| //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file defines the common interface used by the various execution engine | 
 | // subclasses. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "jit" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/Module.h" | 
 | #include "llvm/ModuleProvider.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/Config/alloca.h" | 
 | #include "llvm/ExecutionEngine/ExecutionEngine.h" | 
 | #include "llvm/ExecutionEngine/GenericValue.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/MutexGuard.h" | 
 | #include "llvm/System/DynamicLibrary.h" | 
 | #include "llvm/System/Host.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include <math.h> | 
 | using namespace llvm; | 
 |  | 
 | STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); | 
 | STATISTIC(NumGlobals  , "Number of global vars initialized"); | 
 |  | 
 | ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; | 
 | ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; | 
 |  | 
 | ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) { | 
 |   LazyCompilationDisabled = false; | 
 |   Modules.push_back(P); | 
 |   assert(P && "ModuleProvider is null?"); | 
 | } | 
 |  | 
 | ExecutionEngine::~ExecutionEngine() { | 
 |   clearAllGlobalMappings(); | 
 |   for (unsigned i = 0, e = Modules.size(); i != e; ++i) | 
 |     delete Modules[i]; | 
 | } | 
 |  | 
 | /// removeModuleProvider - Remove a ModuleProvider from the list of modules. | 
 | /// Release module from ModuleProvider. | 
 | Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,  | 
 |                                               std::string *ErrInfo) { | 
 |   for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),  | 
 |         E = Modules.end(); I != E; ++I) { | 
 |     ModuleProvider *MP = *I; | 
 |     if (MP == P) { | 
 |       Modules.erase(I); | 
 |       return MP->releaseModule(ErrInfo); | 
 |     } | 
 |   } | 
 |   return NULL; | 
 | } | 
 |  | 
 | /// FindFunctionNamed - Search all of the active modules to find the one that | 
 | /// defines FnName.  This is very slow operation and shouldn't be used for | 
 | /// general code. | 
 | Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { | 
 |   for (unsigned i = 0, e = Modules.size(); i != e; ++i) { | 
 |     if (Function *F = Modules[i]->getModule()->getFunction(FnName)) | 
 |       return F; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | /// addGlobalMapping - Tell the execution engine that the specified global is | 
 | /// at the specified location.  This is used internally as functions are JIT'd | 
 | /// and as global variables are laid out in memory.  It can and should also be | 
 | /// used by clients of the EE that want to have an LLVM global overlay | 
 | /// existing data in memory. | 
 | void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { | 
 |   MutexGuard locked(lock); | 
 |    | 
 |   void *&CurVal = state.getGlobalAddressMap(locked)[GV]; | 
 |   assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); | 
 |   CurVal = Addr; | 
 |    | 
 |   // If we are using the reverse mapping, add it too | 
 |   if (!state.getGlobalAddressReverseMap(locked).empty()) { | 
 |     const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; | 
 |     assert((V == 0 || GV == 0) && "GlobalMapping already established!"); | 
 |     V = GV; | 
 |   } | 
 | } | 
 |  | 
 | /// clearAllGlobalMappings - Clear all global mappings and start over again | 
 | /// use in dynamic compilation scenarios when you want to move globals | 
 | void ExecutionEngine::clearAllGlobalMappings() { | 
 |   MutexGuard locked(lock); | 
 |    | 
 |   state.getGlobalAddressMap(locked).clear(); | 
 |   state.getGlobalAddressReverseMap(locked).clear(); | 
 | } | 
 |  | 
 | /// updateGlobalMapping - Replace an existing mapping for GV with a new | 
 | /// address.  This updates both maps as required.  If "Addr" is null, the | 
 | /// entry for the global is removed from the mappings. | 
 | void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { | 
 |   MutexGuard locked(lock); | 
 |    | 
 |   // Deleting from the mapping? | 
 |   if (Addr == 0) { | 
 |     state.getGlobalAddressMap(locked).erase(GV); | 
 |     if (!state.getGlobalAddressReverseMap(locked).empty()) | 
 |       state.getGlobalAddressReverseMap(locked).erase(Addr); | 
 |     return; | 
 |   } | 
 |    | 
 |   void *&CurVal = state.getGlobalAddressMap(locked)[GV]; | 
 |   if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) | 
 |     state.getGlobalAddressReverseMap(locked).erase(CurVal); | 
 |   CurVal = Addr; | 
 |    | 
 |   // If we are using the reverse mapping, add it too | 
 |   if (!state.getGlobalAddressReverseMap(locked).empty()) { | 
 |     const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; | 
 |     assert((V == 0 || GV == 0) && "GlobalMapping already established!"); | 
 |     V = GV; | 
 |   } | 
 | } | 
 |  | 
 | /// getPointerToGlobalIfAvailable - This returns the address of the specified | 
 | /// global value if it is has already been codegen'd, otherwise it returns null. | 
 | /// | 
 | void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { | 
 |   MutexGuard locked(lock); | 
 |    | 
 |   std::map<const GlobalValue*, void*>::iterator I = | 
 |   state.getGlobalAddressMap(locked).find(GV); | 
 |   return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; | 
 | } | 
 |  | 
 | /// getGlobalValueAtAddress - Return the LLVM global value object that starts | 
 | /// at the specified address. | 
 | /// | 
 | const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { | 
 |   MutexGuard locked(lock); | 
 |  | 
 |   // If we haven't computed the reverse mapping yet, do so first. | 
 |   if (state.getGlobalAddressReverseMap(locked).empty()) { | 
 |     for (std::map<const GlobalValue*, void *>::iterator | 
 |          I = state.getGlobalAddressMap(locked).begin(), | 
 |          E = state.getGlobalAddressMap(locked).end(); I != E; ++I) | 
 |       state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, | 
 |                                                                      I->first)); | 
 |   } | 
 |  | 
 |   std::map<void *, const GlobalValue*>::iterator I = | 
 |     state.getGlobalAddressReverseMap(locked).find(Addr); | 
 |   return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; | 
 | } | 
 |  | 
 | // CreateArgv - Turn a vector of strings into a nice argv style array of | 
 | // pointers to null terminated strings. | 
 | // | 
 | static void *CreateArgv(ExecutionEngine *EE, | 
 |                         const std::vector<std::string> &InputArgv) { | 
 |   unsigned PtrSize = EE->getTargetData()->getPointerSize(); | 
 |   char *Result = new char[(InputArgv.size()+1)*PtrSize]; | 
 |  | 
 |   DOUT << "ARGV = " << (void*)Result << "\n"; | 
 |   const Type *SBytePtr = PointerType::getUnqual(Type::Int8Ty); | 
 |  | 
 |   for (unsigned i = 0; i != InputArgv.size(); ++i) { | 
 |     unsigned Size = InputArgv[i].size()+1; | 
 |     char *Dest = new char[Size]; | 
 |     DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; | 
 |  | 
 |     std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); | 
 |     Dest[Size-1] = 0; | 
 |  | 
 |     // Endian safe: Result[i] = (PointerTy)Dest; | 
 |     EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), | 
 |                            SBytePtr); | 
 |   } | 
 |  | 
 |   // Null terminate it | 
 |   EE->StoreValueToMemory(PTOGV(0), | 
 |                          (GenericValue*)(Result+InputArgv.size()*PtrSize), | 
 |                          SBytePtr); | 
 |   return Result; | 
 | } | 
 |  | 
 |  | 
 | /// runStaticConstructorsDestructors - This method is used to execute all of | 
 | /// the static constructors or destructors for a program, depending on the | 
 | /// value of isDtors. | 
 | void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { | 
 |   const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; | 
 |    | 
 |   // Execute global ctors/dtors for each module in the program. | 
 |   for (unsigned m = 0, e = Modules.size(); m != e; ++m) { | 
 |     GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); | 
 |  | 
 |     // If this global has internal linkage, or if it has a use, then it must be | 
 |     // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If | 
 |     // this is the case, don't execute any of the global ctors, __main will do | 
 |     // it. | 
 |     if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue; | 
 |    | 
 |     // Should be an array of '{ int, void ()* }' structs.  The first value is | 
 |     // the init priority, which we ignore. | 
 |     ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); | 
 |     if (!InitList) continue; | 
 |     for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) | 
 |       if (ConstantStruct *CS =  | 
 |           dyn_cast<ConstantStruct>(InitList->getOperand(i))) { | 
 |         if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. | 
 |        | 
 |         Constant *FP = CS->getOperand(1); | 
 |         if (FP->isNullValue()) | 
 |           break;  // Found a null terminator, exit. | 
 |        | 
 |         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) | 
 |           if (CE->isCast()) | 
 |             FP = CE->getOperand(0); | 
 |         if (Function *F = dyn_cast<Function>(FP)) { | 
 |           // Execute the ctor/dtor function! | 
 |           runFunction(F, std::vector<GenericValue>()); | 
 |         } | 
 |       } | 
 |   } | 
 | } | 
 |  | 
 | /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. | 
 | static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { | 
 |   unsigned PtrSize = EE->getTargetData()->getPointerSize(); | 
 |   for (unsigned i = 0; i < PtrSize; ++i) | 
 |     if (*(i + (uint8_t*)Loc)) | 
 |       return false; | 
 |   return true; | 
 | } | 
 |  | 
 | /// runFunctionAsMain - This is a helper function which wraps runFunction to | 
 | /// handle the common task of starting up main with the specified argc, argv, | 
 | /// and envp parameters. | 
 | int ExecutionEngine::runFunctionAsMain(Function *Fn, | 
 |                                        const std::vector<std::string> &argv, | 
 |                                        const char * const * envp) { | 
 |   std::vector<GenericValue> GVArgs; | 
 |   GenericValue GVArgc; | 
 |   GVArgc.IntVal = APInt(32, argv.size()); | 
 |  | 
 |   // Check main() type | 
 |   unsigned NumArgs = Fn->getFunctionType()->getNumParams(); | 
 |   const FunctionType *FTy = Fn->getFunctionType(); | 
 |   const Type* PPInt8Ty =  | 
 |     PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty)); | 
 |   switch (NumArgs) { | 
 |   case 3: | 
 |    if (FTy->getParamType(2) != PPInt8Ty) { | 
 |      cerr << "Invalid type for third argument of main() supplied\n"; | 
 |      abort(); | 
 |    } | 
 |    // FALLS THROUGH | 
 |   case 2: | 
 |    if (FTy->getParamType(1) != PPInt8Ty) { | 
 |      cerr << "Invalid type for second argument of main() supplied\n"; | 
 |      abort(); | 
 |    } | 
 |    // FALLS THROUGH | 
 |   case 1: | 
 |    if (FTy->getParamType(0) != Type::Int32Ty) { | 
 |      cerr << "Invalid type for first argument of main() supplied\n"; | 
 |      abort(); | 
 |    } | 
 |    // FALLS THROUGH | 
 |   case 0: | 
 |    if (FTy->getReturnType() != Type::Int32Ty && | 
 |        FTy->getReturnType() != Type::VoidTy) { | 
 |      cerr << "Invalid return type of main() supplied\n"; | 
 |      abort(); | 
 |    } | 
 |    break; | 
 |   default: | 
 |    cerr << "Invalid number of arguments of main() supplied\n"; | 
 |    abort(); | 
 |   } | 
 |    | 
 |   if (NumArgs) { | 
 |     GVArgs.push_back(GVArgc); // Arg #0 = argc. | 
 |     if (NumArgs > 1) { | 
 |       GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. | 
 |       assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && | 
 |              "argv[0] was null after CreateArgv"); | 
 |       if (NumArgs > 2) { | 
 |         std::vector<std::string> EnvVars; | 
 |         for (unsigned i = 0; envp[i]; ++i) | 
 |           EnvVars.push_back(envp[i]); | 
 |         GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. | 
 |       } | 
 |     } | 
 |   } | 
 |   return runFunction(Fn, GVArgs).IntVal.getZExtValue(); | 
 | } | 
 |  | 
 | /// If possible, create a JIT, unless the caller specifically requests an | 
 | /// Interpreter or there's an error. If even an Interpreter cannot be created, | 
 | /// NULL is returned. | 
 | /// | 
 | ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, | 
 |                                          bool ForceInterpreter, | 
 |                                          std::string *ErrorStr) { | 
 |   ExecutionEngine *EE = 0; | 
 |  | 
 |   // Unless the interpreter was explicitly selected, try making a JIT. | 
 |   if (!ForceInterpreter && JITCtor) | 
 |     EE = JITCtor(MP, ErrorStr); | 
 |  | 
 |   // If we can't make a JIT, make an interpreter instead. | 
 |   if (EE == 0 && InterpCtor) | 
 |     EE = InterpCtor(MP, ErrorStr); | 
 |  | 
 |   if (EE) { | 
 |     // Make sure we can resolve symbols in the program as well. The zero arg | 
 |     // to the function tells DynamicLibrary to load the program, not a library. | 
 |     if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) { | 
 |       delete EE; | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   return EE; | 
 | } | 
 |  | 
 | ExecutionEngine *ExecutionEngine::create(Module *M) { | 
 |   return create(new ExistingModuleProvider(M)); | 
 | } | 
 |  | 
 | /// getPointerToGlobal - This returns the address of the specified global | 
 | /// value.  This may involve code generation if it's a function. | 
 | /// | 
 | void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { | 
 |   if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) | 
 |     return getPointerToFunction(F); | 
 |  | 
 |   MutexGuard locked(lock); | 
 |   void *p = state.getGlobalAddressMap(locked)[GV]; | 
 |   if (p) | 
 |     return p; | 
 |  | 
 |   // Global variable might have been added since interpreter started. | 
 |   if (GlobalVariable *GVar = | 
 |           const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) | 
 |     EmitGlobalVariable(GVar); | 
 |   else | 
 |     assert(0 && "Global hasn't had an address allocated yet!"); | 
 |   return state.getGlobalAddressMap(locked)[GV]; | 
 | } | 
 |  | 
 | /// This function converts a Constant* into a GenericValue. The interesting  | 
 | /// part is if C is a ConstantExpr. | 
 | /// @brief Get a GenericValue for a Constant* | 
 | GenericValue ExecutionEngine::getConstantValue(const Constant *C) { | 
 |   // If its undefined, return the garbage. | 
 |   if (isa<UndefValue>(C))  | 
 |     return GenericValue(); | 
 |  | 
 |   // If the value is a ConstantExpr | 
 |   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { | 
 |     Constant *Op0 = CE->getOperand(0); | 
 |     switch (CE->getOpcode()) { | 
 |     case Instruction::GetElementPtr: { | 
 |       // Compute the index  | 
 |       GenericValue Result = getConstantValue(Op0); | 
 |       SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); | 
 |       uint64_t Offset = | 
 |         TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); | 
 |  | 
 |       char* tmp = (char*) Result.PointerVal; | 
 |       Result = PTOGV(tmp + Offset); | 
 |       return Result; | 
 |     } | 
 |     case Instruction::Trunc: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); | 
 |       GV.IntVal = GV.IntVal.trunc(BitWidth); | 
 |       return GV; | 
 |     } | 
 |     case Instruction::ZExt: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); | 
 |       GV.IntVal = GV.IntVal.zext(BitWidth); | 
 |       return GV; | 
 |     } | 
 |     case Instruction::SExt: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); | 
 |       GV.IntVal = GV.IntVal.sext(BitWidth); | 
 |       return GV; | 
 |     } | 
 |     case Instruction::FPTrunc: { | 
 |       // FIXME long double | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       GV.FloatVal = float(GV.DoubleVal); | 
 |       return GV; | 
 |     } | 
 |     case Instruction::FPExt:{ | 
 |       // FIXME long double | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       GV.DoubleVal = double(GV.FloatVal); | 
 |       return GV; | 
 |     } | 
 |     case Instruction::UIToFP: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       if (CE->getType() == Type::FloatTy) | 
 |         GV.FloatVal = float(GV.IntVal.roundToDouble()); | 
 |       else if (CE->getType() == Type::DoubleTy) | 
 |         GV.DoubleVal = GV.IntVal.roundToDouble(); | 
 |       else if (CE->getType() == Type::X86_FP80Ty) { | 
 |         const uint64_t zero[] = {0, 0}; | 
 |         APFloat apf = APFloat(APInt(80, 2, zero)); | 
 |         (void)apf.convertFromZeroExtendedInteger(GV.IntVal.getRawData(),  | 
 |                                GV.IntVal.getBitWidth(), false, | 
 |                                APFloat::rmNearestTiesToEven); | 
 |         GV.IntVal = apf.convertToAPInt(); | 
 |       } | 
 |       return GV; | 
 |     } | 
 |     case Instruction::SIToFP: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       if (CE->getType() == Type::FloatTy) | 
 |         GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); | 
 |       else if (CE->getType() == Type::DoubleTy) | 
 |         GV.DoubleVal = GV.IntVal.signedRoundToDouble(); | 
 |       else if (CE->getType() == Type::X86_FP80Ty) { | 
 |         const uint64_t zero[] = { 0, 0}; | 
 |         APFloat apf = APFloat(APInt(80, 2, zero)); | 
 |         (void)apf.convertFromZeroExtendedInteger(GV.IntVal.getRawData(),  | 
 |                                GV.IntVal.getBitWidth(), true, | 
 |                                APFloat::rmNearestTiesToEven); | 
 |         GV.IntVal = apf.convertToAPInt(); | 
 |       } | 
 |       return GV; | 
 |     } | 
 |     case Instruction::FPToUI: // double->APInt conversion handles sign | 
 |     case Instruction::FPToSI: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); | 
 |       if (Op0->getType() == Type::FloatTy) | 
 |         GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); | 
 |       else if (Op0->getType() == Type::DoubleTy) | 
 |         GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); | 
 |       else if (Op0->getType() == Type::X86_FP80Ty) { | 
 |         APFloat apf = APFloat(GV.IntVal); | 
 |         uint64_t v; | 
 |         (void)apf.convertToInteger(&v, BitWidth, | 
 |                                    CE->getOpcode()==Instruction::FPToSI,  | 
 |                                    APFloat::rmTowardZero); | 
 |         GV.IntVal = v; // endian? | 
 |       } | 
 |       return GV; | 
 |     } | 
 |     case Instruction::PtrToInt: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       uint32_t PtrWidth = TD->getPointerSizeInBits(); | 
 |       GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); | 
 |       return GV; | 
 |     } | 
 |     case Instruction::IntToPtr: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       uint32_t PtrWidth = TD->getPointerSizeInBits(); | 
 |       if (PtrWidth != GV.IntVal.getBitWidth()) | 
 |         GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); | 
 |       assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); | 
 |       GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); | 
 |       return GV; | 
 |     } | 
 |     case Instruction::BitCast: { | 
 |       GenericValue GV = getConstantValue(Op0); | 
 |       const Type* DestTy = CE->getType(); | 
 |       switch (Op0->getType()->getTypeID()) { | 
 |         default: assert(0 && "Invalid bitcast operand"); | 
 |         case Type::IntegerTyID: | 
 |           assert(DestTy->isFloatingPoint() && "invalid bitcast"); | 
 |           if (DestTy == Type::FloatTy) | 
 |             GV.FloatVal = GV.IntVal.bitsToFloat(); | 
 |           else if (DestTy == Type::DoubleTy) | 
 |             GV.DoubleVal = GV.IntVal.bitsToDouble(); | 
 |           break; | 
 |         case Type::FloatTyID:  | 
 |           assert(DestTy == Type::Int32Ty && "Invalid bitcast"); | 
 |           GV.IntVal.floatToBits(GV.FloatVal); | 
 |           break; | 
 |         case Type::DoubleTyID: | 
 |           assert(DestTy == Type::Int64Ty && "Invalid bitcast"); | 
 |           GV.IntVal.doubleToBits(GV.DoubleVal); | 
 |           break; | 
 |         case Type::PointerTyID: | 
 |           assert(isa<PointerType>(DestTy) && "Invalid bitcast"); | 
 |           break; // getConstantValue(Op0)  above already converted it | 
 |       } | 
 |       return GV; | 
 |     } | 
 |     case Instruction::Add: | 
 |     case Instruction::Sub: | 
 |     case Instruction::Mul: | 
 |     case Instruction::UDiv: | 
 |     case Instruction::SDiv: | 
 |     case Instruction::URem: | 
 |     case Instruction::SRem: | 
 |     case Instruction::And: | 
 |     case Instruction::Or: | 
 |     case Instruction::Xor: { | 
 |       GenericValue LHS = getConstantValue(Op0); | 
 |       GenericValue RHS = getConstantValue(CE->getOperand(1)); | 
 |       GenericValue GV; | 
 |       switch (CE->getOperand(0)->getType()->getTypeID()) { | 
 |       default: assert(0 && "Bad add type!"); abort(); | 
 |       case Type::IntegerTyID: | 
 |         switch (CE->getOpcode()) { | 
 |           default: assert(0 && "Invalid integer opcode"); | 
 |           case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; | 
 |           case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; | 
 |           case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; | 
 |           case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; | 
 |           case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; | 
 |           case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; | 
 |           case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; | 
 |           case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; | 
 |           case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break; | 
 |           case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; | 
 |         } | 
 |         break; | 
 |       case Type::FloatTyID: | 
 |         switch (CE->getOpcode()) { | 
 |           default: assert(0 && "Invalid float opcode"); abort(); | 
 |           case Instruction::Add:   | 
 |             GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; | 
 |           case Instruction::Sub:   | 
 |             GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; | 
 |           case Instruction::Mul:   | 
 |             GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; | 
 |           case Instruction::FDiv:  | 
 |             GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; | 
 |           case Instruction::FRem:  | 
 |             GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; | 
 |         } | 
 |         break; | 
 |       case Type::DoubleTyID: | 
 |         switch (CE->getOpcode()) { | 
 |           default: assert(0 && "Invalid double opcode"); abort(); | 
 |           case Instruction::Add:   | 
 |             GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; | 
 |           case Instruction::Sub:   | 
 |             GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; | 
 |           case Instruction::Mul:   | 
 |             GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; | 
 |           case Instruction::FDiv:  | 
 |             GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; | 
 |           case Instruction::FRem:  | 
 |             GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; | 
 |         } | 
 |         break; | 
 |       case Type::X86_FP80TyID: | 
 |       case Type::PPC_FP128TyID: | 
 |       case Type::FP128TyID: { | 
 |         APFloat apfLHS = APFloat(LHS.IntVal); | 
 |         switch (CE->getOpcode()) { | 
 |           default: assert(0 && "Invalid long double opcode"); abort(); | 
 |           case Instruction::Add:   | 
 |             apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); | 
 |             GV.IntVal = apfLHS.convertToAPInt(); | 
 |             break; | 
 |           case Instruction::Sub:   | 
 |             apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); | 
 |             GV.IntVal = apfLHS.convertToAPInt(); | 
 |             break; | 
 |           case Instruction::Mul:   | 
 |             apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); | 
 |             GV.IntVal = apfLHS.convertToAPInt(); | 
 |             break; | 
 |           case Instruction::FDiv:  | 
 |             apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); | 
 |             GV.IntVal = apfLHS.convertToAPInt(); | 
 |             break; | 
 |           case Instruction::FRem:  | 
 |             apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); | 
 |             GV.IntVal = apfLHS.convertToAPInt(); | 
 |             break; | 
 |           } | 
 |         } | 
 |         break; | 
 |       } | 
 |       return GV; | 
 |     } | 
 |     default: | 
 |       break; | 
 |     } | 
 |     cerr << "ConstantExpr not handled: " << *CE << "\n"; | 
 |     abort(); | 
 |   } | 
 |  | 
 |   GenericValue Result; | 
 |   switch (C->getType()->getTypeID()) { | 
 |   case Type::FloatTyID:  | 
 |     Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();  | 
 |     break; | 
 |   case Type::DoubleTyID: | 
 |     Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); | 
 |     break; | 
 |   case Type::X86_FP80TyID: | 
 |   case Type::FP128TyID: | 
 |   case Type::PPC_FP128TyID: | 
 |     Result.IntVal = cast <ConstantFP>(C)->getValueAPF().convertToAPInt(); | 
 |     break; | 
 |   case Type::IntegerTyID: | 
 |     Result.IntVal = cast<ConstantInt>(C)->getValue(); | 
 |     break; | 
 |   case Type::PointerTyID: | 
 |     if (isa<ConstantPointerNull>(C)) | 
 |       Result.PointerVal = 0; | 
 |     else if (const Function *F = dyn_cast<Function>(C)) | 
 |       Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); | 
 |     else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) | 
 |       Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); | 
 |     else | 
 |       assert(0 && "Unknown constant pointer type!"); | 
 |     break; | 
 |   default: | 
 |     cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Result; | 
 | } | 
 |  | 
 | /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst | 
 | /// with the integer held in IntVal. | 
 | static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, | 
 |                              unsigned StoreBytes) { | 
 |   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); | 
 |   uint8_t *Src = (uint8_t *)IntVal.getRawData(); | 
 |  | 
 |   if (sys::littleEndianHost()) | 
 |     // Little-endian host - the source is ordered from LSB to MSB.  Order the | 
 |     // destination from LSB to MSB: Do a straight copy. | 
 |     memcpy(Dst, Src, StoreBytes); | 
 |   else { | 
 |     // Big-endian host - the source is an array of 64 bit words ordered from | 
 |     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination | 
 |     // from MSB to LSB: Reverse the word order, but not the bytes in a word. | 
 |     while (StoreBytes > sizeof(uint64_t)) { | 
 |       StoreBytes -= sizeof(uint64_t); | 
 |       // May not be aligned so use memcpy. | 
 |       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); | 
 |       Src += sizeof(uint64_t); | 
 |     } | 
 |  | 
 |     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); | 
 |   } | 
 | } | 
 |  | 
 | /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr | 
 | /// is the address of the memory at which to store Val, cast to GenericValue *. | 
 | /// It is not a pointer to a GenericValue containing the address at which to | 
 | /// store Val. | 
 | void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, | 
 |                                          const Type *Ty) { | 
 |   const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); | 
 |  | 
 |   switch (Ty->getTypeID()) { | 
 |   case Type::IntegerTyID: | 
 |     StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); | 
 |     break; | 
 |   case Type::FloatTyID: | 
 |     *((float*)Ptr) = Val.FloatVal; | 
 |     break; | 
 |   case Type::DoubleTyID: | 
 |     *((double*)Ptr) = Val.DoubleVal; | 
 |     break; | 
 |   case Type::X86_FP80TyID: { | 
 |       uint16_t *Dest = (uint16_t*)Ptr; | 
 |       const uint16_t *Src = (uint16_t*)Val.IntVal.getRawData(); | 
 |       // This is endian dependent, but it will only work on x86 anyway. | 
 |       Dest[0] = Src[4]; | 
 |       Dest[1] = Src[0]; | 
 |       Dest[2] = Src[1]; | 
 |       Dest[3] = Src[2]; | 
 |       Dest[4] = Src[3]; | 
 |       break; | 
 |     } | 
 |   case Type::PointerTyID: | 
 |     // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. | 
 |     if (StoreBytes != sizeof(PointerTy)) | 
 |       memset(Ptr, 0, StoreBytes); | 
 |  | 
 |     *((PointerTy*)Ptr) = Val.PointerVal; | 
 |     break; | 
 |   default: | 
 |     cerr << "Cannot store value of type " << *Ty << "!\n"; | 
 |   } | 
 |  | 
 |   if (sys::littleEndianHost() != getTargetData()->isLittleEndian()) | 
 |     // Host and target are different endian - reverse the stored bytes. | 
 |     std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); | 
 | } | 
 |  | 
 | /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting | 
 | /// from Src into IntVal, which is assumed to be wide enough and to hold zero. | 
 | static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { | 
 |   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); | 
 |   uint8_t *Dst = (uint8_t *)IntVal.getRawData(); | 
 |  | 
 |   if (sys::littleEndianHost()) | 
 |     // Little-endian host - the destination must be ordered from LSB to MSB. | 
 |     // The source is ordered from LSB to MSB: Do a straight copy. | 
 |     memcpy(Dst, Src, LoadBytes); | 
 |   else { | 
 |     // Big-endian - the destination is an array of 64 bit words ordered from | 
 |     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is | 
 |     // ordered from MSB to LSB: Reverse the word order, but not the bytes in | 
 |     // a word. | 
 |     while (LoadBytes > sizeof(uint64_t)) { | 
 |       LoadBytes -= sizeof(uint64_t); | 
 |       // May not be aligned so use memcpy. | 
 |       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); | 
 |       Dst += sizeof(uint64_t); | 
 |     } | 
 |  | 
 |     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); | 
 |   } | 
 | } | 
 |  | 
 | /// FIXME: document | 
 | /// | 
 | void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, | 
 |                                                   GenericValue *Ptr, | 
 |                                                   const Type *Ty) { | 
 |   const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); | 
 |  | 
 |   if (sys::littleEndianHost() != getTargetData()->isLittleEndian()) { | 
 |     // Host and target are different endian - reverse copy the stored | 
 |     // bytes into a buffer, and load from that. | 
 |     uint8_t *Src = (uint8_t*)Ptr; | 
 |     uint8_t *Buf = (uint8_t*)alloca(LoadBytes); | 
 |     std::reverse_copy(Src, Src + LoadBytes, Buf); | 
 |     Ptr = (GenericValue*)Buf; | 
 |   } | 
 |  | 
 |   switch (Ty->getTypeID()) { | 
 |   case Type::IntegerTyID: | 
 |     // An APInt with all words initially zero. | 
 |     Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); | 
 |     LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); | 
 |     break; | 
 |   case Type::FloatTyID: | 
 |     Result.FloatVal = *((float*)Ptr); | 
 |     break; | 
 |   case Type::DoubleTyID: | 
 |     Result.DoubleVal = *((double*)Ptr); | 
 |     break; | 
 |   case Type::PointerTyID: | 
 |     Result.PointerVal = *((PointerTy*)Ptr); | 
 |     break; | 
 |   case Type::X86_FP80TyID: { | 
 |     // This is endian dependent, but it will only work on x86 anyway. | 
 |     // FIXME: Will not trap if loading a signaling NaN. | 
 |     uint16_t *p = (uint16_t*)Ptr; | 
 |     union { | 
 |       uint16_t x[8]; | 
 |       uint64_t y[2]; | 
 |     }; | 
 |     x[0] = p[1]; | 
 |     x[1] = p[2]; | 
 |     x[2] = p[3]; | 
 |     x[3] = p[4]; | 
 |     x[4] = p[0]; | 
 |     Result.IntVal = APInt(80, 2, y); | 
 |     break; | 
 |   } | 
 |   default: | 
 |     cerr << "Cannot load value of type " << *Ty << "!\n"; | 
 |     abort(); | 
 |   } | 
 | } | 
 |  | 
 | // InitializeMemory - Recursive function to apply a Constant value into the | 
 | // specified memory location... | 
 | // | 
 | void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { | 
 |   if (isa<UndefValue>(Init)) { | 
 |     return; | 
 |   } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { | 
 |     unsigned ElementSize = | 
 |       getTargetData()->getABITypeSize(CP->getType()->getElementType()); | 
 |     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) | 
 |       InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); | 
 |     return; | 
 |   } else if (Init->getType()->isFirstClassType()) { | 
 |     GenericValue Val = getConstantValue(Init); | 
 |     StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); | 
 |     return; | 
 |   } else if (isa<ConstantAggregateZero>(Init)) { | 
 |     memset(Addr, 0, (size_t)getTargetData()->getABITypeSize(Init->getType())); | 
 |     return; | 
 |   } | 
 |  | 
 |   switch (Init->getType()->getTypeID()) { | 
 |   case Type::ArrayTyID: { | 
 |     const ConstantArray *CPA = cast<ConstantArray>(Init); | 
 |     unsigned ElementSize = | 
 |       getTargetData()->getABITypeSize(CPA->getType()->getElementType()); | 
 |     for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) | 
 |       InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); | 
 |     return; | 
 |   } | 
 |  | 
 |   case Type::StructTyID: { | 
 |     const ConstantStruct *CPS = cast<ConstantStruct>(Init); | 
 |     const StructLayout *SL = | 
 |       getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); | 
 |     for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) | 
 |       InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); | 
 |     return; | 
 |   } | 
 |  | 
 |   default: | 
 |     cerr << "Bad Type: " << *Init->getType() << "\n"; | 
 |     assert(0 && "Unknown constant type to initialize memory with!"); | 
 |   } | 
 | } | 
 |  | 
 | /// EmitGlobals - Emit all of the global variables to memory, storing their | 
 | /// addresses into GlobalAddress.  This must make sure to copy the contents of | 
 | /// their initializers into the memory. | 
 | /// | 
 | void ExecutionEngine::emitGlobals() { | 
 |   const TargetData *TD = getTargetData(); | 
 |  | 
 |   // Loop over all of the global variables in the program, allocating the memory | 
 |   // to hold them.  If there is more than one module, do a prepass over globals | 
 |   // to figure out how the different modules should link together. | 
 |   // | 
 |   std::map<std::pair<std::string, const Type*>, | 
 |            const GlobalValue*> LinkedGlobalsMap; | 
 |  | 
 |   if (Modules.size() != 1) { | 
 |     for (unsigned m = 0, e = Modules.size(); m != e; ++m) { | 
 |       Module &M = *Modules[m]->getModule(); | 
 |       for (Module::const_global_iterator I = M.global_begin(), | 
 |            E = M.global_end(); I != E; ++I) { | 
 |         const GlobalValue *GV = I; | 
 |         if (GV->hasInternalLinkage() || GV->isDeclaration() || | 
 |             GV->hasAppendingLinkage() || !GV->hasName()) | 
 |           continue;// Ignore external globals and globals with internal linkage. | 
 |            | 
 |         const GlobalValue *&GVEntry =  | 
 |           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; | 
 |  | 
 |         // If this is the first time we've seen this global, it is the canonical | 
 |         // version. | 
 |         if (!GVEntry) { | 
 |           GVEntry = GV; | 
 |           continue; | 
 |         } | 
 |          | 
 |         // If the existing global is strong, never replace it. | 
 |         if (GVEntry->hasExternalLinkage() || | 
 |             GVEntry->hasDLLImportLinkage() || | 
 |             GVEntry->hasDLLExportLinkage()) | 
 |           continue; | 
 |          | 
 |         // Otherwise, we know it's linkonce/weak, replace it if this is a strong | 
 |         // symbol. | 
 |         if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) | 
 |           GVEntry = GV; | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   std::vector<const GlobalValue*> NonCanonicalGlobals; | 
 |   for (unsigned m = 0, e = Modules.size(); m != e; ++m) { | 
 |     Module &M = *Modules[m]->getModule(); | 
 |     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); | 
 |          I != E; ++I) { | 
 |       // In the multi-module case, see what this global maps to. | 
 |       if (!LinkedGlobalsMap.empty()) { | 
 |         if (const GlobalValue *GVEntry =  | 
 |               LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { | 
 |           // If something else is the canonical global, ignore this one. | 
 |           if (GVEntry != &*I) { | 
 |             NonCanonicalGlobals.push_back(I); | 
 |             continue; | 
 |           } | 
 |         } | 
 |       } | 
 |        | 
 |       if (!I->isDeclaration()) { | 
 |         // Get the type of the global. | 
 |         const Type *Ty = I->getType()->getElementType(); | 
 |  | 
 |         // Allocate some memory for it! | 
 |         unsigned Size = TD->getABITypeSize(Ty); | 
 |         addGlobalMapping(I, new char[Size]); | 
 |       } else { | 
 |         // External variable reference. Try to use the dynamic loader to | 
 |         // get a pointer to it. | 
 |         if (void *SymAddr = | 
 |             sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) | 
 |           addGlobalMapping(I, SymAddr); | 
 |         else { | 
 |           cerr << "Could not resolve external global address: " | 
 |                << I->getName() << "\n"; | 
 |           abort(); | 
 |         } | 
 |       } | 
 |     } | 
 |      | 
 |     // If there are multiple modules, map the non-canonical globals to their | 
 |     // canonical location. | 
 |     if (!NonCanonicalGlobals.empty()) { | 
 |       for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { | 
 |         const GlobalValue *GV = NonCanonicalGlobals[i]; | 
 |         const GlobalValue *CGV = | 
 |           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; | 
 |         void *Ptr = getPointerToGlobalIfAvailable(CGV); | 
 |         assert(Ptr && "Canonical global wasn't codegen'd!"); | 
 |         addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); | 
 |       } | 
 |     } | 
 |      | 
 |     // Now that all of the globals are set up in memory, loop through them all  | 
 |     // and initialize their contents. | 
 |     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); | 
 |          I != E; ++I) { | 
 |       if (!I->isDeclaration()) { | 
 |         if (!LinkedGlobalsMap.empty()) { | 
 |           if (const GlobalValue *GVEntry =  | 
 |                 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) | 
 |             if (GVEntry != &*I)  // Not the canonical variable. | 
 |               continue; | 
 |         } | 
 |         EmitGlobalVariable(I); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // EmitGlobalVariable - This method emits the specified global variable to the | 
 | // address specified in GlobalAddresses, or allocates new memory if it's not | 
 | // already in the map. | 
 | void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { | 
 |   void *GA = getPointerToGlobalIfAvailable(GV); | 
 |   DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; | 
 |  | 
 |   const Type *ElTy = GV->getType()->getElementType(); | 
 |   size_t GVSize = (size_t)getTargetData()->getABITypeSize(ElTy); | 
 |   if (GA == 0) { | 
 |     // If it's not already specified, allocate memory for the global. | 
 |     GA = new char[GVSize]; | 
 |     addGlobalMapping(GV, GA); | 
 |   } | 
 |  | 
 |   InitializeMemory(GV->getInitializer(), GA); | 
 |   NumInitBytes += (unsigned)GVSize; | 
 |   ++NumGlobals; | 
 | } |