVP64rm, 0 }, |
| { X86::CMOVS16rr, X86::CMOVS16rm, 0 }, |
| { X86::CMOVS32rr, X86::CMOVS32rm, 0 }, |
| { X86::CMOVS64rr, X86::CMOVS64rm, 0 }, |
| { X86::CMPPDrri, X86::CMPPDrmi, 16 }, |
| { X86::CMPPSrri, X86::CMPPSrmi, 16 }, |
| { X86::CMPSDrr, X86::CMPSDrm, 0 }, |
| { X86::CMPSSrr, X86::CMPSSrm, 0 }, |
| { X86::DIVPDrr, X86::DIVPDrm, 16 }, |
| { X86::DIVPSrr, X86::DIVPSrm, 16 }, |
| { X86::DIVSDrr, X86::DIVSDrm, 0 }, |
| { X86::DIVSSrr, X86::DIVSSrm, 0 }, |
| { X86::FsANDNPDrr, X86::FsANDNPDrm, 16 }, |
| { X86::FsANDNPSrr, X86::FsANDNPSrm, 16 }, |
| { X86::FsANDPDrr, X86::FsANDPDrm, 16 }, |
| { X86::FsANDPSrr, X86::FsANDPSrm, 16 }, |
| { X86::FsORPDrr, X86::FsORPDrm, 16 }, |
| { X86::FsORPSrr, X86::FsORPSrm, 16 }, |
| { X86::FsXORPDrr, X86::FsXORPDrm, 16 }, |
| { X86::FsXORPSrr, X86::FsXORPSrm, 16 }, |
| { X86::HADDPDrr, X86::HADDPDrm, 16 }, |
| { X86::HADDPSrr, X86::HADDPSrm, 16 }, |
| { X86::HSUBPDrr, X86::HSUBPDrm, 16 }, |
| { X86::HSUBPSrr, X86::HSUBPSrm, 16 }, |
| { X86::IMUL16rr, X86::IMUL16rm, 0 }, |
| { X86::IMUL32rr, X86::IMUL32rm, 0 }, |
| { X86::IMUL64rr, X86::IMUL64rm, 0 }, |
| { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 }, |
| { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 }, |
| { X86::MAXPDrr, X86::MAXPDrm, 16 }, |
| { X86::MAXPDrr_Int, X86::MAXPDrm_Int, 16 }, |
| { X86::MAXPSrr, X86::MAXPSrm, 16 }, |
| { X86::MAXPSrr_Int, X86::MAXPSrm_Int, 16 }, |
| { X86::MAXSDrr, X86::MAXSDrm, 0 }, |
| { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 }, |
| { X86::MAXSSrr, X86::MAXSSrm, 0 }, |
| { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 }, |
| { X86::MINPDrr, X86::MINPDrm, 16 }, |
| { X86::MINPDrr_Int, X86::MINPDrm_Int, 16 }, |
| { X86::MINPSrr, X86::MINPSrm, 16 }, |
| { X86::MINPSrr_Int, X86::MINPSrm_Int, 16 }, |
| { X86::MINSDrr, X86::MINSDrm, 0 }, |
| { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 }, |
| { X86::MINSSrr, X86::MINSSrm, 0 }, |
| { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 }, |
| { X86::MULPDrr, X86::MULPDrm, 16 }, |
| { X86::MULPSrr, X86::MULPSrm, 16 }, |
| { X86::MULSDrr, X86::MULSDrm, 0 }, |
| { X86::MULSSrr, X86::MULSSrm, 0 }, |
| { X86::OR16rr, X86::OR16rm, 0 }, |
| { X86::OR32rr, X86::OR32rm, 0 }, |
| { X86::OR64rr, X86::OR64rm, 0 }, |
| { X86::OR8rr, X86::OR8rm, 0 }, |
| { X86::ORPDrr, X86::ORPDrm, 16 }, |
| { X86::ORPSrr, X86::ORPSrm, 16 }, |
| { X86::PACKSSDWrr, X86::PACKSSDWrm, 16 }, |
| { X86::PACKSSWBrr, X86::PACKSSWBrm, 16 }, |
| { X86::PACKUSWBrr, X86::PACKUSWBrm, 16 }, |
| { X86::PADDBrr, X86::PADDBrm, 16 }, |
| { X86::PADDDrr, X86::PADDDrm, 16 }, |
| { X86::PADDQrr, X86::PADDQrm, 16 }, |
| { X86::PADDSBrr, X86::PADDSBrm, 16 }, |
| { X86::PADDSWrr, X86::PADDSWrm, 16 }, |
| { X86::PADDWrr, X86::PADDWrm, 16 }, |
| { X86::PANDNrr, X86::PANDNrm, 16 }, |
| { X86::PANDrr, X86::PANDrm, 16 }, |
| { X86::PAVGBrr, X86::PAVGBrm, 16 }, |
| { X86::PAVGWrr, X86::PAVGWrm, 16 }, |
| { X86::PCMPEQBrr, X86::PCMPEQBrm, 16 }, |
| { X86::PCMPEQDrr, X86::PCMPEQDrm, 16 }, |
| { X86::PCMPEQWrr, X86::PCMPEQWrm, 16 }, |
| { X86::PCMPGTBrr, X86::PCMPGTBrm, 16 }, |
| { X86::PCMPGTDrr, X86::PCMPGTDrm, 16 }, |
| { X86::PCMPGTWrr, X86::PCMPGTWrm, 16 }, |
| { X86::PINSRWrri, X86::PINSRWrmi, 16 }, |
| { X86::PMADDWDrr, X86::PMADDWDrm, 16 }, |
| { X86::PMAXSWrr, X86::PMAXSWrm, 16 }, |
| { X86::PMAXUBrr, X86::PMAXUBrm, 16 }, |
| { X86::PMINSWrr, X86::PMINSWrm, 16 }, |
| { X86::PMINUBrr, X86::PMINUBrm, 16 }, |
| { X86::PMULDQrr, X86::PMULDQrm, 16 }, |
| { X86::PMULHUWrr, X86::PMULHUWrm, 16 }, |
| { X86::PMULHWrr, X86::PMULHWrm, 16 }, |
| { X86::PMULLDrr, X86::PMULLDrm, 16 }, |
| { X86::PMULLWrr, X86::PMULLWrm, 16 }, |
| { X86::PMULUDQrr, X86::PMULUDQrm, 16 }, |
| { X86::PORrr, X86::PORrm, 16 }, |
| { X86::PSADBWrr, X86::PSADBWrm, 16 }, |
| { X86::PSLLDrr, X86::PSLLDrm, 16 }, |
| { X86::PSLLQrr, X86::PSLLQrm, 16 }, |
| { X86::PSLLWrr, X86::PSLLWrm, 16 }, |
| { X86::PSRADrr, X86::PSRADrm, 16 }, |
| { X86::PSRAWrr, X86::PSRAWrm, 16 }, |
| { X86::PSRLDrr, X86::PSRLDrm, 16 }, |
| { X86::PSRLQrr, X86::PSRLQrm, 16 }, |
| { X86::PSRLWrr, X86::PSRLWrm, 16 }, |
| { X86::PSUBBrr, X86::PSUBBrm, 16 }, |
| { X86::PSUBDrr, X86::PSUBDrm, 16 }, |
| { X86::PSUBSBrr, X86::PSUBSBrm, 16 }, |
| { X86::PSUBSWrr, X86::PSUBSWrm, 16 }, |
| { X86::PSUBWrr, X86::PSUBWrm, 16 }, |
| { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, 16 }, |
| { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, 16 }, |
| { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, 16 }, |
| { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, 16 }, |
| { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, 16 }, |
| { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, 16 }, |
| { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, 16 }, |
| { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, 16 }, |
| { X86::PXORrr, X86::PXORrm, 16 }, |
| { X86::SBB32rr, X86::SBB32rm, 0 }, |
| { X86::SBB64rr, X86::SBB64rm, 0 }, |
| { X86::SHUFPDrri, X86::SHUFPDrmi, 16 }, |
| { X86::SHUFPSrri, X86::SHUFPSrmi, 16 }, |
| { X86::SUB16rr, X86::SUB16rm, 0 }, |
| { X86::SUB32rr, X86::SUB32rm, 0 }, |
| { X86::SUB64rr, X86::SUB64rm, 0 }, |
| { X86::SUB8rr, X86::SUB8rm, 0 }, |
| { X86::SUBPDrr, X86::SUBPDrm, 16 }, |
| { X86::SUBPSrr, X86::SUBPSrm, 16 }, |
| { X86::SUBSDrr, X86::SUBSDrm, 0 }, |
| { X86::SUBSSrr, X86::SUBSSrm, 0 }, |
| // FIXME: TEST*rr -> swapped operand of TEST*mr. |
| { X86::UNPCKHPDrr, X86::UNPCKHPDrm, 16 }, |
| { X86::UNPCKHPSrr, X86::UNPCKHPSrm, 16 }, |
| { X86::UNPCKLPDrr, X86::UNPCKLPDrm, 16 }, |
| { X86::UNPCKLPSrr, X86::UNPCKLPSrm, 16 }, |
| { X86::XOR16rr, X86::XOR16rm, 0 }, |
| { X86::XOR32rr, X86::XOR32rm, 0 }, |
| { X86::XOR64rr, X86::XOR64rm, 0 }, |
| { X86::XOR8rr, X86::XOR8rm, 0 }, |
| { X86::XORPDrr, X86::XORPDrm, 16 }, |
| { X86::XORPSrr, X86::XORPSrm, 16 } |
| }; |
| |
| for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) { |
| unsigned RegOp = OpTbl2[i][0]; |
| unsigned MemOp = OpTbl2[i][1] & ~TB_FLAGS; |
| unsigned Align = OpTbl2[i][2]; |
| |
| assert(!RegOp2MemOpTable2.count(RegOp) && "Duplicate entry!"); |
| RegOp2MemOpTable2[RegOp] = std::make_pair(MemOp, Align); |
| |
| // If this is not a reversible operation (because there is a many->one) |
| // mapping, don't insert the reverse of the operation into MemOp2RegOpTable. |
| if (OpTbl2[i][1] & TB_NOT_REVERSABLE) |
| continue; |
| |
| // Index 2, folded load |
| unsigned AuxInfo = 2 | (1 << 4); |
| assert(!MemOp2RegOpTable.count(MemOp) && |
| "Duplicated entries in unfolding maps?"); |
| MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo); |
| } |
| } |
| |
| bool |
| X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, |
| unsigned &SrcReg, unsigned &DstReg, |
| unsigned &SubIdx) const { |
| switch (MI.getOpcode()) { |
| default: break; |
| case X86::MOVSX16rr8: |
| case X86::MOVZX16rr8: |
| case X86::MOVSX32rr8: |
| case X86::MOVZX32rr8: |
| case X86::MOVSX64rr8: |
| case X86::MOVZX64rr8: |
| if (!TM.getSubtarget<X86Subtarget>().is64Bit()) |
| // It's not always legal to reference the low 8-bit of the larger |
| // register in 32-bit mode. |
| return false; |
| case X86::MOVSX32rr16: |
| case X86::MOVZX32rr16: |
| case X86::MOVSX64rr16: |
| case X86::MOVZX64rr16: |
| case X86::MOVSX64rr32: |
| case X86::MOVZX64rr32: { |
| if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) |
| // Be conservative. |
| return false; |
| SrcReg = MI.getOperand(1).getReg(); |
| DstReg = MI.getOperand(0).getReg(); |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable(0); |
| break; |
| case X86::MOVSX16rr8: |
| case X86::MOVZX16rr8: |
| case X86::MOVSX32rr8: |
| case X86::MOVZX32rr8: |
| case X86::MOVSX64rr8: |
| case X86::MOVZX64rr8: |
| SubIdx = X86::sub_8bit; |
| break; |
| case X86::MOVSX32rr16: |
| case X86::MOVZX32rr16: |
| case X86::MOVSX64rr16: |
| case X86::MOVZX64rr16: |
| SubIdx = X86::sub_16bit; |
| break; |
| case X86::MOVSX64rr32: |
| case X86::MOVZX64rr32: |
| SubIdx = X86::sub_32bit; |
| break; |
| } |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// isFrameOperand - Return true and the FrameIndex if the specified |
| /// operand and follow operands form a reference to the stack frame. |
| bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op, |
| int &FrameIndex) const { |
| if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() && |
| MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() && |
| MI->getOperand(Op+1).getImm() == 1 && |
| MI->getOperand(Op+2).getReg() == 0 && |
| MI->getOperand(Op+3).getImm() == 0) { |
| FrameIndex = MI->getOperand(Op).getIndex(); |
| return true; |
| } |
| return false; |
| } |
| |
| static bool isFrameLoadOpcode(int Opcode) { |
| switch (Opcode) { |
| default: break; |
| case X86::MOV8rm: |
| case X86::MOV16rm: |
| case X86::MOV32rm: |
| case X86::MOV64rm: |
| case X86::LD_Fp64m: |
| case X86::MOVSSrm: |
| case X86::MOVSDrm: |
| case X86::MOVAPSrm: |
| case X86::MOVAPDrm: |
| case X86::MOVDQArm: |
| case X86::MMX_MOVD64rm: |
| case X86::MMX_MOVQ64rm: |
| return true; |
| break; |
| } |
| return false; |
| } |
| |
| static bool isFrameStoreOpcode(int Opcode) { |
| switch (Opcode) { |
| default: break; |
| case X86::MOV8mr: |
| case X86::MOV16mr: |
| case X86::MOV32mr: |
| case X86::MOV64mr: |
| case X86::ST_FpP64m: |
| case X86::MOVSSmr: |
| case X86::MOVSDmr: |
| case X86::MOVAPSmr: |
| case X86::MOVAPDmr: |
| case X86::MOVDQAmr: |
| case X86::MMX_MOVD64mr: |
| case X86::MMX_MOVQ64mr: |
| case X86::MMX_MOVNTQmr: |
| return true; |
| } |
| return false; |
| } |
| |
| unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI, |
| int &FrameIndex) const { |
| if (isFrameLoadOpcode(MI->getOpcode())) |
| if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) |
| return MI->getOperand(0).getReg(); |
| return 0; |
| } |
| |
| unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, |
| int &FrameIndex) const { |
| if (isFrameLoadOpcode(MI->getOpcode())) { |
| unsigned Reg; |
| if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) |
| return Reg; |
| // Check for post-frame index elimination operations |
| const MachineMemOperand *Dummy; |
| return hasLoadFromStackSlot(MI, Dummy, FrameIndex); |
| } |
| return 0; |
| } |
| |
| bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, |
| const MachineMemOperand *&MMO, |
| int &FrameIndex) const { |
| for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), |
| oe = MI->memoperands_end(); |
| o != oe; |
| ++o) { |
| if ((*o)->isLoad() && (*o)->getValue()) |
| if (const FixedStackPseudoSourceValue *Value = |
| dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { |
| FrameIndex = Value->getFrameIndex(); |
| MMO = *o; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI, |
| int &FrameIndex) const { |
| if (isFrameStoreOpcode(MI->getOpcode())) |
| if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 && |
| isFrameOperand(MI, 0, FrameIndex)) |
| return MI->getOperand(X86::AddrNumOperands).getReg(); |
| return 0; |
| } |
| |
| unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, |
| int &FrameIndex) const { |
| if (isFrameStoreOpcode(MI->getOpcode())) { |
| unsigned Reg; |
| if ((Reg = isStoreToStackSlot(MI, FrameIndex))) |
| return Reg; |
| // Check for post-frame index elimination operations |
| const MachineMemOperand *Dummy; |
| return hasStoreToStackSlot(MI, Dummy, FrameIndex); |
| } |
| return 0; |
| } |
| |
| bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI, |
| const MachineMemOperand *&MMO, |
| int &FrameIndex) const { |
| for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), |
| oe = MI->memoperands_end(); |
| o != oe; |
| ++o) { |
| if ((*o)->isStore() && (*o)->getValue()) |
| if (const FixedStackPseudoSourceValue *Value = |
| dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { |
| FrameIndex = Value->getFrameIndex(); |
| MMO = *o; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// regIsPICBase - Return true if register is PIC base (i.e.g defined by |
| /// X86::MOVPC32r. |
| static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { |
| bool isPICBase = false; |
| for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), |
| E = MRI.def_end(); I != E; ++I) { |
| MachineInstr *DefMI = I.getOperand().getParent(); |
| if (DefMI->getOpcode() != X86::MOVPC32r) |
| return false; |
| assert(!isPICBase && "More than one PIC base?"); |
| isPICBase = true; |
| } |
| return isPICBase; |
| } |
| |
| bool |
| X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, |
| AliasAnalysis *AA) const { |
| switch (MI->getOpcode()) { |
| default: break; |
| case X86::MOV8rm: |
| case X86::MOV16rm: |
| case X86::MOV32rm: |
| case X86::MOV64rm: |
| case X86::LD_Fp64m: |
| case X86::MOVSSrm: |
| case X86::MOVSDrm: |
| case X86::MOVAPSrm: |
| case X86::MOVUPSrm: |
| case X86::MOVAPDrm: |
| case X86::MOVDQArm: |
| case X86::MMX_MOVD64rm: |
| case X86::MMX_MOVQ64rm: |
| case X86::FsMOVAPSrm: |
| case X86::FsMOVAPDrm: { |
| // Loads from constant pools are trivially rematerializable. |
| if (MI->getOperand(1).isReg() && |
| MI->getOperand(2).isImm() && |
| MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && |
| MI->isInvariantLoad(AA)) { |
| unsigned BaseReg = MI->getOperand(1).getReg(); |
| if (BaseReg == 0 || BaseReg == X86::RIP) |
| return true; |
| // Allow re-materialization of PIC load. |
| if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal()) |
| return false; |
| const MachineFunction &MF = *MI->getParent()->getParent(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| bool isPICBase = false; |
| for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), |
| E = MRI.def_end(); I != E; ++I) { |
| MachineInstr *DefMI = I.getOperand().getParent(); |
| if (DefMI->getOpcode() != X86::MOVPC32r) |
| return false; |
| assert(!isPICBase && "More than one PIC base?"); |
| isPICBase = true; |
| } |
| return isPICBase; |
| } |
| return false; |
| } |
| |
| case X86::LEA32r: |
| case X86::LEA64r: { |
| if (MI->getOperand(2).isImm() && |
| MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && |
| !MI->getOperand(4).isReg()) { |
| // lea fi#, lea GV, etc. are all rematerializable. |
| if (!MI->getOperand(1).isReg()) |
| return true; |
| unsigned BaseReg = MI->getOperand(1).getReg(); |
| if (BaseReg == 0) |
| return true; |
| // Allow re-materialization of lea PICBase + x. |
| const MachineFunction &MF = *MI->getParent()->getParent(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| return regIsPICBase(BaseReg, MRI); |
| } |
| return false; |
| } |
| } |
| |
| // All other instructions marked M_REMATERIALIZABLE are always trivially |
| // rematerializable. |
| return true; |
| } |
| |
| /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that |
| /// would clobber the EFLAGS condition register. Note the result may be |
| /// conservative. If it cannot definitely determine the safety after visiting |
| /// a few instructions in each direction it assumes it's not safe. |
| static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I) { |
| MachineBasicBlock::iterator E = MBB.end(); |
| |
| // It's always safe to clobber EFLAGS at the end of a block. |
| if (I == E) |
| return true; |
| |
| // For compile time consideration, if we are not able to determine the |
| // safety after visiting 4 instructions in each direction, we will assume |
| // it's not safe. |
| MachineBasicBlock::iterator Iter = I; |
| for (unsigned i = 0; i < 4; ++i) { |
| bool SeenDef = false; |
| for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { |
| MachineOperand &MO = Iter->getOperand(j); |
| if (!MO.isReg()) |
| continue; |
| if (MO.getReg() == X86::EFLAGS) { |
| if (MO.isUse()) |
| return false; |
| SeenDef = true; |
| } |
| } |
| |
| if (SeenDef) |
| // This instruction defines EFLAGS, no need to look any further. |
| return true; |
| ++Iter; |
| // Skip over DBG_VALUE. |
| while (Iter != E && Iter->isDebugValue()) |
| ++Iter; |
| |
| // If we make it to the end of the block, it's safe to clobber EFLAGS. |
| if (Iter == E) |
| return true; |
| } |
| |
| MachineBasicBlock::iterator B = MBB.begin(); |
| Iter = I; |
| for (unsigned i = 0; i < 4; ++i) { |
| // If we make it to the beginning of the block, it's safe to clobber |
| // EFLAGS iff EFLAGS is not live-in. |
| if (Iter == B) |
| return !MBB.isLiveIn(X86::EFLAGS); |
| |
| --Iter; |
| // Skip over DBG_VALUE. |
| while (Iter != B && Iter->isDebugValue()) |
| --Iter; |
| |
| bool SawKill = false; |
| for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { |
| MachineOperand &MO = Iter->getOperand(j); |
| if (MO.isReg() && MO.getReg() == X86::EFLAGS) { |
| if (MO.isDef()) return MO.isDead(); |
| if (MO.isKill()) SawKill = true; |
| } |
| } |
| |
| if (SawKill) |
| // This instruction kills EFLAGS and doesn't redefine it, so |
| // there's no need to look further. |
| return true; |
| } |
| |
| // Conservative answer. |
| return false; |
| } |
| |
| void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| unsigned DestReg, unsigned SubIdx, |
| const MachineInstr *Orig, |
| const TargetRegisterInfo &TRI) const { |
| DebugLoc DL = Orig->getDebugLoc(); |
| |
| // MOV32r0 etc. are implemented with xor which clobbers condition code. |
| // Re-materialize them as movri instructions to avoid side effects. |
| bool Clone = true; |
| unsigned Opc = Orig->getOpcode(); |
| switch (Opc) { |
| default: break; |
| case X86::MOV8r0: |
| case X86::MOV16r0: |
| case X86::MOV32r0: |
| case X86::MOV64r0: { |
| if (!isSafeToClobberEFLAGS(MBB, I)) { |
| switch (Opc) { |
| default: break; |
| case X86::MOV8r0: Opc = X86::MOV8ri; break; |
| case X86::MOV16r0: Opc = X86::MOV16ri; break; |
| case X86::MOV32r0: Opc = X86::MOV32ri; break; |
| case X86::MOV64r0: Opc = X86::MOV64ri64i32; break; |
| } |
| Clone = false; |
| } |
| break; |
| } |
| } |
| |
| if (Clone) { |
| MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); |
| MBB.insert(I, MI); |
| } else { |
| BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0); |
| } |
| |
| MachineInstr *NewMI = prior(I); |
| NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); |
| } |
| |
| /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that |
| /// is not marked dead. |
| static bool hasLiveCondCodeDef(MachineInstr *MI) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isDef() && |
| MO.getReg() == X86::EFLAGS && !MO.isDead()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when |
| /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting |
| /// to a 32-bit superregister and then truncating back down to a 16-bit |
| /// subregister. |
| MachineInstr * |
| X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, |
| MachineFunction::iterator &MFI, |
| MachineBasicBlock::iterator &MBBI, |
| LiveVariables *LV) const { |
| MachineInstr *MI = MBBI; |
| unsigned Dest = MI->getOperand(0).getReg(); |
| unsigned Src = MI->getOperand(1).getReg(); |
| bool isDead = MI->getOperand(0).isDead(); |
| bool isKill = MI->getOperand(1).isKill(); |
| |
| unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() |
| ? X86::LEA64_32r : X86::LEA32r; |
| MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); |
| unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); |
| unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); |
| |
| // Build and insert into an implicit UNDEF value. This is OK because |
| // well be shifting and then extracting the lower 16-bits. |
| // This has the potential to cause partial register stall. e.g. |
| // movw (%rbp,%rcx,2), %dx |
| // leal -65(%rdx), %esi |
| // But testing has shown this *does* help performance in 64-bit mode (at |
| // least on modern x86 machines). |
| BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); |
| MachineInstr *InsMI = |
| BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) |
| .addReg(leaInReg, RegState::Define, X86::sub_16bit) |
| .addReg(Src, getKillRegState(isKill)); |
| |
| MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(), |
| get(Opc), leaOutReg); |
| switch (MIOpc) { |
| default: |
| llvm_unreachable(0); |
| break; |
| case X86::SHL16ri: { |
| unsigned ShAmt = MI->getOperand(2).getImm(); |
| MIB.addReg(0).addImm(1 << ShAmt) |
| .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); |
| break; |
| } |
| case X86::INC16r: |
| case X86::INC64_16r: |
| addRegOffset(MIB, leaInReg, true, 1); |
| break; |
| case X86::DEC16r: |
| case X86::DEC64_16r: |
| addRegOffset(MIB, leaInReg, true, -1); |
| break; |
| case X86::ADD16ri: |
| case X86::ADD16ri8: |
| case X86::ADD16ri_DB: |
| case X86::ADD16ri8_DB: |
| addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm()); |
| break; |
| case X86::ADD16rr: |
| case X86::ADD16rr_DB: { |
| unsigned Src2 = MI->getOperand(2).getReg(); |
| bool isKill2 = MI->getOperand(2).isKill(); |
| unsigned leaInReg2 = 0; |
| MachineInstr *InsMI2 = 0; |
| if (Src == Src2) { |
| // ADD16rr %reg1028<kill>, %reg1028 |
| // just a single insert_subreg. |
| addRegReg(MIB, leaInReg, true, leaInReg, false); |
| } else { |
| leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); |
| // Build and insert into an implicit UNDEF value. This is OK because |
| // well be shifting and then extracting the lower 16-bits. |
| BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2); |
| InsMI2 = |
| BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY)) |
| .addReg(leaInReg2, RegState::Define, X86::sub_16bit) |
| .addReg(Src2, getKillRegState(isKill2)); |
| addRegReg(MIB, leaInReg, true, leaInReg2, true); |
| } |
| if (LV && isKill2 && InsMI2) |
| LV->replaceKillInstruction(Src2, MI, InsMI2); |
| break; |
| } |
| } |
| |
| MachineInstr *NewMI = MIB; |
| MachineInstr *ExtMI = |
| BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) |
| .addReg(Dest, RegState::Define | getDeadRegState(isDead)) |
| .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); |
| |
| if (LV) { |
| // Update live variables |
| LV->getVarInfo(leaInReg).Kills.push_back(NewMI); |
| LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); |
| if (isKill) |
| LV->replaceKillInstruction(Src, MI, InsMI); |
| if (isDead) |
| LV->replaceKillInstruction(Dest, MI, ExtMI); |
| } |
| |
| return ExtMI; |
| } |
| |
| /// convertToThreeAddress - This method must be implemented by targets that |
| /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target |
| /// may be able to convert a two-address instruction into a true |
| /// three-address instruction on demand. This allows the X86 target (for |
| /// example) to convert ADD and SHL instructions into LEA instructions if they |
| /// would require register copies due to two-addressness. |
| /// |
| /// This method returns a null pointer if the transformation cannot be |
| /// performed, otherwise it returns the new instruction. |
| /// |
| MachineInstr * |
| X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, |
| MachineBasicBlock::iterator &MBBI, |
| LiveVariables *LV) const { |
| MachineInstr *MI = MBBI; |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| // All instructions input are two-addr instructions. Get the known operands. |
| unsigned Dest = MI->getOperand(0).getReg(); |
| unsigned Src = MI->getOperand(1).getReg(); |
| bool isDead = MI->getOperand(0).isDead(); |
| bool isKill = MI->getOperand(1).isKill(); |
| |
| MachineInstr *NewMI = NULL; |
| // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When |
| // we have better subtarget support, enable the 16-bit LEA generation here. |
| // 16-bit LEA is also slow on Core2. |
| bool DisableLEA16 = true; |
| bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit(); |
| |
| unsigned MIOpc = MI->getOpcode(); |
| switch (MIOpc) { |
| case X86::SHUFPSrri: { |
| assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!"); |
| if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0; |
| |
| unsigned B = MI->getOperand(1).getReg(); |
| unsigned C = MI->getOperand(2).getReg(); |
| if (B != C) return 0; |
| unsigned A = MI->getOperand(0).getReg(); |
| unsigned M = MI->getOperand(3).getImm(); |
| NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri)) |
| .addReg(A, RegState::Define | getDeadRegState(isDead)) |
| .addReg(B, getKillRegState(isKill)).addImm(M); |
| break; |
| } |
| case X86::SHL64ri: { |
| assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); |
| // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses |
| // the flags produced by a shift yet, so this is safe. |
| unsigned ShAmt = MI->getOperand(2).getImm(); |
| if (ShAmt == 0 || ShAmt >= 4) return 0; |
| |
| // LEA can't handle RSP. |
| if (TargetRegisterInfo::isVirtualRegister(Src) && |
| !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass)) |
| return 0; |
| |
| NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) |
| .addReg(Dest, RegState::Define | getDeadRegState(isDead)) |
| .addReg(0).addImm(1 << ShAmt) |
| .addReg(Src, getKillRegState(isKill)) |
| .addImm(0).addReg(0); |
| break; |
| } |
| case X86::SHL32ri: { |
| assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); |
| // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses |
| // the flags produced by a shift yet, so this is safe. |
| unsigned ShAmt = MI->getOperand(2).getImm(); |
| if (ShAmt == 0 || ShAmt >= 4) return 0; |
| |
| // LEA can't handle ESP. |
| if (TargetRegisterInfo::isVirtualRegister(Src) && |
| !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass)) |
| return 0; |
| |
| unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; |
| NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc)) |
| .addReg(Dest, RegState::Define | getDeadRegState(isDead)) |
| .addReg(0).addImm(1 << ShAmt) |
| .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0); |
| break; |
| } |
| case X86::SHL16ri: { |
| assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); |
| // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses |
| // the flags produced by a shift yet, so this is safe. |
| unsigned ShAmt = MI->getOperand(2).getImm(); |
| if (ShAmt == 0 || ShAmt >= 4) return 0; |
| |
| if (DisableLEA16) |
| return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; |
| NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) |
| .addReg(Dest, RegState::Define | getDeadRegState(isDead)) |
| .addReg(0).addImm(1 << ShAmt) |
| .addReg(Src, getKillRegState(isKill)) |
| .addImm(0).addReg(0); |
| break; |
| } |
| default: { |
| // The following opcodes also sets the condition code register(s). Only |
| // convert them to equivalent lea if the condition code register def's |
| // are dead! |
| if (hasLiveCondCodeDef(MI)) |
| return 0; |
| |
| switch (MIOpc) { |
| default: return 0; |
| case X86::INC64r: |
| case X86::INC32r: |
| case X86::INC64_32r: { |
| assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); |
| unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r |
| : (is64Bit ? X86::LEA64_32r : X86::LEA32r); |
| |
| // LEA can't handle RSP. |
| if (TargetRegisterInfo::isVirtualRegister(Src) && |
| !MF.getRegInfo().constrainRegClass(Src, |
| MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass : |
| X86::GR32_NOSPRegisterClass)) |
| return 0; |
| |
| NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) |
| .addReg(Dest, RegState::Define | |
| getDeadRegState(isDead)), |
| Src, isKill, 1); |
| break; |
| } |
| case X86::INC16r: |
| case X86::INC64_16r: |
| if (DisableLEA16) |
| return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; |
| assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); |
| NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) |
| .addReg(Dest, RegState::Define | |
| getDeadRegState(isDead)), |
| Src, isKill, 1); |
| break; |
| case X86::DEC64r: |
| case X86::DEC32r: |
| case X86::DEC64_32r: { |
| assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); |
| unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r |
| : (is64Bit ? X86::LEA64_32r : X86::LEA32r); |
| // LEA can't handle RSP. |
| if (TargetRegisterInfo::isVirtualRegister(Src) && |
| !MF.getRegInfo().constrainRegClass(Src, |
| MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass : |
| X86::GR32_NOSPRegisterClass)) |
| return 0; |
| |
| NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) |
| .addReg(Dest, RegState::Define | |
| getDeadRegState(isDead)), |
| Src, isKill, -1); |
| break; |
| } |
| case X86::DEC16r: |
| case X86::DEC64_16r: |
| if (DisableLEA16) |
| return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; |
| assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); |
| NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) |
| .addReg(Dest, RegState::Define | |
| getDeadRegState(isDead)), |
| Src, isKill, -1); |
| break; |
| case X86::ADD64rr: |
| case X86::ADD64rr_DB: |
| case X86::ADD32rr: |
| case X86::ADD32rr_DB: { |
| assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); |
| unsigned Opc; |
| TargetRegisterClass *RC; |
| if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) { |
| Opc = X86::LEA64r; |
| RC = X86::GR64_NOSPRegisterClass; |
| } else { |
| Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; |
| RC = X86::GR32_NOSPRegisterClass; |
| } |
| |
| |
| unsigned Src2 = MI->getOperand(2).getReg(); |
| bool isKill2 = MI->getOperand(2).isKill(); |
| |
| // LEA can't handle RSP. |
| if (TargetRegisterInfo::isVirtualRegister(Src2) && |
| !MF.getRegInfo().constrainRegClass(Src2, RC)) |
| return 0; |
| |
| NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc)) |
| .addReg(Dest, RegState::Define | |
| getDeadRegState(isDead)), |
| Src, isKill, Src2, isKill2); |
| if (LV && isKill2) |
| LV->replaceKillInstruction(Src2, MI, NewMI); |
| break; |
| } |
| case X86::ADD16rr: |
| case X86::ADD16rr_DB: { |
| if (DisableLEA16) |
| return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; |
| assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); |
| unsigned Src2 = MI->getOperand(2).getReg(); |
| bool isKill2 = MI->getOperand(2).isKill(); |
| NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) |
| .addReg(Dest, RegState::Define | |
| getDeadRegState(isDead)), |
| Src, isKill, Src2, isKill2); |
| if (LV && isKill2) |
| LV->replaceKillInstruction(Src2, MI, NewMI); |
| break; |
| } |
| case X86::ADD64ri32: |
| case X86::ADD64ri8: |
| case X86::ADD64ri32_DB: |
| case X86::ADD64ri8_DB: |
| assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); |
| NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) |
| .addReg(Dest, RegState::Define | |
| getDeadRegState(isDead)), |
| Src, isKill, MI->getOperand(2).getImm()); |
| break; |
| case X86::ADD32ri: |
| case X86::ADD32ri8: |
| case X86::ADD32ri_DB: |
| case X86::ADD32ri8_DB: { |
| assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); |
| unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; |
| NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) |
| .addReg(Dest, RegState::Define | |
| getDeadRegState(isDead)), |
| Src, isKill, MI->getOperand(2).getImm()); |
| break; |
| } |
| case X86::ADD16ri: |
| case X86::ADD16ri8: |
| case X86::ADD16ri_DB: |
| case X86::ADD16ri8_DB: |
| if (DisableLEA16) |
| return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; |
| assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); |
| NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) |
| .addReg(Dest, RegState::Define | |
| getDeadRegState(isDead)), |
| Src, isKill, MI->getOperand(2).getImm()); |
| break; |
| } |
| } |
| } |
| |
| if (!NewMI) return 0; |
| |
| if (LV) { // Update live variables |
| if (isKill) |
| LV->replaceKillInstruction(Src, MI, NewMI); |
| if (isDead) |
| LV->replaceKillInstruction(Dest, MI, NewMI); |
| } |
| |
| MFI->insert(MBBI, NewMI); // Insert the new inst |
| return NewMI; |
| } |
| |
| /// commuteInstruction - We have a few instructions that must be hacked on to |
| /// commute them. |
| /// |
| MachineInstr * |
| X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { |
| switch (MI->getOpcode()) { |
| case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) |
| case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) |
| case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) |
| case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) |
| case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) |
| case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) |
| unsigned Opc; |
| unsigned Size; |
| switch (MI->getOpcode()) { |
| default: llvm_unreachable("Unreachable!"); |
| case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; |
| case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; |
| case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; |
| case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; |
| case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; |
| case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; |
| } |
| unsigned Amt = MI->getOperand(3).getImm(); |
| if (NewMI) { |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| MI = MF.CloneMachineInstr(MI); |
| NewMI = false; |
| } |
| MI->setDesc(get(Opc)); |
| MI->getOperand(3).setImm(Size-Amt); |
| return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); |
| } |
| case X86::CMOVB16rr: |
| case X86::CMOVB32rr: |
| case X86::CMOVB64rr: |
| case X86::CMOVAE16rr: |
| case X86::CMOVAE32rr: |
| case X86::CMOVAE64rr: |
| case X86::CMOVE16rr: |
| case X86::CMOVE32rr: |
| case X86::CMOVE64rr: |
| case X86::CMOVNE16rr: |
| case X86::CMOVNE32rr: |
| case X86::CMOVNE64rr: |
| case X86::CMOVBE16rr: |
| case X86::CMOVBE32rr: |
| case X86::CMOVBE64rr: |
| case X86::CMOVA16rr: |
| case X86::CMOVA32rr: |
| case X86::CMOVA64rr: |
| case X86::CMOVL16rr: |
| case X86::CMOVL32rr: |
| case X86::CMOVL64rr: |
| case X86::CMOVGE16rr: |
| case X86::CMOVGE32rr: |
| case X86::CMOVGE64rr: |
| case X86::CMOVLE16rr: |
| case X86::CMOVLE32rr: |
| case X86::CMOVLE64rr: |
| case X86::CMOVG16rr: |
| case X86::CMOVG32rr: |
| case X86::CMOVG64rr: |
| case X86::CMOVS16rr: |
| case X86::CMOVS32rr: |
| case X86::CMOVS64rr: |
| case X86::CMOVNS16rr: |
| case X86::CMOVNS32rr: |
| case X86::CMOVNS64rr: |
| case X86::CMOVP16rr: |
| case X86::CMOVP32rr: |
| case X86::CMOVP64rr: |
| case X86::CMOVNP16rr: |
| case X86::CMOVNP32rr: |
| case X86::CMOVNP64rr: |
| case X86::CMOVO16rr: |
| case X86::CMOVO32rr: |
| case X86::CMOVO64rr: |
| case X86::CMOVNO16rr: |
| case X86::CMOVNO32rr: |
| case X86::CMOVNO64rr: { |
| unsigned Opc = 0; |
| switch (MI->getOpcode()) { |
| default: break; |
| case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break; |
| case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break; |
| case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break; |
| case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; |
| case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; |
| case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; |
| case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break; |
| case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break; |
| case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break; |
| case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; |
| case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; |
| case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; |
| case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; |
| case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; |
| case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; |
| case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break; |
| case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break; |
| case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break; |
| case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break; |
| case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break; |
| case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break; |
| case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; |
| case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; |
| case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; |
| case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; |
| case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; |
| case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; |
| case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break; |
| case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break; |
| case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break; |
| case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break; |
| case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break; |
| case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break; |
| case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; |
| case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; |
| case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; |
| case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break; |
| case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break; |
| case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break; |
| case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; |
| case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; |
| case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; |
| case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break; |
| case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break; |
| case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break; |
| case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; |
| case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; |
| case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; |
| } |
| if (NewMI) { |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| MI = MF.CloneMachineInstr(MI); |
| NewMI = false; |
| } |
| MI->setDesc(get(Opc)); |
| // Fallthrough intended. |
| } |
| default: |
| return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); |
| } |
| } |
| |
| static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) { |
| switch (BrOpc) { |
| default: return X86::COND_INVALID; |
| case X86::JE_4: return X86::COND_E; |
| case X86::JNE_4: return X86::COND_NE; |
| case X86::JL_4: return X86::COND_L; |
| case X86::JLE_4: return X86::COND_LE; |
| case X86::JG_4: return X86::COND_G; |
| case X86::JGE_4: return X86::COND_GE; |
| case X86::JB_4: return X86::COND_B; |
| case X86::JBE_4: return X86::COND_BE; |
| case X86::JA_4: return X86::COND_A; |
| case X86::JAE_4: return X86::COND_AE; |
| case X86::JS_4: return X86::COND_S; |
| case X86::JNS_4: return X86::COND_NS; |
| case X86::JP_4: return X86::COND_P; |
| case X86::JNP_4: return X86::COND_NP; |
| case X86::JO_4: return X86::COND_O; |
| case X86::JNO_4: return X86::COND_NO; |
| } |
| } |
| |
| unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { |
| switch (CC) { |
| default: llvm_unreachable("Illegal condition code!"); |
| case X86::COND_E: return X86::JE_4; |
| case X86::COND_NE: return X86::JNE_4; |
| case X86::COND_L: return X86::JL_4; |
| case X86::COND_LE: return X86::JLE_4; |
| case X86::COND_G: return X86::JG_4; |
| case X86::COND_GE: return X86::JGE_4; |
| case X86::COND_B: return X86::JB_4; |
| case X86::COND_BE: return X86::JBE_4; |
| case X86::COND_A: return X86::JA_4; |
| case X86::COND_AE: return X86::JAE_4; |
| case X86::COND_S: return X86::JS_4; |
| case X86::COND_NS: return X86::JNS_4; |
| case X86::COND_P: return X86::JP_4; |
| case X86::COND_NP: return X86::JNP_4; |
| case X86::COND_O: return X86::JO_4; |
| case X86::COND_NO: return X86::JNO_4; |
| } |
| } |
| |
| /// GetOppositeBranchCondition - Return the inverse of the specified condition, |
| /// e.g. turning COND_E to COND_NE. |
| X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { |
| switch (CC) { |
| default: llvm_unreachable("Illegal condition code!"); |
| case X86::COND_E: return X86::COND_NE; |
| case X86::COND_NE: return X86::COND_E; |
| case X86::COND_L: return X86::COND_GE; |
| case X86::COND_LE: return X86::COND_G; |
| case X86::COND_G: return X86::COND_LE; |
| case X86::COND_GE: return X86::COND_L; |
| case X86::COND_B: return X86::COND_AE; |
| case X86::COND_BE: return X86::COND_A; |
| case X86::COND_A: return X86::COND_BE; |
| case X86::COND_AE: return X86::COND_B; |
| case X86::COND_S: return X86::COND_NS; |
| case X86::COND_NS: return X86::COND_S; |
| case X86::COND_P: return X86::COND_NP; |
| case X86::COND_NP: return X86::COND_P; |
| case X86::COND_O: return X86::COND_NO; |
| case X86::COND_NO: return X86::COND_O; |
| } |
| } |
| |
| bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { |
| const TargetInstrDesc &TID = MI->getDesc(); |
| if (!TID.isTerminator()) return false; |
| |
| // Conditional branch is a special case. |
| if (TID.isBranch() && !TID.isBarrier()) |
| return true; |
| if (!TID.isPredicable()) |
| return true; |
| return !isPredicated(MI); |
| } |
| |
| bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| bool AllowModify) const { |
| // Start from the bottom of the block and work up, examining the |
| // terminator instructions. |
| MachineBasicBlock::iterator I = MBB.end(); |
| MachineBasicBlock::iterator UnCondBrIter = MBB.end(); |
| while (I != MBB.begin()) { |
| --I; |
| if (I->isDebugValue()) |
| continue; |
| |
| // Working from the bottom, when we see a non-terminator instruction, we're |
| // done. |
| if (!isUnpredicatedTerminator(I)) |
| break; |
| |
| // A terminator that isn't a branch can't easily be handled by this |
| // analysis. |
| if (!I->getDesc().isBranch()) |
| return true; |
| |
| // Handle unconditional branches. |
| if (I->getOpcode() == X86::JMP_4) { |
| UnCondBrIter = I; |
| |
| if (!AllowModify) { |
| TBB = I->getOperand(0).getMBB(); |
| continue; |
| } |
| |
| // If the block has any instructions after a JMP, delete them. |
| while (llvm::next(I) != MBB.end()) |
| llvm::next(I)->eraseFromParent(); |
| |
| Cond.clear(); |
| FBB = 0; |
| |
| // Delete the JMP if it's equivalent to a fall-through. |
| if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { |
| TBB = 0; |
| I->eraseFromParent(); |
| I = MBB.end(); |
| UnCondBrIter = MBB.end(); |
| continue; |
| } |
| |
| // TBB is used to indicate the unconditional destination. |
| TBB = I->getOperand(0).getMBB(); |
| continue; |
| } |
| |
| // Handle conditional branches. |
| X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode()); |
| if (BranchCode == X86::COND_INVALID) |
| return true; // Can't handle indirect branch. |
| |
| // Working from the bottom, handle the first conditional branch. |
| if (Cond.empty()) { |
| MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); |
| if (AllowModify && UnCondBrIter != MBB.end() && |
| MBB.isLayoutSuccessor(TargetBB)) { |
| // If we can modify the code and it ends in something like: |
| // |
| // jCC L1 |
| // jmp L2 |
| // L1: |
| // ... |
| // L2: |
| // |
| // Then we can change this to: |
| // |
| // jnCC L2 |
| // L1: |
| // ... |
| // L2: |
| // |
| // Which is a bit more efficient. |
| // We conditionally jump to the fall-through block. |
| BranchCode = GetOppositeBranchCondition(BranchCode); |
| unsigned JNCC = GetCondBranchFromCond(BranchCode); |
| MachineBasicBlock::iterator OldInst = I; |
| |
| BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) |
| .addMBB(UnCondBrIter->getOperand(0).getMBB()); |
| BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4)) |
| .addMBB(TargetBB); |
| |
| OldInst->eraseFromParent(); |
| UnCondBrIter->eraseFromParent(); |
| |
| // Restart the analysis. |
| UnCondBrIter = MBB.end(); |
| I = MBB.end(); |
| continue; |
| } |
| |
| FBB = TBB; |
| TBB = I->getOperand(0).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(BranchCode)); |
| continue; |
| } |
| |
| // Handle subsequent conditional branches. Only handle the case where all |
| // conditional branches branch to the same destination and their condition |
| // opcodes fit one of the special multi-branch idioms. |
| assert(Cond.size() == 1); |
| assert(TBB); |
| |
| // Only handle the case where all conditional branches branch to the same |
| // destination. |
| if (TBB != I->getOperand(0).getMBB()) |
| return true; |
| |
| // If the conditions are the same, we can leave them alone. |
| X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); |
| if (OldBranchCode == BranchCode) |
| continue; |
| |
| // If they differ, see if they fit one of the known patterns. Theoretically, |
| // we could handle more patterns here, but we shouldn't expect to see them |
| // if instruction selection has done a reasonable job. |
| if ((OldBranchCode == X86::COND_NP && |
| BranchCode == X86::COND_E) || |
| (OldBranchCode == X86::COND_E && |
| BranchCode == X86::COND_NP)) |
| BranchCode = X86::COND_NP_OR_E; |
| else if ((OldBranchCode == X86::COND_P && |
| BranchCode == X86::COND_NE) || |
| (OldBranchCode == X86::COND_NE && |
| BranchCode == X86::COND_P)) |
| BranchCode = X86::COND_NE_OR_P; |
| else |
| return true; |
| |
| // Update the MachineOperand. |
| Cond[0].setImm(BranchCode); |
| } |
| |
| return false; |
| } |
| |
| unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { |
| MachineBasicBlock::iterator I = MBB.end(); |
| unsigned Count = 0; |
| |
| while (I != MBB.begin()) { |
| --I; |
| if (I->isDebugValue()) |
| continue; |
| if (I->getOpcode() != X86::JMP_4 && |
| GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) |
| break; |
| // Remove the branch. |
| I->eraseFromParent(); |
| I = MBB.end(); |
| ++Count; |
| } |
| |
| return Count; |
| } |
| |
| unsigned |
| X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| const SmallVectorImpl<MachineOperand> &Cond, |
| DebugLoc DL) const { |
| // Shouldn't be a fall through. |
| assert(TBB && "InsertBranch must not be told to insert a fallthrough"); |
| assert((Cond.size() == 1 || Cond.size() == 0) && |
| "X86 branch conditions have one component!"); |
| |
| if (Cond.empty()) { |
| // Unconditional branch? |
| assert(!FBB && "Unconditional branch with multiple successors!"); |
| BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB); |
| return 1; |
| } |
| |
| // Conditional branch. |
| unsigned Count = 0; |
| X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); |
| switch (CC) { |
| case X86::COND_NP_OR_E: |
| // Synthesize NP_OR_E with two branches. |
| BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB); |
| ++Count; |
| BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB); |
| ++Count; |
| break; |
| case X86::COND_NE_OR_P: |
| // Synthesize NE_OR_P with two branches. |
| BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB); |
| ++Count; |
| BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB); |
| ++Count; |
| break; |
| default: { |
| unsigned Opc = GetCondBranchFromCond(CC); |
| BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); |
| ++Count; |
| } |
| } |
| if (FBB) { |
| // Two-way Conditional branch. Insert the second branch. |
| BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB); |
| ++Count; |
| } |
| return Count; |
| } |
| |
| /// isHReg - Test if the given register is a physical h register. |
| static bool isHReg(unsigned Reg) { |
| return X86::GR8_ABCD_HRegClass.contains(Reg); |
| } |
| |
| // Try and copy between VR128/VR64 and GR64 registers. |
| static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg) { |
| // SrcReg(VR128) -> DestReg(GR64) |
| // SrcReg(VR64) -> DestReg(GR64) |
| // SrcReg(GR64) -> DestReg(VR128) |
| // SrcReg(GR64) -> DestReg(VR64) |
| |
| if (X86::GR64RegClass.contains(DestReg)) { |
| if (X86::VR128RegClass.contains(SrcReg)) { |
| // Copy from a VR128 register to a GR64 register. |
| return X86::MOVPQIto64rr; |
| } else if (X86::VR64RegClass.contains(SrcReg)) { |
| // Copy from a VR64 register to a GR64 register. |
| return X86::MOVSDto64rr; |
| } |
| } else if (X86::GR64RegClass.contains(SrcReg)) { |
| // Copy from a GR64 register to a VR128 register. |
| if (X86::VR128RegClass.contains(DestReg)) |
| return X86::MOV64toPQIrr; |
| // Copy from a GR64 register to a VR64 register. |
| else if (X86::VR64RegClass.contains(DestReg)) |
| return X86::MOV64toSDrr; |
| } |
| |
| return 0; |
| } |
| |
| void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, DebugLoc DL, |
| unsigned DestReg, unsigned SrcReg, |
| bool KillSrc) const { |
| // First deal with the normal symmetric copies. |
| unsigned Opc = 0; |
| if (X86::GR64RegClass.contains(DestReg, SrcReg)) |
| Opc = X86::MOV64rr; |
| else if (X86::GR32RegClass.contains(DestReg, SrcReg)) |
| Opc = X86::MOV32rr; |
| else if (X86::GR16RegClass.contains(DestReg, SrcReg)) |
| Opc = X86::MOV16rr; |
| else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { |
| // Copying to or from a physical H register on x86-64 requires a NOREX |
| // move. Otherwise use a normal move. |
| if ((isHReg(DestReg) || isHReg(SrcReg)) && |
| TM.getSubtarget<X86Subtarget>().is64Bit()) |
| Opc = X86::MOV8rr_NOREX; |
| else |
| Opc = X86::MOV8rr; |
| } else if (X86::VR128RegClass.contains(DestReg, SrcReg)) |
| Opc = X86::MOVAPSrr; |
| else if (X86::VR64RegClass.contains(DestReg, SrcReg)) |
| Opc = X86::MMX_MOVQ64rr; |
| else |
| Opc = CopyToFromAsymmetricReg(DestReg, SrcReg); |
| |
| if (Opc) { |
| BuildMI(MBB, MI, DL, get(Opc), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| return; |
| } |
| |
| // Moving EFLAGS to / from another register requires a push and a pop. |
| if (SrcReg == X86::EFLAGS) { |
| if (X86::GR64RegClass.contains(DestReg)) { |
| BuildMI(MBB, MI, DL, get(X86::PUSHF64)); |
| BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg); |
| return; |
| } else if (X86::GR32RegClass.contains(DestReg)) { |
| BuildMI(MBB, MI, DL, get(X86::PUSHF32)); |
| BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg); |
| return; |
| } |
| } |
| if (DestReg == X86::EFLAGS) { |
| if (X86::GR64RegClass.contains(SrcReg)) { |
| BuildMI(MBB, MI, DL, get(X86::PUSH64r)) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| BuildMI(MBB, MI, DL, get(X86::POPF64)); |
| return; |
| } else if (X86::GR32RegClass.contains(SrcReg)) { |
| BuildMI(MBB, MI, DL, get(X86::PUSH32r)) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| BuildMI(MBB, MI, DL, get(X86::POPF32)); |
| return; |
| } |
| } |
| |
| DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) |
| << " to " << RI.getName(DestReg) << '\n'); |
| llvm_unreachable("Cannot emit physreg copy instruction"); |
| } |
| |
| static unsigned getLoadStoreRegOpcode(unsigned Reg, |
| const TargetRegisterClass *RC, |
| bool isStackAligned, |
| const TargetMachine &TM, |
| bool load) { |
| switch (RC->getSize()) { |
| default: |
| llvm_unreachable("Unknown spill size"); |
| case 1: |
| assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); |
| if (TM.getSubtarget<X86Subtarget>().is64Bit()) |
| // Copying to or from a physical H register on x86-64 requires a NOREX |
| // move. Otherwise use a normal move. |
| if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) |
| return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; |
| return load ? X86::MOV8rm : X86::MOV8mr; |
| case 2: |
| assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); |
| return load ? X86::MOV16rm : X86::MOV16mr; |
| case 4: |
| if (X86::GR32RegClass.hasSubClassEq(RC)) |
| return load ? X86::MOV32rm : X86::MOV32mr; |
| if (X86::FR32RegClass.hasSubClassEq(RC)) |
| return load ? X86::MOVSSrm : X86::MOVSSmr; |
| if (X86::RFP32RegClass.hasSubClassEq(RC)) |
| return load ? X86::LD_Fp32m : X86::ST_Fp32m; |
| llvm_unreachable("Unknown 4-byte regclass"); |
| case 8: |
| if (X86::GR64RegClass.hasSubClassEq(RC)) |
| return load ? X86::MOV64rm : X86::MOV64mr; |
| if (X86::FR64RegClass.hasSubClassEq(RC)) |
| return load ? X86::MOVSDrm : X86::MOVSDmr; |
| if (X86::VR64RegClass.hasSubClassEq(RC)) |
| return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; |
| if (X86::RFP64RegClass.hasSubClassEq(RC)) |
| return load ? X86::LD_Fp64m : X86::ST_Fp64m; |
| llvm_unreachable("Unknown 8-byte regclass"); |
| case 10: |
| assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); |
| return load ? X86::LD_Fp80m : X86::ST_FpP80m; |
| case 16: |
| assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass"); |
| // If stack is realigned we can use aligned stores. |
| if (isStackAligned) |
| return load ? X86::MOVAPSrm : X86::MOVAPSmr; |
| else |
| return load ? X86::MOVUPSrm : X86::MOVUPSmr; |
| } |
| } |
| |
| static unsigned getStoreRegOpcode(unsigned SrcReg, |
| const TargetRegisterClass *RC, |
| bool isStackAligned, |
| TargetMachine &TM) { |
| return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false); |
| } |
| |
| |
| static unsigned getLoadRegOpcode(unsigned DestReg, |
| const TargetRegisterClass *RC, |
| bool isStackAligned, |
| const TargetMachine &TM) { |
| return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true); |
| } |
| |
| void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned SrcReg, bool isKill, int FrameIdx, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| const MachineFunction &MF = *MBB.getParent(); |
| assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() && |
| "Stack slot too small for store"); |
| bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF); |
| unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); |
| DebugLoc DL = MBB.findDebugLoc(MI); |
| addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) |
| .addReg(SrcReg, getKillRegState(isKill)); |
| } |
| |
| void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, |
| bool isKill, |
| SmallVectorImpl<MachineOperand> &Addr, |
| const TargetRegisterClass *RC, |
| MachineInstr::mmo_iterator MMOBegin, |
| MachineInstr::mmo_iterator MMOEnd, |
| SmallVectorImpl<MachineInstr*> &NewMIs) const { |
| bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16; |
| unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); |
| DebugLoc DL; |
| MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); |
| for (unsigned i = 0, e = Addr.size(); i != e; ++i) |
| MIB.addOperand(Addr[i]); |
| MIB.addReg(SrcReg, getKillRegState(isKill)); |
| (*MIB).setMemRefs(MMOBegin, MMOEnd); |
| NewMIs.push_back(MIB); |
| } |
| |
| |
| void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned DestReg, int FrameIdx, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| const MachineFunction &MF = *MBB.getParent(); |
| bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF); |
| unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); |
| DebugLoc DL = MBB.findDebugLoc(MI); |
| addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); |
| } |
| |
| void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, |
| SmallVectorImpl<MachineOperand> &Addr, |
| const TargetRegisterClass *RC, |
| MachineInstr::mmo_iterator MMOBegin, |
| MachineInstr::mmo_iterator MMOEnd, |
| SmallVectorImpl<MachineInstr*> &NewMIs) const { |
| bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16; |
| unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); |
| DebugLoc DL; |
| MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); |
| for (unsigned i = 0, e = Addr.size(); i != e; ++i) |
| MIB.addOperand(Addr[i]); |
| (*MIB).setMemRefs(MMOBegin, MMOEnd); |
| NewMIs.push_back(MIB); |
| } |
| |
| MachineInstr* |
| X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, |
| int FrameIx, uint64_t Offset, |
| const MDNode *MDPtr, |
| DebugLoc DL) const { |
| X86AddressMode AM; |
| AM.BaseType = X86AddressMode::FrameIndexBase; |
| AM.Base.FrameIndex = FrameIx; |
| MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE)); |
| addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr); |
| return &*MIB; |
| } |
| |
| static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, |
| const SmallVectorImpl<MachineOperand> &MOs, |
| MachineInstr *MI, |
| const TargetInstrInfo &TII) { |
| // Create the base instruction with the memory operand as the first part. |
| MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), |
| MI->getDebugLoc(), true); |
| MachineInstrBuilder MIB(NewMI); |
| unsigned NumAddrOps = MOs.size(); |
| for (unsigned i = 0; i != NumAddrOps; ++i) |
| MIB.addOperand(MOs[i]); |
| if (NumAddrOps < 4) // FrameIndex only |
| addOffset(MIB, 0); |
| |
| // Loop over the rest of the ri operands, converting them over. |
| unsigned NumOps = MI->getDesc().getNumOperands()-2; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| MachineOperand &MO = MI->getOperand(i+2); |
| MIB.addOperand(MO); |
| } |
| for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| MIB.addOperand(MO); |
| } |
| return MIB; |
| } |
| |
| static MachineInstr *FuseInst(MachineFunction &MF, |
| unsigned Opcode, unsigned OpNo, |
| const SmallVectorImpl<MachineOperand> &MOs, |
| MachineInstr *MI, const TargetInstrInfo &TII) { |
| MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), |
| MI->getDebugLoc(), true); |
| MachineInstrBuilder MIB(NewMI); |
| |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (i == OpNo) { |
| assert(MO.isReg() && "Expected to fold into reg operand!"); |
| unsigned NumAddrOps = MOs.size(); |
| for (unsigned i = 0; i != NumAddrOps; ++i) |
| MIB.addOperand(MOs[i]); |
| if (NumAddrOps < 4) // FrameIndex only |
| addOffset(MIB, 0); |
| } else { |
| MIB.addOperand(MO); |
| } |
| } |
| return MIB; |
| } |
| |
| static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, |
| const SmallVectorImpl<MachineOperand> &MOs, |
| MachineInstr *MI) { |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode)); |
| |
| unsigned NumAddrOps = MOs.size(); |
| for (unsigned i = 0; i != NumAddrOps; ++i) |
| MIB.addOperand(MOs[i]); |
| if (NumAddrOps < 4) // FrameIndex only |
| addOffset(MIB, 0); |
| return MIB.addImm(0); |
| } |
| |
| MachineInstr* |
| X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, |
| MachineInstr *MI, unsigned i, |
| const SmallVectorImpl<MachineOperand> &MOs, |
| unsigned Size, unsigned Align) const { |
| const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; |
| bool isTwoAddrFold = false; |
| unsigned NumOps = MI->getDesc().getNumOperands(); |
| bool isTwoAddr = NumOps > 1 && |
| MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1; |
| |
| // FIXME: AsmPrinter doesn't know how to handle |
| // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. |
| if (MI->getOpcode() == X86::ADD32ri && |
| MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) |
| return NULL; |
| |
| MachineInstr *NewMI = NULL; |
| // Folding a memory location into the two-address part of a two-address |
| // instruction is different than folding it other places. It requires |
| // replacing the *two* registers with the memory location. |
| if (isTwoAddr && NumOps >= 2 && i < 2 && |
| MI->getOperand(0).isReg() && |
| MI->getOperand(1).isReg() && |
| MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { |
| OpcodeTablePtr = &RegOp2MemOpTable2Addr; |
| isTwoAddrFold = true; |
| } else if (i == 0) { // If operand 0 |
| if (MI->getOpcode() == X86::MOV64r0) |
| NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI); |
| else if (MI->getOpcode() == X86::MOV32r0) |
| NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI); |
| else if (MI->getOpcode() == X86::MOV16r0) |
| NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI); |
| else if (MI->getOpcode() == X86::MOV8r0) |
| NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI); |
| if (NewMI) |
| return NewMI; |
| |
| OpcodeTablePtr = &RegOp2MemOpTable0; |
| } else if (i == 1) { |
| OpcodeTablePtr = &RegOp2MemOpTable1; |
| } else if (i == 2) { |
| OpcodeTablePtr = &RegOp2MemOpTable2; |
| } |
| |
| // If table selected... |
| if (OpcodeTablePtr) { |
| // Find the Opcode to fuse |
| DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = |
| OpcodeTablePtr->find(MI->getOpcode()); |
| if (I != OpcodeTablePtr->end()) { |
| unsigned Opcode = I->second.first; |
| unsigned MinAlign = I->second.second; |
| if (Align < MinAlign) |
| return NULL; |
| bool NarrowToMOV32rm = false; |
| if (Size) { |
| unsigned RCSize = MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize(); |
| if (Size < RCSize) { |
| // Check if it's safe to fold the load. If the size of the object is |
| // narrower than the load width, then it's not. |
| if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) |
| return NULL; |
| // If this is a 64-bit load, but the spill slot is 32, then we can do |
| // a 32-bit load which is implicitly zero-extended. This likely is due |
| // to liveintervalanalysis remat'ing a load from stack slot. |
| if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg()) |
| return NULL; |
| Opcode = X86::MOV32rm; |
| NarrowToMOV32rm = true; |
| } |
| } |
| |
| if (isTwoAddrFold) |
| NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this); |
| else |
| NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this); |
| |
| if (NarrowToMOV32rm) { |
| // If this is the special case where we use a MOV32rm to load a 32-bit |
| // value and zero-extend the top bits. Change the destination register |
| // to a 32-bit one. |
| unsigned DstReg = NewMI->getOperand(0).getReg(); |
| if (TargetRegisterInfo::isPhysicalRegister(DstReg)) |
| NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, |
| X86::sub_32bit)); |
| else |
| NewMI->getOperand(0).setSubReg(X86::sub_32bit); |
| } |
| return NewMI; |
| } |
| } |
| |
| // No fusion |
| if (PrintFailedFusing && !MI->isCopy()) |
| dbgs() << "We failed to fuse operand " << i << " in " << *MI; |
| return NULL; |
| } |
| |
| |
| MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, |
| MachineInstr *MI, |
| const SmallVectorImpl<unsigned> &Ops, |
| int FrameIndex) const { |
| // Check switch flag |
| if (NoFusing) return NULL; |
| |
| if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize)) |
| switch (MI->getOpcode()) { |
| case X86::CVTSD2SSrr: |
| case X86::Int_CVTSD2SSrr: |
| case X86::CVTSS2SDrr: |
| case X86::Int_CVTSS2SDrr: |
| case X86::RCPSSr: |
| case X86::RCPSSr_Int: |
| case X86::ROUNDSDr: |
| case X86::ROUNDSSr: |
| case X86::RSQRTSSr: |
| case X86::RSQRTSSr_Int: |
| case X86::SQRTSSr: |
| case X86::SQRTSSr_Int: |
| return 0; |
| } |
| |
| const MachineFrameInfo *MFI = MF.getFrameInfo(); |
| unsigned Size = MFI->getObjectSize(FrameIndex); |
| unsigned Alignment = MFI->getObjectAlignment(FrameIndex); |
| if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { |
| unsigned NewOpc = 0; |
| unsigned RCSize = 0; |
| switch (MI->getOpcode()) { |
| default: return NULL; |
| case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; |
| case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; |
| case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; |
| case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; |
| } |
| // Check if it's safe to fold the load. If the size of the object is |
| // narrower than the load width, then it's not. |
| if (Size < RCSize) |
| return NULL; |
| // Change to CMPXXri r, 0 first. |
| MI->setDesc(get(NewOpc)); |
| MI->getOperand(1).ChangeToImmediate(0); |
| } else if (Ops.size() != 1) |
| return NULL; |
| |
| SmallVector<MachineOperand,4> MOs; |
| MOs.push_back(MachineOperand::CreateFI(FrameIndex)); |
| return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment); |
| } |
| |
| MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, |
| MachineInstr *MI, |
| const SmallVectorImpl<unsigned> &Ops, |
| MachineInstr *LoadMI) const { |
| // Check switch flag |
| if (NoFusing) return NULL; |
| |
| if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize)) |
| switch (MI->getOpcode()) { |
| case X86::CVTSD2SSrr: |
| case X86::Int_CVTSD2SSrr: |
| case X86::CVTSS2SDrr: |
| case X86::Int_CVTSS2SDrr: |
| case X86::RCPSSr: |
| case X86::RCPSSr_Int: |
| case X86::ROUNDSDr: |
| case X86::ROUNDSSr: |
| case X86::RSQRTSSr: |
| case X86::RSQRTSSr_Int: |
| case X86::SQRTSSr: |
| case X86::SQRTSSr_Int: |
| return 0; |
| } |
| |
| // Determine the alignment of the load. |
| unsigned Alignment = 0; |
| if (LoadMI->hasOneMemOperand()) |
| Alignment = (*LoadMI->memoperands_begin())->getAlignment(); |
| else |
| switch (LoadMI->getOpcode()) { |
| case X86::AVX_SET0PSY: |
| case X86::AVX_SET0PDY: |
| Alignment = 32; |
| break; |
| case X86::V_SET0PS: |
| case X86::V_SET0PD: |
| case X86::V_SET0PI: |
| case X86::V_SETALLONES: |
| case X86::AVX_SET0PS: |
| case X86::AVX_SET0PD: |
| case X86::AVX_SET0PI: |
| Alignment = 16; |
| break; |
| case X86::FsFLD0SD: |
| case X86::VFsFLD0SD: |
| Alignment = 8; |
| break; |
| case X86::FsFLD0SS: |
| case X86::VFsFLD0SS: |
| Alignment = 4; |
| break; |
| default: |
| return 0; |
| } |
| if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { |
| unsigned NewOpc = 0; |
| switch (MI->getOpcode()) { |
| default: return NULL; |
| case X86::TEST8rr: NewOpc = X86::CMP8ri; break; |
| case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; |
| case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; |
| case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; |
| } |
| // Change to CMPXXri r, 0 first. |
| MI->setDesc(get(NewOpc)); |
| MI->getOperand(1).ChangeToImmediate(0); |
| } else if (Ops.size() != 1) |
| return NULL; |
| |
| // Make sure the subregisters match. |
| // Otherwise we risk changing the size of the load. |
| if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg()) |
| return NULL; |
| |
| SmallVector<MachineOperand,X86::AddrNumOperands> MOs; |
| switch (LoadMI->getOpcode()) { |
| case X86::V_SET0PS: |
| case X86::V_SET0PD: |
| case X86::V_SET0PI: |
| case X86::V_SETALLONES: |
| case X86::AVX_SET0PS: |
| case X86::AVX_SET0PD: |
| case X86::AVX_SET0PI: |
| case X86::AVX_SET0PSY: |
| case X86::AVX_SET0PDY: |
| case X86::FsFLD0SD: |
| case X86::FsFLD0SS: { |
| // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure. |
| // Create a constant-pool entry and operands to load from it. |
| |
| // Medium and large mode can't fold loads this way. |
| if (TM.getCodeModel() != CodeModel::Small && |
| TM.getCodeModel() != CodeModel::Kernel) |
| return NULL; |
| |
| // x86-32 PIC requires a PIC base register for constant pools. |
| unsigned PICBase = 0; |
| if (TM.getRelocationModel() == Reloc::PIC_) { |
| if (TM.getSubtarget<X86Subtarget>().is64Bit()) |
| PICBase = X86::RIP; |
| else |
| // FIXME: PICBase = getGlobalBaseReg(&MF); |
| // This doesn't work for several reasons. |
| // 1. GlobalBaseReg may have been spilled. |
| // 2. It may not be live at MI. |
| return NULL; |
| } |
| |
| // Create a constant-pool entry. |
| MachineConstantPool &MCP = *MF.getConstantPool(); |
| const Type *Ty; |
| unsigned Opc = LoadMI->getOpcode(); |
| if (Opc == X86::FsFLD0SS || Opc == X86::VFsFLD0SS) |
| Ty = Type::getFloatTy(MF.getFunction()->getContext()); |
| else if (Opc == X86::FsFLD0SD || Opc == X86::VFsFLD0SD) |
| Ty = Type::getDoubleTy(MF.getFunction()->getContext()); |
| else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY) |
| Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8); |
| else |
| Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4); |
| const Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ? |
| Constant::getAllOnesValue(Ty) : |
| Constant::getNullValue(Ty); |
| unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); |
| |
| // Create operands to load from the constant pool entry. |
| MOs.push_back(MachineOperand::CreateReg(PICBase, false)); |
| MOs.push_back(MachineOperand::CreateImm(1)); |
| MOs.push_back(MachineOperand::CreateReg(0, false)); |
| MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); |
| MOs.push_back(MachineOperand::CreateReg(0, false)); |
| break; |
| } |
| default: { |
| // Folding a normal load. Just copy the load's address operands. |
| unsigned NumOps = LoadMI->getDesc().getNumOperands(); |
| for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) |
| MOs.push_back(LoadMI->getOperand(i)); |
| break; |
| } |
| } |
| return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment); |
| } |
| |
| |
| bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI, |
| const SmallVectorImpl<unsigned> &Ops) const { |
| // Check switch flag |
| if (NoFusing) return 0; |
| |
| if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { |
| switch (MI->getOpcode()) { |
| default: return false; |
| case X86::TEST8rr: |
| case X86::TEST16rr: |
| case X86::TEST32rr: |
| case X86::TEST64rr: |
| return true; |
| case X86::ADD32ri: |
| // FIXME: AsmPrinter doesn't know how to handle |
| // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. |
| if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) |
| return false; |
| break; |
| } |
| } |
| |
| if (Ops.size() != 1) |
| return false; |
| |
| unsigned OpNum = Ops[0]; |
| unsigned Opc = MI->getOpcode(); |
| unsigned NumOps = MI->getDesc().getNumOperands(); |
| bool isTwoAddr = NumOps > 1 && |
| MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1; |
| |
| // Folding a memory location into the two-address part of a two-address |
| // instruction is different than folding it other places. It requires |
| // replacing the *two* registers with the memory location. |
| const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; |
| if (isTwoAddr && NumOps >= 2 && OpNum < 2) { |
| OpcodeTablePtr = &RegOp2MemOpTable2Addr; |
| } else if (OpNum == 0) { // If operand 0 |
| switch (Opc) { |
| case X86::MOV8r0: |
| case X86::MOV16r0: |
| case X86::MOV32r0: |
| case X86::MOV64r0: return true; |
| default: break; |
| } |
| OpcodeTablePtr = &RegOp2MemOpTable0; |
| } else if (OpNum == 1) { |
| OpcodeTablePtr = &RegOp2MemOpTable1; |
| } else if (OpNum == 2) { |
| OpcodeTablePtr = &RegOp2MemOpTable2; |
| } |
| |
| if (OpcodeTablePtr && OpcodeTablePtr->count(Opc)) |
| return true; |
| return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops); |
| } |
| |
| bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, |
| unsigned Reg, bool UnfoldLoad, bool UnfoldStore, |
| SmallVectorImpl<MachineInstr*> &NewMIs) const { |
| DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = |
| MemOp2RegOpTable.find(MI->getOpcode()); |
| if (I == MemOp2RegOpTable.end()) |
| return false; |
| unsigned Opc = I->second.first; |
| unsigned Index = I->second.second & 0xf; |
| bool FoldedLoad = I->second.second & (1 << 4); |
| bool FoldedStore = I->second.second & (1 << 5); |
| if (UnfoldLoad && !FoldedLoad) |
| return false; |
| UnfoldLoad &= FoldedLoad; |
| if (UnfoldStore && !FoldedStore) |
| return false; |
| UnfoldStore &= FoldedStore; |
| |
| const TargetInstrDesc &TID = get(Opc); |
| const TargetOperandInfo &TOI = TID.OpInfo[Index]; |
| const TargetRegisterClass *RC = TOI.getRegClass(&RI); |
| if (!MI->hasOneMemOperand() && |
| RC == &X86::VR128RegClass && |
| !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) |
| // Without memoperands, loadRegFromAddr and storeRegToStackSlot will |
| // conservatively assume the address is unaligned. That's bad for |
| // performance. |
| return false; |
| SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; |
| SmallVector<MachineOperand,2> BeforeOps; |
| SmallVector<MachineOperand,2> AfterOps; |
| SmallVector<MachineOperand,4> ImpOps; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &Op = MI->getOperand(i); |
| if (i >= Index && i < Index + X86::AddrNumOperands) |
| AddrOps.push_back(Op); |
| else if (Op.isReg() && Op.isImplicit()) |
| ImpOps.push_back(Op); |
| else if (i < Index) |
| BeforeOps.push_back(Op); |
| else if (i > Index) |
| AfterOps.push_back(Op); |
| } |
| |
| // Emit the load instruction. |
| if (UnfoldLoad) { |
| std::pair<MachineInstr::mmo_iterator, |
| MachineInstr::mmo_iterator> MMOs = |
| MF.extractLoadMemRefs(MI->memoperands_begin(), |
| MI->memoperands_end()); |
| loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); |
| if (UnfoldStore) { |
| // Address operands cannot be marked isKill. |
| for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { |
| MachineOperand &MO = NewMIs[0]->getOperand(i); |
| if (MO.isReg()) |
| MO.setIsKill(false); |
| } |
| } |
| } |
| |
| // Emit the data processing instruction. |
| MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true); |
| MachineInstrBuilder MIB(DataMI); |
| |
| if (FoldedStore) |
| MIB.addReg(Reg, RegState::Define); |
| for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i) |
| MIB.addOperand(BeforeOps[i]); |
| if (FoldedLoad) |
| MIB.addReg(Reg); |
| for (unsigned i = 0, e = AfterOps.size(); i != e; ++i) |
| MIB.addOperand(AfterOps[i]); |
| for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) { |
| MachineOperand &MO = ImpOps[i]; |
| MIB.addReg(MO.getReg(), |
| getDefRegState(MO.isDef()) | |
| RegState::Implicit | |
| getKillRegState(MO.isKill()) | |
| getDeadRegState(MO.isDead()) | |
| getUndefRegState(MO.isUndef())); |
| } |
| // Change CMP32ri r, 0 back to TEST32rr r, r, etc. |
| unsigned NewOpc = 0; |
| switch (DataMI->getOpcode()) { |
| default: break; |
| case X86::CMP64ri32: |
| case X86::CMP64ri8: |
| case X86::CMP32ri: |
| case X86::CMP32ri8: |
| case X86::CMP16ri: |
| case X86::CMP16ri8: |
| case X86::CMP8ri: { |
| MachineOperand &MO0 = DataMI->getOperand(0); |
| MachineOperand &MO1 = DataMI->getOperand(1); |
| if (MO1.getImm() == 0) { |
| switch (DataMI->getOpcode()) { |
| default: break; |
| case X86::CMP64ri8: |
| case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; |
| case X86::CMP32ri8: |
| case X86::CMP32ri: NewOpc = X86::TEST32rr; break; |
| case X86::CMP16ri8: |
| case X86::CMP16ri: NewOpc = X86::TEST16rr; break; |
| case X86::CMP8ri: NewOpc = X86::TEST8rr; break; |
| } |
| DataMI->setDesc(get(NewOpc)); |
| MO1.ChangeToRegister(MO0.getReg(), false); |
| } |
| } |
| } |
| NewMIs.push_back(DataMI); |
| |
| // Emit the store instruction. |
| if (UnfoldStore) { |
| const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI); |
| std::pair<MachineInstr::mmo_iterator, |
| MachineInstr::mmo_iterator> MMOs = |
| MF.extractStoreMemRefs(MI->memoperands_begin(), |
| MI->memoperands_end()); |
| storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs); |
| } |
| |
| return true; |
| } |
| |
| bool |
| X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, |
| SmallVectorImpl<SDNode*> &NewNodes) const { |
| if (!N->isMachineOpcode()) |
| return false; |
| |
| DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = |
| MemOp2RegOpTable.find(N->getMachineOpcode()); |
| if (I == MemOp2RegOpTable.end()) |
| return false; |
| unsigned Opc = I->second.first; |
| unsigned Index = I->second.second & 0xf; |
| bool FoldedLoad = I->second.second & (1 << 4); |
| bool FoldedStore = I->second.second & (1 << 5); |
| const TargetInstrDesc &TID = get(Opc); |
| const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI); |
| unsigned NumDefs = TID.NumDefs; |
| std::vector<SDValue> AddrOps; |
| std::vector<SDValue> BeforeOps; |
| std::vector<SDValue> AfterOps; |
| DebugLoc dl = N->getDebugLoc(); |
| unsigned NumOps = N->getNumOperands(); |
| for (unsigned i = 0; i != NumOps-1; ++i) { |
| SDValue Op = N->getOperand(i); |
| if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) |
| AddrOps.push_back(Op); |
| else if (i < Index-NumDefs) |
| BeforeOps.push_back(Op); |
| else if (i > Index-NumDefs) |
| AfterOps.push_back(Op); |
| } |
| SDValue Chain = N->getOperand(NumOps-1); |
| AddrOps.push_back(Chain); |
| |
| // Emit the load instruction. |
| SDNode *Load = 0; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| if (FoldedLoad) { |
| EVT VT = *RC->vt_begin(); |
| std::pair<MachineInstr::mmo_iterator, |
| MachineInstr::mmo_iterator> MMOs = |
| MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), |
| cast<MachineSDNode>(N)->memoperands_end()); |
| if (!(*MMOs.first) && |
| RC == &X86::VR128RegClass && |
| !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) |
| // Do not introduce a slow unaligned load. |
| return false; |
| bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16; |
| Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl, |
| VT, MVT::Other, &AddrOps[0], AddrOps.size()); |
| NewNodes.push_back(Load); |
| |
| // Preserve memory reference information. |
| cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); |
| } |
| |
| // Emit the data processing instruction. |
| std::vector<EVT> VTs; |
| const TargetRegisterClass *DstRC = 0; |
| if (TID.getNumDefs() > 0) { |
| DstRC = TID.OpInfo[0].getRegClass(&RI); |
| VTs.push_back(*DstRC->vt_begin()); |
| } |
| for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { |
| EVT VT = N->getValueType(i); |
| if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs()) |
| VTs.push_back(VT); |
| } |
| if (Load) |
| BeforeOps.push_back(SDValue(Load, 0)); |
| std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps)); |
| SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0], |
| BeforeOps.size()); |
| NewNodes.push_back(NewNode); |
| |
| // Emit the store instruction. |
| if (FoldedStore) { |
| AddrOps.pop_back(); |
| AddrOps.push_back(SDValue(NewNode, 0)); |
| AddrOps.push_back(Chain); |
| std::pair<MachineInstr::mmo_iterator, |
| MachineInstr::mmo_iterator> MMOs = |
| MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), |
| cast<MachineSDNode>(N)->memoperands_end()); |
| if (!(*MMOs.first) && |
| RC == &X86::VR128RegClass && |
| !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) |
| // Do not introduce a slow unaligned store. |
| return false; |
| bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16; |
| SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC, |
| isAligned, TM), |
| dl, MVT::Other, |
| &AddrOps[0], AddrOps.size()); |
| NewNodes.push_back(Store); |
| |
| // Preserve memory reference information. |
| cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); |
| } |
| |
| return true; |
| } |
| |
| unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, |
| bool UnfoldLoad, bool UnfoldStore, |
| unsigned *LoadRegIndex) const { |
| DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = |
| MemOp2RegOpTable.find(Opc); |
| if (I == MemOp2RegOpTable.end()) |
| return 0; |
| bool FoldedLoad = I->second.second & (1 << 4); |
| bool FoldedStore = I->second.second & (1 << 5); |
| if (UnfoldLoad && !FoldedLoad) |
| return 0; |
| if (UnfoldStore && !FoldedStore) |
| return 0; |
| if (LoadRegIndex) |
| *LoadRegIndex = I->second.second & 0xf; |
| return I->second.first; |
| } |
| |
| bool |
| X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, |
| int64_t &Offset1, int64_t &Offset2) const { |
| if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) |
| return false; |
| unsigned Opc1 = Load1->getMachineOpcode(); |
| unsigned Opc2 = Load2->getMachineOpcode(); |
| switch (Opc1) { |
| default: return false; |
| case X86::MOV8rm: |
| case X86::MOV16rm: |
| case X86::MOV32rm: |
| case X86::MOV64rm: |
| case X86::LD_Fp32m: |
| case X86::LD_Fp64m: |
| case X86::LD_Fp80m: |
| case X86::MOVSSrm: |
| case X86::MOVSDrm: |
| case X86::MMX_MOVD64rm: |
| case X86::MMX_MOVQ64rm: |
| case X86::FsMOVAPSrm: |
| case X86::FsMOVAPDrm: |
| case X86::MOVAPSrm: |
| case X86::MOVUPSrm: |
| case X86::MOVAPDrm: |
| case X86::MOVDQArm: |
| case X86::MOVDQUrm: |
| break; |
| } |
| switch (Opc2) { |
| default: return false; |
| case X86::MOV8rm: |
| case X86::MOV16rm: |
| case X86::MOV32rm: |
| case X86::MOV64rm: |
| case X86::LD_Fp32m: |
| case X86::LD_Fp64m: |
| case X86::LD_Fp80m: |
| case X86::MOVSSrm: |
| case X86::MOVSDrm: |
| case X86::MMX_MOVD64rm: |
| case X86::MMX_MOVQ64rm: |
| case X86::FsMOVAPSrm: |
| case X86::FsMOVAPDrm: |
| case X86::MOVAPSrm: |
| case X86::MOVUPSrm: |
| case X86::MOVAPDrm: |
| case X86::MOVDQArm: |
| case X86::MOVDQUrm: |
| break; |
| } |
| |
| // Check if chain operands and base addresses match. |
| if (Load1->getOperand(0) != Load2->getOperand(0) || |
| Load1->getOperand(5) != Load2->getOperand(5)) |
| return false; |
| // Segment operands should match as well. |
| if (Load1->getOperand(4) != Load2->getOperand(4)) |
| return false; |
| // Scale should be 1, Index should be Reg0. |
| if (Load1->getOperand(1) == Load2->getOperand(1) && |
| Load1->getOperand(2) == Load2->getOperand(2)) { |
| if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1) |
| return false; |
| |
| // Now let's examine the displacements. |
| if (isa<ConstantSDNode>(Load1->getOperand(3)) && |
| isa<ConstantSDNode>(Load2->getOperand(3))) { |
| Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue(); |
| Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue(); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, |
| int64_t Offset1, int64_t Offset2, |
| unsigned NumLoads) const { |
| assert(Offset2 > Offset1); |
| if ((Offset2 - Offset1) / 8 > 64) |
| return false; |
| |
| unsigned Opc1 = Load1->getMachineOpcode(); |
| unsigned Opc2 = Load2->getMachineOpcode(); |
| if (Opc1 != Opc2) |
| return false; // FIXME: overly conservative? |
| |
| switch (Opc1) { |
| default: break; |
| case X86::LD_Fp32m: |
| case X86::LD_Fp64m: |
| case X86::LD_Fp80m: |
| case X86::MMX_MOVD64rm: |
| case X86::MMX_MOVQ64rm: |
| return false; |
| } |
| |
| EVT VT = Load1->getValueType(0); |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: |
| // XMM registers. In 64-bit mode we can be a bit more aggressive since we |
| // have 16 of them to play with. |
| if (TM.getSubtargetImpl()->is64Bit()) { |
| if (NumLoads >= 3) |
| return false; |
| } else if (NumLoads) { |
| return false; |
| } |
| break; |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::i64: |
| case MVT::f32: |
| case MVT::f64: |
| if (NumLoads) |
| return false; |
| break; |
| } |
| |
| return true; |
| } |
| |
| |
| bool X86InstrInfo:: |
| ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { |
| assert(Cond.size() == 1 && "Invalid X86 branch condition!"); |
| X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); |
| if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E) |
| return true; |
| Cond[0].setImm(GetOppositeBranchCondition(CC)); |
| return false; |
| } |
| |
| bool X86InstrInfo:: |
| isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { |
| // FIXME: Return false for x87 stack register classes for now. We can't |
| // allow any loads of these registers before FpGet_ST0_80. |
| return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass || |
| RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); |
| } |
| |
| |
| /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher) |
| /// register? e.g. r8, xmm8, xmm13, etc. |
| bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) { |
| switch (RegNo) { |
| default: break; |
| case X86::R8: case X86::R9: case X86::R10: case X86::R11: |
| case X86::R12: case X86::R13: case X86::R14: case X86::R15: |
| case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D: |
| case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D: |
| case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W: |
| case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W: |
| case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B: |
| case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B: |
| case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11: |
| case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15: |
| case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11: |
| case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15: |
| case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11: |
| case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15: |
| return true; |
| } |
| return false; |
| } |
| |
| /// getGlobalBaseReg - Return a virtual register initialized with the |
| /// the global base register value. Output instructions required to |
| /// initialize the register in the function entry block, if necessary. |
| /// |
| /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. |
| /// |
| unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { |
| assert(!TM.getSubtarget<X86Subtarget>().is64Bit() && |
| "X86-64 PIC uses RIP relative addressing"); |
| |
| X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); |
| unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); |
| if (GlobalBaseReg != 0) |
| return GlobalBaseReg; |
| |
| // Create the register. The code to initialize it is inserted |
| // later, by the CGBR pass (below). |
| MachineRegisterInfo &RegInfo = MF->getRegInfo(); |
| GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass); |
| X86FI->setGlobalBaseReg(GlobalBaseReg); |
| return GlobalBaseReg; |
| } |
| |
| // These are the replaceable SSE instructions. Some of these have Int variants |
| // that we don't include here. We don't want to replace instructions selected |
| // by intrinsics. |
| static const unsigned ReplaceableInstrs[][3] = { |
| //PackedSingle PackedDouble PackedInt |
| { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, |
| { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, |
| { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, |
| { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, |
| { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, |
| { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, |
| { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, |
| { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, |
| { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, |
| { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, |
| { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, |
| { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, |
| { X86::V_SET0PS, X86::V_SET0PD, X86::V_SET0PI }, |
| { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, |
| { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, |
| // AVX 128-bit support |
| { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, |
| { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, |
| { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, |
| { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, |
| { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, |
| { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, |
| { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, |
| { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, |
| { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, |
| { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, |
| { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, |
| { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, |
| { X86::AVX_SET0PS, X86::AVX_SET0PD, X86::AVX_SET0PI }, |
| { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, |
| { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, |
| }; |
| |
| // FIXME: Some shuffle and unpack instructions have equivalents in different |
| // domains, but they require a bit more work than just switching opcodes. |
| |
| static const unsigned *lookup(unsigned opcode, unsigned domain) { |
| for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i) |
| if (ReplaceableInstrs[i][domain-1] == opcode) |
| return ReplaceableInstrs[i]; |
| return 0; |
| } |
| |
| std::pair<uint16_t, uint16_t> |
| X86InstrInfo::GetSSEDomain(const MachineInstr *MI) const { |
| uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; |
| return std::make_pair(domain, |
| domain && lookup(MI->getOpcode(), domain) ? 0xe : 0); |
| } |
| |
| void X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const { |
| assert(Domain>0 && Domain<4 && "Invalid execution domain"); |
| uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; |
| assert(dom && "Not an SSE instruction"); |
| const unsigned *table = lookup(MI->getOpcode(), dom); |
| assert(table && "Cannot change domain"); |
| MI->setDesc(get(table[Domain-1])); |
| } |
| |
| /// getNoopForMachoTarget - Return the noop instruction to use for a noop. |
| void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { |
| NopInst.setOpcode(X86::NOOP); |
| } |
| |
| bool X86InstrInfo::isHighLatencyDef(int opc) const { |
| switch (opc) { |
| default: return false; |
| case X86::DIVSDrm: |
| case X86::DIVSDrm_Int: |
| case X86::DIVSDrr: |
| case X86::DIVSDrr_Int: |
| case X86::DIVSSrm: |
| case X86::DIVSSrm_Int: |
| case X86::DIVSSrr: |
| case X86::DIVSSrr_Int: |
| case X86::SQRTPDm: |
| case X86::SQRTPDm_Int: |
| case X86::SQRTPDr: |
| case X86::SQRTPDr_Int: |
| case X86::SQRTPSm: |
| case X86::SQRTPSm_Int: |
| case X86::SQRTPSr: |
| case X86::SQRTPSr_Int: |
| case X86::SQRTSDm: |
| case X86::SQRTSDm_Int: |
| case X86::SQRTSDr: |
| case X86::SQRTSDr_Int: |
| case X86::SQRTSSm: |
| case X86::SQRTSSm_Int: |
| case X86::SQRTSSr: |
| case X86::SQRTSSr_Int: |
| return true; |
| } |
| } |
| |
| bool X86InstrInfo:: |
| hasHighOperandLatency(const InstrItineraryData *ItinData, |
| const MachineRegisterInfo *MRI, |
| const MachineInstr *DefMI, unsigned DefIdx, |
| const MachineInstr *UseMI, unsigned UseIdx) const { |
| return isHighLatencyDef(DefMI->getOpcode()); |
| } |
| |
| namespace { |
| /// CGBR - Create Global Base Reg pass. This initializes the PIC |
| /// global base register for x86-32. |
| struct CGBR : public MachineFunctionPass { |
| static char ID; |
| CGBR() : MachineFunctionPass(ID) {} |
| |
| virtual bool runOnMachineFunction(MachineFunction &MF) { |
| const X86TargetMachine *TM = |
| static_cast<const X86TargetMachine *>(&MF.getTarget()); |
| |
| assert(!TM->getSubtarget<X86Subtarget>().is64Bit() && |
| "X86-64 PIC uses RIP relative addressing"); |
| |
| // Only emit a global base reg in PIC mode. |
| if (TM->getRelocationModel() != Reloc::PIC_) |
| return false; |
| |
| X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); |
| |
| // If we didn't need a GlobalBaseReg, don't insert code. |
| if (GlobalBaseReg == 0) |
| return false; |
| |
| // Insert the set of GlobalBaseReg into the first MBB of the function |
| MachineBasicBlock &FirstMBB = MF.front(); |
| MachineBasicBlock::iterator MBBI = FirstMBB.begin(); |
| DebugLoc DL = FirstMBB.findDebugLoc(MBBI); |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| const X86InstrInfo *TII = TM->getInstrInfo(); |
| |
| unsigned PC; |
| if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) |
| PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass); |
| else |
| PC = GlobalBaseReg; |
| |
| // Operand of MovePCtoStack is completely ignored by asm printer. It's |
| // only used in JIT code emission as displacement to pc. |
| BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); |
| |
| // If we're using vanilla 'GOT' PIC style, we should use relative addressing |
| // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. |
| if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) { |
| // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register |
| BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) |
| .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", |
| X86II::MO_GOT_ABSOLUTE_ADDRESS); |
| } |
| |
| return true; |
| } |
| |
| virtual const char *getPassName() const { |
| return "X86 PIC Global Base Reg Initialization"; |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| }; |
| } |
| |
| char CGBR::ID = 0; |
| FunctionPass* |
| llvm::createGlobalBaseRegPass() { return new CGBR(); } |