| //===-- LiveIntervalUnion.cpp - Live interval union data structure --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // LiveIntervalUnion represents a coalesced set of live intervals. This may be |
| // used during coalescing to represent a congruence class, or during register |
| // allocation to model liveness of a physical register. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regalloc" |
| #include "LiveIntervalUnion.h" |
| #include "llvm/ADT/SparseBitVector.h" |
| #include "llvm/CodeGen/MachineLoopRanges.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| |
| using namespace llvm; |
| |
| |
| // Merge a LiveInterval's segments. Guarantee no overlaps. |
| void LiveIntervalUnion::unify(LiveInterval &VirtReg) { |
| if (VirtReg.empty()) |
| return; |
| |
| // Insert each of the virtual register's live segments into the map. |
| LiveInterval::iterator RegPos = VirtReg.begin(); |
| LiveInterval::iterator RegEnd = VirtReg.end(); |
| SegmentIter SegPos = Segments.find(RegPos->start); |
| |
| for (;;) { |
| SegPos.insert(RegPos->start, RegPos->end, &VirtReg); |
| if (++RegPos == RegEnd) |
| return; |
| SegPos.advanceTo(RegPos->start); |
| } |
| } |
| |
| // Remove a live virtual register's segments from this union. |
| void LiveIntervalUnion::extract(LiveInterval &VirtReg) { |
| if (VirtReg.empty()) |
| return; |
| |
| // Remove each of the virtual register's live segments from the map. |
| LiveInterval::iterator RegPos = VirtReg.begin(); |
| LiveInterval::iterator RegEnd = VirtReg.end(); |
| SegmentIter SegPos = Segments.find(RegPos->start); |
| |
| for (;;) { |
| assert(SegPos.value() == &VirtReg && "Inconsistent LiveInterval"); |
| SegPos.erase(); |
| if (!SegPos.valid()) |
| return; |
| |
| // Skip all segments that may have been coalesced. |
| RegPos = VirtReg.advanceTo(RegPos, SegPos.start()); |
| if (RegPos == RegEnd) |
| return; |
| |
| SegPos.advanceTo(RegPos->start); |
| } |
| } |
| |
| void |
| LiveIntervalUnion::print(raw_ostream &OS, const TargetRegisterInfo *TRI) const { |
| OS << "LIU " << PrintReg(RepReg, TRI); |
| if (empty()) { |
| OS << " empty\n"; |
| return; |
| } |
| for (LiveSegments::const_iterator SI = Segments.begin(); SI.valid(); ++SI) { |
| OS << " [" << SI.start() << ' ' << SI.stop() << "):" |
| << PrintReg(SI.value()->reg, TRI); |
| } |
| OS << '\n'; |
| } |
| |
| void LiveIntervalUnion::InterferenceResult::print(raw_ostream &OS, |
| const TargetRegisterInfo *TRI) const { |
| OS << '[' << start() << ';' << stop() << "):" |
| << PrintReg(interference()->reg, TRI); |
| } |
| |
| void LiveIntervalUnion::Query::print(raw_ostream &OS, |
| const TargetRegisterInfo *TRI) { |
| OS << "Interferences with "; |
| LiveUnion->print(OS, TRI); |
| InterferenceResult IR = firstInterference(); |
| while (isInterference(IR)) { |
| OS << " "; |
| IR.print(OS, TRI); |
| OS << '\n'; |
| nextInterference(IR); |
| } |
| } |
| |
| #ifndef NDEBUG |
| // Verify the live intervals in this union and add them to the visited set. |
| void LiveIntervalUnion::verify(LiveVirtRegBitSet& VisitedVRegs) { |
| for (SegmentIter SI = Segments.begin(); SI.valid(); ++SI) |
| VisitedVRegs.set(SI.value()->reg); |
| } |
| #endif //!NDEBUG |
| |
| // Private interface accessed by Query. |
| // |
| // Find a pair of segments that intersect, one in the live virtual register |
| // (LiveInterval), and the other in this LiveIntervalUnion. The caller (Query) |
| // is responsible for advancing the LiveIntervalUnion segments to find a |
| // "notable" intersection, which requires query-specific logic. |
| // |
| // This design assumes only a fast mechanism for intersecting a single live |
| // virtual register segment with a set of LiveIntervalUnion segments. This may |
| // be ok since most virtual registers have very few segments. If we had a data |
| // structure that optimizd MxN intersection of segments, then we would bypass |
| // the loop that advances within the LiveInterval. |
| // |
| // If no intersection exists, set VirtRegI = VirtRegEnd, and set SI to the first |
| // segment whose start point is greater than LiveInterval's end point. |
| // |
| // Assumes that segments are sorted by start position in both |
| // LiveInterval and LiveSegments. |
| void LiveIntervalUnion::Query::findIntersection(InterferenceResult &IR) const { |
| // Search until reaching the end of the LiveUnion segments. |
| LiveInterval::iterator VirtRegEnd = VirtReg->end(); |
| if (IR.VirtRegI == VirtRegEnd) |
| return; |
| while (IR.LiveUnionI.valid()) { |
| // Slowly advance the live virtual reg iterator until we surpass the next |
| // segment in LiveUnion. |
| // |
| // Note: If this is ever used for coalescing of fixed registers and we have |
| // a live vreg with thousands of segments, then change this code to use |
| // upperBound instead. |
| IR.VirtRegI = VirtReg->advanceTo(IR.VirtRegI, IR.LiveUnionI.start()); |
| if (IR.VirtRegI == VirtRegEnd) |
| break; // Retain current (nonoverlapping) LiveUnionI |
| |
| // VirtRegI may have advanced far beyond LiveUnionI, catch up. |
| IR.LiveUnionI.advanceTo(IR.VirtRegI->start); |
| |
| // Check if no LiveUnionI exists with VirtRegI->Start < LiveUnionI.end |
| if (!IR.LiveUnionI.valid()) |
| break; |
| if (IR.LiveUnionI.start() < IR.VirtRegI->end) { |
| assert(overlap(*IR.VirtRegI, IR.LiveUnionI) && |
| "upperBound postcondition"); |
| break; |
| } |
| } |
| if (!IR.LiveUnionI.valid()) |
| IR.VirtRegI = VirtRegEnd; |
| } |
| |
| // Find the first intersection, and cache interference info |
| // (retain segment iterators into both VirtReg and LiveUnion). |
| const LiveIntervalUnion::InterferenceResult & |
| LiveIntervalUnion::Query::firstInterference() { |
| if (CheckedFirstInterference) |
| return FirstInterference; |
| CheckedFirstInterference = true; |
| InterferenceResult &IR = FirstInterference; |
| |
| // Quickly skip interference check for empty sets. |
| if (VirtReg->empty() || LiveUnion->empty()) { |
| IR.VirtRegI = VirtReg->end(); |
| } else if (VirtReg->beginIndex() < LiveUnion->startIndex()) { |
| // VirtReg starts first, perform double binary search. |
| IR.VirtRegI = VirtReg->find(LiveUnion->startIndex()); |
| if (IR.VirtRegI != VirtReg->end()) |
| IR.LiveUnionI = LiveUnion->find(IR.VirtRegI->start); |
| } else { |
| // LiveUnion starts first, perform double binary search. |
| IR.LiveUnionI = LiveUnion->find(VirtReg->beginIndex()); |
| if (IR.LiveUnionI.valid()) |
| IR.VirtRegI = VirtReg->find(IR.LiveUnionI.start()); |
| else |
| IR.VirtRegI = VirtReg->end(); |
| } |
| findIntersection(FirstInterference); |
| assert((IR.VirtRegI == VirtReg->end() || IR.LiveUnionI.valid()) |
| && "Uninitialized iterator"); |
| return FirstInterference; |
| } |
| |
| // Treat the result as an iterator and advance to the next interfering pair |
| // of segments. This is a plain iterator with no filter. |
| bool LiveIntervalUnion::Query::nextInterference(InterferenceResult &IR) const { |
| assert(isInterference(IR) && "iteration past end of interferences"); |
| |
| // Advance either the VirtReg or LiveUnion segment to ensure that we visit all |
| // unique overlapping pairs. |
| if (IR.VirtRegI->end < IR.LiveUnionI.stop()) { |
| if (++IR.VirtRegI == VirtReg->end()) |
| return false; |
| } |
| else { |
| if (!(++IR.LiveUnionI).valid()) { |
| IR.VirtRegI = VirtReg->end(); |
| return false; |
| } |
| } |
| // Short-circuit findIntersection() if possible. |
| if (overlap(*IR.VirtRegI, IR.LiveUnionI)) |
| return true; |
| |
| // Find the next intersection. |
| findIntersection(IR); |
| return isInterference(IR); |
| } |
| |
| // Scan the vector of interfering virtual registers in this union. Assume it's |
| // quite small. |
| bool LiveIntervalUnion::Query::isSeenInterference(LiveInterval *VirtReg) const { |
| SmallVectorImpl<LiveInterval*>::const_iterator I = |
| std::find(InterferingVRegs.begin(), InterferingVRegs.end(), VirtReg); |
| return I != InterferingVRegs.end(); |
| } |
| |
| // Count the number of virtual registers in this union that interfere with this |
| // query's live virtual register. |
| // |
| // The number of times that we either advance IR.VirtRegI or call |
| // LiveUnion.upperBound() will be no more than the number of holes in |
| // VirtReg. So each invocation of collectInterferingVRegs() takes |
| // time proportional to |VirtReg Holes| * time(LiveUnion.upperBound()). |
| // |
| // For comments on how to speed it up, see Query::findIntersection(). |
| unsigned LiveIntervalUnion::Query:: |
| collectInterferingVRegs(unsigned MaxInterferingRegs) { |
| InterferenceResult IR = firstInterference(); |
| LiveInterval::iterator VirtRegEnd = VirtReg->end(); |
| LiveInterval *RecentInterferingVReg = NULL; |
| if (IR.VirtRegI != VirtRegEnd) while (IR.LiveUnionI.valid()) { |
| // Advance the union's iterator to reach an unseen interfering vreg. |
| do { |
| if (IR.LiveUnionI.value() == RecentInterferingVReg) |
| continue; |
| |
| if (!isSeenInterference(IR.LiveUnionI.value())) |
| break; |
| |
| // Cache the most recent interfering vreg to bypass isSeenInterference. |
| RecentInterferingVReg = IR.LiveUnionI.value(); |
| |
| } while ((++IR.LiveUnionI).valid()); |
| if (!IR.LiveUnionI.valid()) |
| break; |
| |
| // Advance the VirtReg iterator until surpassing the next segment in |
| // LiveUnion. |
| IR.VirtRegI = VirtReg->advanceTo(IR.VirtRegI, IR.LiveUnionI.start()); |
| if (IR.VirtRegI == VirtRegEnd) |
| break; |
| |
| // Check for intersection with the union's segment. |
| if (overlap(*IR.VirtRegI, IR.LiveUnionI)) { |
| |
| if (!IR.LiveUnionI.value()->isSpillable()) |
| SeenUnspillableVReg = true; |
| |
| if (InterferingVRegs.size() == MaxInterferingRegs) |
| // Leave SeenAllInterferences set to false to indicate that at least one |
| // interference exists beyond those we collected. |
| return MaxInterferingRegs; |
| |
| InterferingVRegs.push_back(IR.LiveUnionI.value()); |
| |
| // Cache the most recent interfering vreg to bypass isSeenInterference. |
| RecentInterferingVReg = IR.LiveUnionI.value(); |
| ++IR.LiveUnionI; |
| continue; |
| } |
| // VirtRegI may have advanced far beyond LiveUnionI, |
| // do a fast intersection test to "catch up" |
| IR.LiveUnionI.advanceTo(IR.VirtRegI->start); |
| } |
| SeenAllInterferences = true; |
| return InterferingVRegs.size(); |
| } |
| |
| bool LiveIntervalUnion::Query::checkLoopInterference(MachineLoopRange *Loop) { |
| // VirtReg is likely live throughout the loop, so start by checking LIU-Loop |
| // overlaps. |
| IntervalMapOverlaps<LiveIntervalUnion::Map, MachineLoopRange::Map> |
| Overlaps(LiveUnion->getMap(), Loop->getMap()); |
| if (!Overlaps.valid()) |
| return false; |
| |
| // The loop is overlapping an LIU assignment. Check VirtReg as well. |
| LiveInterval::iterator VRI = VirtReg->find(Overlaps.start()); |
| |
| for (;;) { |
| if (VRI == VirtReg->end()) |
| return false; |
| if (VRI->start < Overlaps.stop()) |
| return true; |
| |
| Overlaps.advanceTo(VRI->start); |
| if (!Overlaps.valid()) |
| return false; |
| if (Overlaps.start() < VRI->end) |
| return true; |
| |
| VRI = VirtReg->advanceTo(VRI, Overlaps.start()); |
| } |
| } |