| Target Independent Opportunities: |
| |
| //===---------------------------------------------------------------------===// |
| |
| With the recent changes to make the implicit def/use set explicit in |
| machineinstrs, we should change the target descriptions for 'call' instructions |
| so that the .td files don't list all the call-clobbered registers as implicit |
| defs. Instead, these should be added by the code generator (e.g. on the dag). |
| |
| This has a number of uses: |
| |
| 1. PPC32/64 and X86 32/64 can avoid having multiple copies of call instructions |
| for their different impdef sets. |
| 2. Targets with multiple calling convs (e.g. x86) which have different clobber |
| sets don't need copies of call instructions. |
| 3. 'Interprocedural register allocation' can be done to reduce the clobber sets |
| of calls. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We should recognized various "overflow detection" idioms and translate them into |
| llvm.uadd.with.overflow and similar intrinsics. Here is a multiply idiom: |
| |
| unsigned int mul(unsigned int a,unsigned int b) { |
| if ((unsigned long long)a*b>0xffffffff) |
| exit(0); |
| return a*b; |
| } |
| |
| The legalization code for mul-with-overflow needs to be made more robust before |
| this can be implemented though. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and |
| precision don't matter (ffastmath). Misc/mandel will like this. :) This isn't |
| safe in general, even on darwin. See the libm implementation of hypot for |
| examples (which special case when x/y are exactly zero to get signed zeros etc |
| right). |
| |
| //===---------------------------------------------------------------------===// |
| |
| On targets with expensive 64-bit multiply, we could LSR this: |
| |
| for (i = ...; ++i) { |
| x = 1ULL << i; |
| |
| into: |
| long long tmp = 1; |
| for (i = ...; ++i, tmp+=tmp) |
| x = tmp; |
| |
| This would be a win on ppc32, but not x86 or ppc64. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0) |
| |
| //===---------------------------------------------------------------------===// |
| |
| Reassociate should turn things like: |
| |
| int factorial(int X) { |
| return X*X*X*X*X*X*X*X; |
| } |
| |
| into llvm.powi calls, allowing the code generator to produce balanced |
| multiplication trees. |
| |
| First, the intrinsic needs to be extended to support integers, and second the |
| code generator needs to be enhanced to lower these to multiplication trees. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Interesting? testcase for add/shift/mul reassoc: |
| |
| int bar(int x, int y) { |
| return x*x*x+y+x*x*x*x*x*y*y*y*y; |
| } |
| int foo(int z, int n) { |
| return bar(z, n) + bar(2*z, 2*n); |
| } |
| |
| This is blocked on not handling X*X*X -> powi(X, 3) (see note above). The issue |
| is that we end up getting t = 2*X s = t*t and don't turn this into 4*X*X, |
| which is the same number of multiplies and is canonical, because the 2*X has |
| multiple uses. Here's a simple example: |
| |
| define i32 @test15(i32 %X1) { |
| %B = mul i32 %X1, 47 ; X1*47 |
| %C = mul i32 %B, %B |
| ret i32 %C |
| } |
| |
| |
| //===---------------------------------------------------------------------===// |
| |
| Reassociate should handle the example in GCC PR16157: |
| |
| extern int a0, a1, a2, a3, a4; extern int b0, b1, b2, b3, b4; |
| void f () { /* this can be optimized to four additions... */ |
| b4 = a4 + a3 + a2 + a1 + a0; |
| b3 = a3 + a2 + a1 + a0; |
| b2 = a2 + a1 + a0; |
| b1 = a1 + a0; |
| } |
| |
| This requires reassociating to forms of expressions that are already available, |
| something that reassoc doesn't think about yet. |
| |
| |
| //===---------------------------------------------------------------------===// |
| |
| This function: (derived from GCC PR19988) |
| double foo(double x, double y) { |
| return ((x + 0.1234 * y) * (x + -0.1234 * y)); |
| } |
| |
| compiles to: |
| _foo: |
| movapd %xmm1, %xmm2 |
| mulsd LCPI1_1(%rip), %xmm1 |
| mulsd LCPI1_0(%rip), %xmm2 |
| addsd %xmm0, %xmm1 |
| addsd %xmm0, %xmm2 |
| movapd %xmm1, %xmm0 |
| mulsd %xmm2, %xmm0 |
| ret |
| |
| Reassociate should be able to turn it into: |
| |
| double foo(double x, double y) { |
| return ((x + 0.1234 * y) * (x - 0.1234 * y)); |
| } |
| |
| Which allows the multiply by constant to be CSE'd, producing: |
| |
| _foo: |
| mulsd LCPI1_0(%rip), %xmm1 |
| movapd %xmm1, %xmm2 |
| addsd %xmm0, %xmm2 |
| subsd %xmm1, %xmm0 |
| mulsd %xmm2, %xmm0 |
| ret |
| |
| This doesn't need -ffast-math support at all. This is particularly bad because |
| the llvm-gcc frontend is canonicalizing the later into the former, but clang |
| doesn't have this problem. |
| |
| //===---------------------------------------------------------------------===// |
| |
| These two functions should generate the same code on big-endian systems: |
| |
| int g(int *j,int *l) { return memcmp(j,l,4); } |
| int h(int *j, int *l) { return *j - *l; } |
| |
| this could be done in SelectionDAGISel.cpp, along with other special cases, |
| for 1,2,4,8 bytes. |
| |
| //===---------------------------------------------------------------------===// |
| |
| It would be nice to revert this patch: |
| http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html |
| |
| And teach the dag combiner enough to simplify the code expanded before |
| legalize. It seems plausible that this knowledge would let it simplify other |
| stuff too. |
| |
| //===---------------------------------------------------------------------===// |
| |
| For vector types, TargetData.cpp::getTypeInfo() returns alignment that is equal |
| to the type size. It works but can be overly conservative as the alignment of |
| specific vector types are target dependent. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We should produce an unaligned load from code like this: |
| |
| v4sf example(float *P) { |
| return (v4sf){P[0], P[1], P[2], P[3] }; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| Add support for conditional increments, and other related patterns. Instead |
| of: |
| |
| movl 136(%esp), %eax |
| cmpl $0, %eax |
| je LBB16_2 #cond_next |
| LBB16_1: #cond_true |
| incl _foo |
| LBB16_2: #cond_next |
| |
| emit: |
| movl _foo, %eax |
| cmpl $1, %edi |
| sbbl $-1, %eax |
| movl %eax, _foo |
| |
| //===---------------------------------------------------------------------===// |
| |
| Combine: a = sin(x), b = cos(x) into a,b = sincos(x). |
| |
| Expand these to calls of sin/cos and stores: |
| double sincos(double x, double *sin, double *cos); |
| float sincosf(float x, float *sin, float *cos); |
| long double sincosl(long double x, long double *sin, long double *cos); |
| |
| Doing so could allow SROA of the destination pointers. See also: |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687 |
| |
| This is now easily doable with MRVs. We could even make an intrinsic for this |
| if anyone cared enough about sincos. |
| |
| //===---------------------------------------------------------------------===// |
| |
| quantum_sigma_x in 462.libquantum contains the following loop: |
| |
| for(i=0; i<reg->size; i++) |
| { |
| /* Flip the target bit of each basis state */ |
| reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target); |
| } |
| |
| Where MAX_UNSIGNED/state is a 64-bit int. On a 32-bit platform it would be just |
| so cool to turn it into something like: |
| |
| long long Res = ((MAX_UNSIGNED) 1 << target); |
| if (target < 32) { |
| for(i=0; i<reg->size; i++) |
| reg->node[i].state ^= Res & 0xFFFFFFFFULL; |
| } else { |
| for(i=0; i<reg->size; i++) |
| reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL |
| } |
| |
| ... which would only do one 32-bit XOR per loop iteration instead of two. |
| |
| It would also be nice to recognize the reg->size doesn't alias reg->node[i], but |
| this requires TBAA. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This isn't recognized as bswap by instcombine (yes, it really is bswap): |
| |
| unsigned long reverse(unsigned v) { |
| unsigned t; |
| t = v ^ ((v << 16) | (v >> 16)); |
| t &= ~0xff0000; |
| v = (v << 24) | (v >> 8); |
| return v ^ (t >> 8); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| [LOOP RECOGNITION] |
| |
| These idioms should be recognized as popcount (see PR1488): |
| |
| unsigned countbits_slow(unsigned v) { |
| unsigned c; |
| for (c = 0; v; v >>= 1) |
| c += v & 1; |
| return c; |
| } |
| unsigned countbits_fast(unsigned v){ |
| unsigned c; |
| for (c = 0; v; c++) |
| v &= v - 1; // clear the least significant bit set |
| return c; |
| } |
| |
| BITBOARD = unsigned long long |
| int PopCnt(register BITBOARD a) { |
| register int c=0; |
| while(a) { |
| c++; |
| a &= a - 1; |
| } |
| return c; |
| } |
| unsigned int popcount(unsigned int input) { |
| unsigned int count = 0; |
| for (unsigned int i = 0; i < 4 * 8; i++) |
| count += (input >> i) & i; |
| return count; |
| } |
| |
| This sort of thing should be added to the loop idiom pass. |
| |
| //===---------------------------------------------------------------------===// |
| |
| These should turn into single 16-bit (unaligned?) loads on little/big endian |
| processors. |
| |
| unsigned short read_16_le(const unsigned char *adr) { |
| return adr[0] | (adr[1] << 8); |
| } |
| unsigned short read_16_be(const unsigned char *adr) { |
| return (adr[0] << 8) | adr[1]; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| -instcombine should handle this transform: |
| icmp pred (sdiv X / C1 ), C2 |
| when X, C1, and C2 are unsigned. Similarly for udiv and signed operands. |
| |
| Currently InstCombine avoids this transform but will do it when the signs of |
| the operands and the sign of the divide match. See the FIXME in |
| InstructionCombining.cpp in the visitSetCondInst method after the switch case |
| for Instruction::UDiv (around line 4447) for more details. |
| |
| The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of |
| this construct. |
| |
| //===---------------------------------------------------------------------===// |
| |
| [LOOP OPTIMIZATION] |
| |
| SingleSource/Benchmarks/Misc/dt.c shows several interesting optimization |
| opportunities in its double_array_divs_variable function: it needs loop |
| interchange, memory promotion (which LICM already does), vectorization and |
| variable trip count loop unrolling (since it has a constant trip count). ICC |
| apparently produces this very nice code with -ffast-math: |
| |
| ..B1.70: # Preds ..B1.70 ..B1.69 |
| mulpd %xmm0, %xmm1 #108.2 |
| mulpd %xmm0, %xmm1 #108.2 |
| mulpd %xmm0, %xmm1 #108.2 |
| mulpd %xmm0, %xmm1 #108.2 |
| addl $8, %edx # |
| cmpl $131072, %edx #108.2 |
| jb ..B1.70 # Prob 99% #108.2 |
| |
| It would be better to count down to zero, but this is a lot better than what we |
| do. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Consider: |
| |
| typedef unsigned U32; |
| typedef unsigned long long U64; |
| int test (U32 *inst, U64 *regs) { |
| U64 effective_addr2; |
| U32 temp = *inst; |
| int r1 = (temp >> 20) & 0xf; |
| int b2 = (temp >> 16) & 0xf; |
| effective_addr2 = temp & 0xfff; |
| if (b2) effective_addr2 += regs[b2]; |
| b2 = (temp >> 12) & 0xf; |
| if (b2) effective_addr2 += regs[b2]; |
| effective_addr2 &= regs[4]; |
| if ((effective_addr2 & 3) == 0) |
| return 1; |
| return 0; |
| } |
| |
| Note that only the low 2 bits of effective_addr2 are used. On 32-bit systems, |
| we don't eliminate the computation of the top half of effective_addr2 because |
| we don't have whole-function selection dags. On x86, this means we use one |
| extra register for the function when effective_addr2 is declared as U64 than |
| when it is declared U32. |
| |
| PHI Slicing could be extended to do this. |
| |
| //===---------------------------------------------------------------------===// |
| |
| LSR should know what GPR types a target has from TargetData. This code: |
| |
| volatile short X, Y; // globals |
| |
| void foo(int N) { |
| int i; |
| for (i = 0; i < N; i++) { X = i; Y = i*4; } |
| } |
| |
| produces two near identical IV's (after promotion) on PPC/ARM: |
| |
| LBB1_2: |
| ldr r3, LCPI1_0 |
| ldr r3, [r3] |
| strh r2, [r3] |
| ldr r3, LCPI1_1 |
| ldr r3, [r3] |
| strh r1, [r3] |
| add r1, r1, #4 |
| add r2, r2, #1 <- [0,+,1] |
| sub r0, r0, #1 <- [0,-,1] |
| cmp r0, #0 |
| bne LBB1_2 |
| |
| LSR should reuse the "+" IV for the exit test. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Tail call elim should be more aggressive, checking to see if the call is |
| followed by an uncond branch to an exit block. |
| |
| ; This testcase is due to tail-duplication not wanting to copy the return |
| ; instruction into the terminating blocks because there was other code |
| ; optimized out of the function after the taildup happened. |
| ; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call |
| |
| define i32 @t4(i32 %a) { |
| entry: |
| %tmp.1 = and i32 %a, 1 ; <i32> [#uses=1] |
| %tmp.2 = icmp ne i32 %tmp.1, 0 ; <i1> [#uses=1] |
| br i1 %tmp.2, label %then.0, label %else.0 |
| |
| then.0: ; preds = %entry |
| %tmp.5 = add i32 %a, -1 ; <i32> [#uses=1] |
| %tmp.3 = call i32 @t4( i32 %tmp.5 ) ; <i32> [#uses=1] |
| br label %return |
| |
| else.0: ; preds = %entry |
| %tmp.7 = icmp ne i32 %a, 0 ; <i1> [#uses=1] |
| br i1 %tmp.7, label %then.1, label %return |
| |
| then.1: ; preds = %else.0 |
| %tmp.11 = add i32 %a, -2 ; <i32> [#uses=1] |
| %tmp.9 = call i32 @t4( i32 %tmp.11 ) ; <i32> [#uses=1] |
| br label %return |
| |
| return: ; preds = %then.1, %else.0, %then.0 |
| %result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ], |
| [ %tmp.9, %then.1 ] |
| ret i32 %result.0 |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| Tail recursion elimination should handle: |
| |
| int pow2m1(int n) { |
| if (n == 0) |
| return 0; |
| return 2 * pow2m1 (n - 1) + 1; |
| } |
| |
| Also, multiplies can be turned into SHL's, so they should be handled as if |
| they were associative. "return foo() << 1" can be tail recursion eliminated. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Argument promotion should promote arguments for recursive functions, like |
| this: |
| |
| ; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val |
| |
| define internal i32 @foo(i32* %x) { |
| entry: |
| %tmp = load i32* %x ; <i32> [#uses=0] |
| %tmp.foo = call i32 @foo( i32* %x ) ; <i32> [#uses=1] |
| ret i32 %tmp.foo |
| } |
| |
| define i32 @bar(i32* %x) { |
| entry: |
| %tmp3 = call i32 @foo( i32* %x ) ; <i32> [#uses=1] |
| ret i32 %tmp3 |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| We should investigate an instruction sinking pass. Consider this silly |
| example in pic mode: |
| |
| #include <assert.h> |
| void foo(int x) { |
| assert(x); |
| //... |
| } |
| |
| we compile this to: |
| _foo: |
| subl $28, %esp |
| call "L1$pb" |
| "L1$pb": |
| popl %eax |
| cmpl $0, 32(%esp) |
| je LBB1_2 # cond_true |
| LBB1_1: # return |
| # ... |
| addl $28, %esp |
| ret |
| LBB1_2: # cond_true |
| ... |
| |
| The PIC base computation (call+popl) is only used on one path through the |
| code, but is currently always computed in the entry block. It would be |
| better to sink the picbase computation down into the block for the |
| assertion, as it is the only one that uses it. This happens for a lot of |
| code with early outs. |
| |
| Another example is loads of arguments, which are usually emitted into the |
| entry block on targets like x86. If not used in all paths through a |
| function, they should be sunk into the ones that do. |
| |
| In this case, whole-function-isel would also handle this. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Investigate lowering of sparse switch statements into perfect hash tables: |
| http://burtleburtle.net/bob/hash/perfect.html |
| |
| //===---------------------------------------------------------------------===// |
| |
| We should turn things like "load+fabs+store" and "load+fneg+store" into the |
| corresponding integer operations. On a yonah, this loop: |
| |
| double a[256]; |
| void foo() { |
| int i, b; |
| for (b = 0; b < 10000000; b++) |
| for (i = 0; i < 256; i++) |
| a[i] = -a[i]; |
| } |
| |
| is twice as slow as this loop: |
| |
| long long a[256]; |
| void foo() { |
| int i, b; |
| for (b = 0; b < 10000000; b++) |
| for (i = 0; i < 256; i++) |
| a[i] ^= (1ULL << 63); |
| } |
| |
| and I suspect other processors are similar. On X86 in particular this is a |
| big win because doing this with integers allows the use of read/modify/write |
| instructions. |
| |
| //===---------------------------------------------------------------------===// |
| |
| DAG Combiner should try to combine small loads into larger loads when |
| profitable. For example, we compile this C++ example: |
| |
| struct THotKey { short Key; bool Control; bool Shift; bool Alt; }; |
| extern THotKey m_HotKey; |
| THotKey GetHotKey () { return m_HotKey; } |
| |
| into (-m64 -O3 -fno-exceptions -static -fomit-frame-pointer): |
| |
| __Z9GetHotKeyv: ## @_Z9GetHotKeyv |
| movq _m_HotKey@GOTPCREL(%rip), %rax |
| movzwl (%rax), %ecx |
| movzbl 2(%rax), %edx |
| shlq $16, %rdx |
| orq %rcx, %rdx |
| movzbl 3(%rax), %ecx |
| shlq $24, %rcx |
| orq %rdx, %rcx |
| movzbl 4(%rax), %eax |
| shlq $32, %rax |
| orq %rcx, %rax |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| We should add an FRINT node to the DAG to model targets that have legal |
| implementations of ceil/floor/rint. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Consider: |
| |
| int test() { |
| long long input[8] = {1,0,1,0,1,0,1,0}; |
| foo(input); |
| } |
| |
| Clang compiles this into: |
| |
| call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 64, i32 16, i1 false) |
| %0 = getelementptr [8 x i64]* %input, i64 0, i64 0 |
| store i64 1, i64* %0, align 16 |
| %1 = getelementptr [8 x i64]* %input, i64 0, i64 2 |
| store i64 1, i64* %1, align 16 |
| %2 = getelementptr [8 x i64]* %input, i64 0, i64 4 |
| store i64 1, i64* %2, align 16 |
| %3 = getelementptr [8 x i64]* %input, i64 0, i64 6 |
| store i64 1, i64* %3, align 16 |
| |
| Which gets codegen'd into: |
| |
| pxor %xmm0, %xmm0 |
| movaps %xmm0, -16(%rbp) |
| movaps %xmm0, -32(%rbp) |
| movaps %xmm0, -48(%rbp) |
| movaps %xmm0, -64(%rbp) |
| movq $1, -64(%rbp) |
| movq $1, -48(%rbp) |
| movq $1, -32(%rbp) |
| movq $1, -16(%rbp) |
| |
| It would be better to have 4 movq's of 0 instead of the movaps's. |
| |
| //===---------------------------------------------------------------------===// |
| |
| http://llvm.org/PR717: |
| |
| The following code should compile into "ret int undef". Instead, LLVM |
| produces "ret int 0": |
| |
| int f() { |
| int x = 4; |
| int y; |
| if (x == 3) y = 0; |
| return y; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| The loop unroller should partially unroll loops (instead of peeling them) |
| when code growth isn't too bad and when an unroll count allows simplification |
| of some code within the loop. One trivial example is: |
| |
| #include <stdio.h> |
| int main() { |
| int nRet = 17; |
| int nLoop; |
| for ( nLoop = 0; nLoop < 1000; nLoop++ ) { |
| if ( nLoop & 1 ) |
| nRet += 2; |
| else |
| nRet -= 1; |
| } |
| return nRet; |
| } |
| |
| Unrolling by 2 would eliminate the '&1' in both copies, leading to a net |
| reduction in code size. The resultant code would then also be suitable for |
| exit value computation. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We miss a bunch of rotate opportunities on various targets, including ppc, x86, |
| etc. On X86, we miss a bunch of 'rotate by variable' cases because the rotate |
| matching code in dag combine doesn't look through truncates aggressively |
| enough. Here are some testcases reduces from GCC PR17886: |
| |
| unsigned long long f5(unsigned long long x, unsigned long long y) { |
| return (x << 8) | ((y >> 48) & 0xffull); |
| } |
| unsigned long long f6(unsigned long long x, unsigned long long y, int z) { |
| switch(z) { |
| case 1: |
| return (x << 8) | ((y >> 48) & 0xffull); |
| case 2: |
| return (x << 16) | ((y >> 40) & 0xffffull); |
| case 3: |
| return (x << 24) | ((y >> 32) & 0xffffffull); |
| case 4: |
| return (x << 32) | ((y >> 24) & 0xffffffffull); |
| default: |
| return (x << 40) | ((y >> 16) & 0xffffffffffull); |
| } |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| This (and similar related idioms): |
| |
| unsigned int foo(unsigned char i) { |
| return i | (i<<8) | (i<<16) | (i<<24); |
| } |
| |
| compiles into: |
| |
| define i32 @foo(i8 zeroext %i) nounwind readnone ssp noredzone { |
| entry: |
| %conv = zext i8 %i to i32 |
| %shl = shl i32 %conv, 8 |
| %shl5 = shl i32 %conv, 16 |
| %shl9 = shl i32 %conv, 24 |
| %or = or i32 %shl9, %conv |
| %or6 = or i32 %or, %shl5 |
| %or10 = or i32 %or6, %shl |
| ret i32 %or10 |
| } |
| |
| it would be better as: |
| |
| unsigned int bar(unsigned char i) { |
| unsigned int j=i | (i << 8); |
| return j | (j<<16); |
| } |
| |
| aka: |
| |
| define i32 @bar(i8 zeroext %i) nounwind readnone ssp noredzone { |
| entry: |
| %conv = zext i8 %i to i32 |
| %shl = shl i32 %conv, 8 |
| %or = or i32 %shl, %conv |
| %shl5 = shl i32 %or, 16 |
| %or6 = or i32 %shl5, %or |
| ret i32 %or6 |
| } |
| |
| or even i*0x01010101, depending on the speed of the multiplier. The best way to |
| handle this is to canonicalize it to a multiply in IR and have codegen handle |
| lowering multiplies to shifts on cpus where shifts are faster. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We do a number of simplifications in simplify libcalls to strength reduce |
| standard library functions, but we don't currently merge them together. For |
| example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy. This can only |
| be done safely if "b" isn't modified between the strlen and memcpy of course. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We compile this program: (from GCC PR11680) |
| http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487 |
| |
| Into code that runs the same speed in fast/slow modes, but both modes run 2x |
| slower than when compile with GCC (either 4.0 or 4.2): |
| |
| $ llvm-g++ perf.cpp -O3 -fno-exceptions |
| $ time ./a.out fast |
| 1.821u 0.003s 0:01.82 100.0% 0+0k 0+0io 0pf+0w |
| |
| $ g++ perf.cpp -O3 -fno-exceptions |
| $ time ./a.out fast |
| 0.821u 0.001s 0:00.82 100.0% 0+0k 0+0io 0pf+0w |
| |
| It looks like we are making the same inlining decisions, so this may be raw |
| codegen badness or something else (haven't investigated). |
| |
| //===---------------------------------------------------------------------===// |
| |
| We miss some instcombines for stuff like this: |
| void bar (void); |
| void foo (unsigned int a) { |
| /* This one is equivalent to a >= (3 << 2). */ |
| if ((a >> 2) >= 3) |
| bar (); |
| } |
| |
| A few other related ones are in GCC PR14753. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Divisibility by constant can be simplified (according to GCC PR12849) from |
| being a mulhi to being a mul lo (cheaper). Testcase: |
| |
| void bar(unsigned n) { |
| if (n % 3 == 0) |
| true(); |
| } |
| |
| This is equivalent to the following, where 2863311531 is the multiplicative |
| inverse of 3, and 1431655766 is ((2^32)-1)/3+1: |
| void bar(unsigned n) { |
| if (n * 2863311531U < 1431655766U) |
| true(); |
| } |
| |
| The same transformation can work with an even modulo with the addition of a |
| rotate: rotate the result of the multiply to the right by the number of bits |
| which need to be zero for the condition to be true, and shrink the compare RHS |
| by the same amount. Unless the target supports rotates, though, that |
| transformation probably isn't worthwhile. |
| |
| The transformation can also easily be made to work with non-zero equality |
| comparisons: just transform, for example, "n % 3 == 1" to "(n-1) % 3 == 0". |
| |
| //===---------------------------------------------------------------------===// |
| |
| Better mod/ref analysis for scanf would allow us to eliminate the vtable and a |
| bunch of other stuff from this example (see PR1604): |
| |
| #include <cstdio> |
| struct test { |
| int val; |
| virtual ~test() {} |
| }; |
| |
| int main() { |
| test t; |
| std::scanf("%d", &t.val); |
| std::printf("%d\n", t.val); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| These functions perform the same computation, but produce different assembly. |
| |
| define i8 @select(i8 %x) readnone nounwind { |
| %A = icmp ult i8 %x, 250 |
| %B = select i1 %A, i8 0, i8 1 |
| ret i8 %B |
| } |
| |
| define i8 @addshr(i8 %x) readnone nounwind { |
| %A = zext i8 %x to i9 |
| %B = add i9 %A, 6 ;; 256 - 250 == 6 |
| %C = lshr i9 %B, 8 |
| %D = trunc i9 %C to i8 |
| ret i8 %D |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| From gcc bug 24696: |
| int |
| f (unsigned long a, unsigned long b, unsigned long c) |
| { |
| return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0); |
| } |
| int |
| f (unsigned long a, unsigned long b, unsigned long c) |
| { |
| return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0); |
| } |
| Both should combine to ((a|b) & (c-1)) != 0. Currently not optimized with |
| "clang -emit-llvm-bc | opt -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| From GCC Bug 20192: |
| #define PMD_MASK (~((1UL << 23) - 1)) |
| void clear_pmd_range(unsigned long start, unsigned long end) |
| { |
| if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK)) |
| f(); |
| } |
| The expression should optimize to something like |
| "!((start|end)&~PMD_MASK). Currently not optimized with "clang |
| -emit-llvm-bc | opt -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return |
| i;} |
| unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;} |
| These should combine to the same thing. Currently, the first function |
| produces better code on X86. |
| |
| //===---------------------------------------------------------------------===// |
| |
| From GCC Bug 15784: |
| #define abs(x) x>0?x:-x |
| int f(int x, int y) |
| { |
| return (abs(x)) >= 0; |
| } |
| This should optimize to x == INT_MIN. (With -fwrapv.) Currently not |
| optimized with "clang -emit-llvm-bc | opt -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| From GCC Bug 14753: |
| void |
| rotate_cst (unsigned int a) |
| { |
| a = (a << 10) | (a >> 22); |
| if (a == 123) |
| bar (); |
| } |
| void |
| minus_cst (unsigned int a) |
| { |
| unsigned int tem; |
| |
| tem = 20 - a; |
| if (tem == 5) |
| bar (); |
| } |
| void |
| mask_gt (unsigned int a) |
| { |
| /* This is equivalent to a > 15. */ |
| if ((a & ~7) > 8) |
| bar (); |
| } |
| void |
| rshift_gt (unsigned int a) |
| { |
| /* This is equivalent to a > 23. */ |
| if ((a >> 2) > 5) |
| bar (); |
| } |
| All should simplify to a single comparison. All of these are |
| currently not optimized with "clang -emit-llvm-bc | opt |
| -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| From GCC Bug 32605: |
| int c(int* x) {return (char*)x+2 == (char*)x;} |
| Should combine to 0. Currently not optimized with "clang |
| -emit-llvm-bc | opt -std-compile-opts" (although llc can optimize it). |
| |
| //===---------------------------------------------------------------------===// |
| |
| int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;} |
| Should be combined to "((b >> 1) | b) & 1". Currently not optimized |
| with "clang -emit-llvm-bc | opt -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);} |
| Should combine to "x | (y & 3)". Currently not optimized with "clang |
| -emit-llvm-bc | opt -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);} |
| Should fold to "(~a & c) | (a & b)". Currently not optimized with |
| "clang -emit-llvm-bc | opt -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| int a(int a,int b) {return (~(a|b))|a;} |
| Should fold to "a|~b". Currently not optimized with "clang |
| -emit-llvm-bc | opt -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| int a(int a, int b) {return (a&&b) || (a&&!b);} |
| Should fold to "a". Currently not optimized with "clang -emit-llvm-bc |
| | opt -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| int a(int a, int b, int c) {return (a&&b) || (!a&&c);} |
| Should fold to "a ? b : c", or at least something sane. Currently not |
| optimized with "clang -emit-llvm-bc | opt -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);} |
| Should fold to a && (b || c). Currently not optimized with "clang |
| -emit-llvm-bc | opt -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| int a(int x) {return x | ((x & 8) ^ 8);} |
| Should combine to x | 8. Currently not optimized with "clang |
| -emit-llvm-bc | opt -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| int a(int x) {return x ^ ((x & 8) ^ 8);} |
| Should also combine to x | 8. Currently not optimized with "clang |
| -emit-llvm-bc | opt -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| int a(int x) {return ((x | -9) ^ 8) & x;} |
| Should combine to x & -9. Currently not optimized with "clang |
| -emit-llvm-bc | opt -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;} |
| Should combine to "a * 0x88888888 >> 31". Currently not optimized |
| with "clang -emit-llvm-bc | opt -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| unsigned a(char* x) {if ((*x & 32) == 0) return b();} |
| There's an unnecessary zext in the generated code with "clang |
| -emit-llvm-bc | opt -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| unsigned a(unsigned long long x) {return 40 * (x >> 1);} |
| Should combine to "20 * (((unsigned)x) & -2)". Currently not |
| optimized with "clang -emit-llvm-bc | opt -std-compile-opts". |
| |
| //===---------------------------------------------------------------------===// |
| |
| This was noticed in the entryblock for grokdeclarator in 403.gcc: |
| |
| %tmp = icmp eq i32 %decl_context, 4 |
| %decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context |
| %tmp1 = icmp eq i32 %decl_context_addr.0, 1 |
| %decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0 |
| |
| tmp1 should be simplified to something like: |
| (!tmp || decl_context == 1) |
| |
| This allows recursive simplifications, tmp1 is used all over the place in |
| the function, e.g. by: |
| |
| %tmp23 = icmp eq i32 %decl_context_addr.1, 0 ; <i1> [#uses=1] |
| %tmp24 = xor i1 %tmp1, true ; <i1> [#uses=1] |
| %or.cond8 = and i1 %tmp23, %tmp24 ; <i1> [#uses=1] |
| |
| later. |
| |
| //===---------------------------------------------------------------------===// |
| |
| [STORE SINKING] |
| |
| Store sinking: This code: |
| |
| void f (int n, int *cond, int *res) { |
| int i; |
| *res = 0; |
| for (i = 0; i < n; i++) |
| if (*cond) |
| *res ^= 234; /* (*) */ |
| } |
| |
| On this function GVN hoists the fully redundant value of *res, but nothing |
| moves the store out. This gives us this code: |
| |
| bb: ; preds = %bb2, %entry |
| %.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ] |
| %i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ] |
| %1 = load i32* %cond, align 4 |
| %2 = icmp eq i32 %1, 0 |
| br i1 %2, label %bb2, label %bb1 |
| |
| bb1: ; preds = %bb |
| %3 = xor i32 %.rle, 234 |
| store i32 %3, i32* %res, align 4 |
| br label %bb2 |
| |
| bb2: ; preds = %bb, %bb1 |
| %.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ] |
| %indvar.next = add i32 %i.05, 1 |
| %exitcond = icmp eq i32 %indvar.next, %n |
| br i1 %exitcond, label %return, label %bb |
| |
| DSE should sink partially dead stores to get the store out of the loop. |
| |
| Here's another partial dead case: |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395 |
| |
| //===---------------------------------------------------------------------===// |
| |
| Scalar PRE hoists the mul in the common block up to the else: |
| |
| int test (int a, int b, int c, int g) { |
| int d, e; |
| if (a) |
| d = b * c; |
| else |
| d = b - c; |
| e = b * c + g; |
| return d + e; |
| } |
| |
| It would be better to do the mul once to reduce codesize above the if. |
| This is GCC PR38204. |
| |
| |
| //===---------------------------------------------------------------------===// |
| This simple function from 179.art: |
| |
| int winner, numf2s; |
| struct { double y; int reset; } *Y; |
| |
| void find_match() { |
| int i; |
| winner = 0; |
| for (i=0;i<numf2s;i++) |
| if (Y[i].y > Y[winner].y) |
| winner =i; |
| } |
| |
| Compiles into (with clang TBAA): |
| |
| for.body: ; preds = %for.inc, %bb.nph |
| %indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.inc ] |
| %i.01718 = phi i32 [ 0, %bb.nph ], [ %i.01719, %for.inc ] |
| %tmp4 = getelementptr inbounds %struct.anon* %tmp3, i64 %indvar, i32 0 |
| %tmp5 = load double* %tmp4, align 8, !tbaa !4 |
| %idxprom7 = sext i32 %i.01718 to i64 |
| %tmp10 = getelementptr inbounds %struct.anon* %tmp3, i64 %idxprom7, i32 0 |
| %tmp11 = load double* %tmp10, align 8, !tbaa !4 |
| %cmp12 = fcmp ogt double %tmp5, %tmp11 |
| br i1 %cmp12, label %if.then, label %for.inc |
| |
| if.then: ; preds = %for.body |
| %i.017 = trunc i64 %indvar to i32 |
| br label %for.inc |
| |
| for.inc: ; preds = %for.body, %if.then |
| %i.01719 = phi i32 [ %i.01718, %for.body ], [ %i.017, %if.then ] |
| %indvar.next = add i64 %indvar, 1 |
| %exitcond = icmp eq i64 %indvar.next, %tmp22 |
| br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body |
| |
| |
| It is good that we hoisted the reloads of numf2's, and Y out of the loop and |
| sunk the store to winner out. |
| |
| However, this is awful on several levels: the conditional truncate in the loop |
| (-indvars at fault? why can't we completely promote the IV to i64?). |
| |
| Beyond that, we have a partially redundant load in the loop: if "winner" (aka |
| %i.01718) isn't updated, we reload Y[winner].y the next time through the loop. |
| Similarly, the addressing that feeds it (including the sext) is redundant. In |
| the end we get this generated assembly: |
| |
| LBB0_2: ## %for.body |
| ## =>This Inner Loop Header: Depth=1 |
| movsd (%rdi), %xmm0 |
| movslq %edx, %r8 |
| shlq $4, %r8 |
| ucomisd (%rcx,%r8), %xmm0 |
| jbe LBB0_4 |
| movl %esi, %edx |
| LBB0_4: ## %for.inc |
| addq $16, %rdi |
| incq %rsi |
| cmpq %rsi, %rax |
| jne LBB0_2 |
| |
| All things considered this isn't too bad, but we shouldn't need the movslq or |
| the shlq instruction, or the load folded into ucomisd every time through the |
| loop. |
| |
| On an x86-specific topic, if the loop can't be restructure, the movl should be a |
| cmov. |
| |
| //===---------------------------------------------------------------------===// |
| |
| [STORE SINKING] |
| |
| GCC PR37810 is an interesting case where we should sink load/store reload |
| into the if block and outside the loop, so we don't reload/store it on the |
| non-call path. |
| |
| for () { |
| *P += 1; |
| if () |
| call(); |
| else |
| ... |
| -> |
| tmp = *P |
| for () { |
| tmp += 1; |
| if () { |
| *P = tmp; |
| call(); |
| tmp = *P; |
| } else ... |
| } |
| *P = tmp; |
| |
| We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but |
| we don't sink the store. We need partially dead store sinking. |
| |
| //===---------------------------------------------------------------------===// |
| |
| [LOAD PRE CRIT EDGE SPLITTING] |
| |
| GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack |
| leading to excess stack traffic. This could be handled by GVN with some crazy |
| symbolic phi translation. The code we get looks like (g is on the stack): |
| |
| bb2: ; preds = %bb1 |
| .. |
| %9 = getelementptr %struct.f* %g, i32 0, i32 0 |
| store i32 %8, i32* %9, align bel %bb3 |
| |
| bb3: ; preds = %bb1, %bb2, %bb |
| %c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ] |
| %b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ] |
| %10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0 |
| %11 = load i32* %10, align 4 |
| |
| %11 is partially redundant, an in BB2 it should have the value %8. |
| |
| GCC PR33344 and PR35287 are similar cases. |
| |
| |
| //===---------------------------------------------------------------------===// |
| |
| [LOAD PRE] |
| |
| There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the |
| GCC testsuite, ones we don't get yet are (checked through loadpre25): |
| |
| [CRIT EDGE BREAKING] |
| loadpre3.c predcom-4.c |
| |
| [PRE OF READONLY CALL] |
| loadpre5.c |
| |
| [TURN SELECT INTO BRANCH] |
| loadpre14.c loadpre15.c |
| |
| actually a conditional increment: loadpre18.c loadpre19.c |
| |
| //===---------------------------------------------------------------------===// |
| |
| [LOAD PRE / STORE SINKING / SPEC HACK] |
| |
| This is a chunk of code from 456.hmmer: |
| |
| int f(int M, int *mc, int *mpp, int *tpmm, int *ip, int *tpim, int *dpp, |
| int *tpdm, int xmb, int *bp, int *ms) { |
| int k, sc; |
| for (k = 1; k <= M; k++) { |
| mc[k] = mpp[k-1] + tpmm[k-1]; |
| if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc; |
| if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc; |
| if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc; |
| mc[k] += ms[k]; |
| } |
| } |
| |
| It is very profitable for this benchmark to turn the conditional stores to mc[k] |
| into a conditional move (select instr in IR) and allow the final store to do the |
| store. See GCC PR27313 for more details. Note that this is valid to xform even |
| with the new C++ memory model, since mc[k] is previously loaded and later |
| stored. |
| |
| //===---------------------------------------------------------------------===// |
| |
| [SCALAR PRE] |
| There are many PRE testcases in testsuite/gcc.dg/tree-ssa/ssa-pre-*.c in the |
| GCC testsuite. |
| |
| //===---------------------------------------------------------------------===// |
| |
| There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the |
| GCC testsuite. For example, we get the first example in predcom-1.c, but |
| miss the second one: |
| |
| unsigned fib[1000]; |
| unsigned avg[1000]; |
| |
| __attribute__ ((noinline)) |
| void count_averages(int n) { |
| int i; |
| for (i = 1; i < n; i++) |
| avg[i] = (((unsigned long) fib[i - 1] + fib[i] + fib[i + 1]) / 3) & 0xffff; |
| } |
| |
| which compiles into two loads instead of one in the loop. |
| |
| predcom-2.c is the same as predcom-1.c |
| |
| predcom-3.c is very similar but needs loads feeding each other instead of |
| store->load. |
| |
| |
| //===---------------------------------------------------------------------===// |
| |
| [ALIAS ANALYSIS] |
| |
| Type based alias analysis: |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705 |
| |
| We should do better analysis of posix_memalign. At the least it should |
| no-capture its pointer argument, at best, we should know that the out-value |
| result doesn't point to anything (like malloc). One example of this is in |
| SingleSource/Benchmarks/Misc/dt.c |
| |
| //===---------------------------------------------------------------------===// |
| |
| Interesting missed case because of control flow flattening (should be 2 loads): |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629 |
| With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as | |
| opt -mem2reg -gvn -instcombine | llvm-dis |
| we miss it because we need 1) CRIT EDGE 2) MULTIPLE DIFFERENT |
| VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS |
| |
| //===---------------------------------------------------------------------===// |
| |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633 |
| We could eliminate the branch condition here, loading from null is undefined: |
| |
| struct S { int w, x, y, z; }; |
| struct T { int r; struct S s; }; |
| void bar (struct S, int); |
| void foo (int a, struct T b) |
| { |
| struct S *c = 0; |
| if (a) |
| c = &b.s; |
| bar (*c, a); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| simplifylibcalls should do several optimizations for strspn/strcspn: |
| |
| strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn): |
| |
| size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2, |
| int __reject3) { |
| register size_t __result = 0; |
| while (__s[__result] != '\0' && __s[__result] != __reject1 && |
| __s[__result] != __reject2 && __s[__result] != __reject3) |
| ++__result; |
| return __result; |
| } |
| |
| This should turn into a switch on the character. See PR3253 for some notes on |
| codegen. |
| |
| 456.hmmer apparently uses strcspn and strspn a lot. 471.omnetpp uses strspn. |
| |
| //===---------------------------------------------------------------------===// |
| |
| "gas" uses this idiom: |
| else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string)) |
| .. |
| else if (strchr ("<>", *intel_parser.op_string) |
| |
| Those should be turned into a switch. |
| |
| //===---------------------------------------------------------------------===// |
| |
| 252.eon contains this interesting code: |
| |
| %3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0 |
| %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind |
| %strlen = call i32 @strlen(i8* %3072) ; uses = 1 |
| %endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen |
| call void @llvm.memcpy.i32(i8* %endptr, |
| i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1) |
| %3074 = call i32 @strlen(i8* %endptr) nounwind readonly |
| |
| This is interesting for a couple reasons. First, in this: |
| |
| The memcpy+strlen strlen can be replaced with: |
| |
| %3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly |
| |
| Because the destination was just copied into the specified memory buffer. This, |
| in turn, can be constant folded to "4". |
| |
| In other code, it contains: |
| |
| %endptr6978 = bitcast i8* %endptr69 to i32* |
| store i32 7107374, i32* %endptr6978, align 1 |
| %3167 = call i32 @strlen(i8* %endptr69) nounwind readonly |
| |
| Which could also be constant folded. Whatever is producing this should probably |
| be fixed to leave this as a memcpy from a string. |
| |
| Further, eon also has an interesting partially redundant strlen call: |
| |
| bb8: ; preds = %_ZN18eonImageCalculatorC1Ev.exit |
| %682 = getelementptr i8** %argv, i32 6 ; <i8**> [#uses=2] |
| %683 = load i8** %682, align 4 ; <i8*> [#uses=4] |
| %684 = load i8* %683, align 1 ; <i8> [#uses=1] |
| %685 = icmp eq i8 %684, 0 ; <i1> [#uses=1] |
| br i1 %685, label %bb10, label %bb9 |
| |
| bb9: ; preds = %bb8 |
| %686 = call i32 @strlen(i8* %683) nounwind readonly |
| %687 = icmp ugt i32 %686, 254 ; <i1> [#uses=1] |
| br i1 %687, label %bb10, label %bb11 |
| |
| bb10: ; preds = %bb9, %bb8 |
| %688 = call i32 @strlen(i8* %683) nounwind readonly |
| |
| This could be eliminated by doing the strlen once in bb8, saving code size and |
| improving perf on the bb8->9->10 path. |
| |
| //===---------------------------------------------------------------------===// |
| |
| I see an interesting fully redundant call to strlen left in 186.crafty:InputMove |
| which looks like: |
| %movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0 |
| |
| |
| bb62: ; preds = %bb55, %bb53 |
| %promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ] |
| %171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1 |
| %172 = add i32 %171, -1 ; <i32> [#uses=1] |
| %173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172 |
| |
| ... no stores ... |
| br i1 %or.cond, label %bb65, label %bb72 |
| |
| bb65: ; preds = %bb62 |
| store i8 0, i8* %173, align 1 |
| br label %bb72 |
| |
| bb72: ; preds = %bb65, %bb62 |
| %trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ] |
| %177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1 |
| |
| Note that on the bb62->bb72 path, that the %177 strlen call is partially |
| redundant with the %171 call. At worst, we could shove the %177 strlen call |
| up into the bb65 block moving it out of the bb62->bb72 path. However, note |
| that bb65 stores to the string, zeroing out the last byte. This means that on |
| that path the value of %177 is actually just %171-1. A sub is cheaper than a |
| strlen! |
| |
| This pattern repeats several times, basically doing: |
| |
| A = strlen(P); |
| P[A-1] = 0; |
| B = strlen(P); |
| where it is "obvious" that B = A-1. |
| |
| //===---------------------------------------------------------------------===// |
| |
| 186.crafty has this interesting pattern with the "out.4543" variable: |
| |
| call void @llvm.memcpy.i32( |
| i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0), |
| i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1) |
| %101 = call@printf(i8* ... @out.4543, i32 0, i32 0)) nounwind |
| |
| It is basically doing: |
| |
| memcpy(globalarray, "string"); |
| printf(..., globalarray); |
| |
| Anyway, by knowing that printf just reads the memory and forward substituting |
| the string directly into the printf, this eliminates reads from globalarray. |
| Since this pattern occurs frequently in crafty (due to the "DisplayTime" and |
| other similar functions) there are many stores to "out". Once all the printfs |
| stop using "out", all that is left is the memcpy's into it. This should allow |
| globalopt to remove the "stored only" global. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This code: |
| |
| define inreg i32 @foo(i8* inreg %p) nounwind { |
| %tmp0 = load i8* %p |
| %tmp1 = ashr i8 %tmp0, 5 |
| %tmp2 = sext i8 %tmp1 to i32 |
| ret i32 %tmp2 |
| } |
| |
| could be dagcombine'd to a sign-extending load with a shift. |
| For example, on x86 this currently gets this: |
| |
| movb (%eax), %al |
| sarb $5, %al |
| movsbl %al, %eax |
| |
| while it could get this: |
| |
| movsbl (%eax), %eax |
| sarl $5, %eax |
| |
| //===---------------------------------------------------------------------===// |
| |
| GCC PR31029: |
| |
| int test(int x) { return 1-x == x; } // --> return false |
| int test2(int x) { return 2-x == x; } // --> return x == 1 ? |
| |
| Always foldable for odd constants, what is the rule for even? |
| |
| //===---------------------------------------------------------------------===// |
| |
| PR 3381: GEP to field of size 0 inside a struct could be turned into GEP |
| for next field in struct (which is at same address). |
| |
| For example: store of float into { {{}}, float } could be turned into a store to |
| the float directly. |
| |
| //===---------------------------------------------------------------------===// |
| |
| The arg promotion pass should make use of nocapture to make its alias analysis |
| stuff much more precise. |
| |
| //===---------------------------------------------------------------------===// |
| |
| The following functions should be optimized to use a select instead of a |
| branch (from gcc PR40072): |
| |
| char char_int(int m) {if(m>7) return 0; return m;} |
| int int_char(char m) {if(m>7) return 0; return m;} |
| |
| //===---------------------------------------------------------------------===// |
| |
| int func(int a, int b) { if (a & 0x80) b |= 0x80; else b &= ~0x80; return b; } |
| |
| Generates this: |
| |
| define i32 @func(i32 %a, i32 %b) nounwind readnone ssp { |
| entry: |
| %0 = and i32 %a, 128 ; <i32> [#uses=1] |
| %1 = icmp eq i32 %0, 0 ; <i1> [#uses=1] |
| %2 = or i32 %b, 128 ; <i32> [#uses=1] |
| %3 = and i32 %b, -129 ; <i32> [#uses=1] |
| %b_addr.0 = select i1 %1, i32 %3, i32 %2 ; <i32> [#uses=1] |
| ret i32 %b_addr.0 |
| } |
| |
| However, it's functionally equivalent to: |
| |
| b = (b & ~0x80) | (a & 0x80); |
| |
| Which generates this: |
| |
| define i32 @func(i32 %a, i32 %b) nounwind readnone ssp { |
| entry: |
| %0 = and i32 %b, -129 ; <i32> [#uses=1] |
| %1 = and i32 %a, 128 ; <i32> [#uses=1] |
| %2 = or i32 %0, %1 ; <i32> [#uses=1] |
| ret i32 %2 |
| } |
| |
| This can be generalized for other forms: |
| |
| b = (b & ~0x80) | (a & 0x40) << 1; |
| |
| //===---------------------------------------------------------------------===// |
| |
| These two functions produce different code. They shouldn't: |
| |
| #include <stdint.h> |
| |
| uint8_t p1(uint8_t b, uint8_t a) { |
| b = (b & ~0xc0) | (a & 0xc0); |
| return (b); |
| } |
| |
| uint8_t p2(uint8_t b, uint8_t a) { |
| b = (b & ~0x40) | (a & 0x40); |
| b = (b & ~0x80) | (a & 0x80); |
| return (b); |
| } |
| |
| define zeroext i8 @p1(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp { |
| entry: |
| %0 = and i8 %b, 63 ; <i8> [#uses=1] |
| %1 = and i8 %a, -64 ; <i8> [#uses=1] |
| %2 = or i8 %1, %0 ; <i8> [#uses=1] |
| ret i8 %2 |
| } |
| |
| define zeroext i8 @p2(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp { |
| entry: |
| %0 = and i8 %b, 63 ; <i8> [#uses=1] |
| %.masked = and i8 %a, 64 ; <i8> [#uses=1] |
| %1 = and i8 %a, -128 ; <i8> [#uses=1] |
| %2 = or i8 %1, %0 ; <i8> [#uses=1] |
| %3 = or i8 %2, %.masked ; <i8> [#uses=1] |
| ret i8 %3 |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| IPSCCP does not currently propagate argument dependent constants through |
| functions where it does not not all of the callers. This includes functions |
| with normal external linkage as well as templates, C99 inline functions etc. |
| Specifically, it does nothing to: |
| |
| define i32 @test(i32 %x, i32 %y, i32 %z) nounwind { |
| entry: |
| %0 = add nsw i32 %y, %z |
| %1 = mul i32 %0, %x |
| %2 = mul i32 %y, %z |
| %3 = add nsw i32 %1, %2 |
| ret i32 %3 |
| } |
| |
| define i32 @test2() nounwind { |
| entry: |
| %0 = call i32 @test(i32 1, i32 2, i32 4) nounwind |
| ret i32 %0 |
| } |
| |
| It would be interesting extend IPSCCP to be able to handle simple cases like |
| this, where all of the arguments to a call are constant. Because IPSCCP runs |
| before inlining, trivial templates and inline functions are not yet inlined. |
| The results for a function + set of constant arguments should be memoized in a |
| map. |
| |
| //===---------------------------------------------------------------------===// |
| |
| The libcall constant folding stuff should be moved out of SimplifyLibcalls into |
| libanalysis' constantfolding logic. This would allow IPSCCP to be able to |
| handle simple things like this: |
| |
| static int foo(const char *X) { return strlen(X); } |
| int bar() { return foo("abcd"); } |
| |
| //===---------------------------------------------------------------------===// |
| |
| functionattrs doesn't know much about memcpy/memset. This function should be |
| marked readnone rather than readonly, since it only twiddles local memory, but |
| functionattrs doesn't handle memset/memcpy/memmove aggressively: |
| |
| struct X { int *p; int *q; }; |
| int foo() { |
| int i = 0, j = 1; |
| struct X x, y; |
| int **p; |
| y.p = &i; |
| x.q = &j; |
| p = __builtin_memcpy (&x, &y, sizeof (int *)); |
| return **p; |
| } |
| |
| This can be seen at: |
| $ clang t.c -S -o - -mkernel -O0 -emit-llvm | opt -functionattrs -S |
| |
| |
| //===---------------------------------------------------------------------===// |
| |
| Missed instcombine transformation: |
| define i1 @a(i32 %x) nounwind readnone { |
| entry: |
| %cmp = icmp eq i32 %x, 30 |
| %sub = add i32 %x, -30 |
| %cmp2 = icmp ugt i32 %sub, 9 |
| %or = or i1 %cmp, %cmp2 |
| ret i1 %or |
| } |
| This should be optimized to a single compare. Testcase derived from gcc. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Missed instcombine or reassociate transformation: |
| int a(int a, int b) { return (a==12)&(b>47)&(b<58); } |
| |
| The sgt and slt should be combined into a single comparison. Testcase derived |
| from gcc. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Missed instcombine transformation: |
| |
| %382 = srem i32 %tmp14.i, 64 ; [#uses=1] |
| %383 = zext i32 %382 to i64 ; [#uses=1] |
| %384 = shl i64 %381, %383 ; [#uses=1] |
| %385 = icmp slt i32 %tmp14.i, 64 ; [#uses=1] |
| |
| The srem can be transformed to an and because if %tmp14.i is negative, the |
| shift is undefined. Testcase derived from 403.gcc. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This is a range comparison on a divided result (from 403.gcc): |
| |
| %1337 = sdiv i32 %1336, 8 ; [#uses=1] |
| %.off.i208 = add i32 %1336, 7 ; [#uses=1] |
| %1338 = icmp ult i32 %.off.i208, 15 ; [#uses=1] |
| |
| We already catch this (removing the sdiv) if there isn't an add, we should |
| handle the 'add' as well. This is a common idiom with it's builtin_alloca code. |
| C testcase: |
| |
| int a(int x) { return (unsigned)(x/16+7) < 15; } |
| |
| Another similar case involves truncations on 64-bit targets: |
| |
| %361 = sdiv i64 %.046, 8 ; [#uses=1] |
| %362 = trunc i64 %361 to i32 ; [#uses=2] |
| ... |
| %367 = icmp eq i32 %362, 0 ; [#uses=1] |
| |
| //===---------------------------------------------------------------------===// |
| |
| Missed instcombine/dagcombine transformation: |
| define void @lshift_lt(i8 zeroext %a) nounwind { |
| entry: |
| %conv = zext i8 %a to i32 |
| %shl = shl i32 %conv, 3 |
| %cmp = icmp ult i32 %shl, 33 |
| br i1 %cmp, label %if.then, label %if.end |
| |
| if.then: |
| tail call void @bar() nounwind |
| ret void |
| |
| if.end: |
| ret void |
| } |
| declare void @bar() nounwind |
| |
| The shift should be eliminated. Testcase derived from gcc. |
| |
| //===---------------------------------------------------------------------===// |
| |
| These compile into different code, one gets recognized as a switch and the |
| other doesn't due to phase ordering issues (PR6212): |
| |
| int test1(int mainType, int subType) { |
| if (mainType == 7) |
| subType = 4; |
| else if (mainType == 9) |
| subType = 6; |
| else if (mainType == 11) |
| subType = 9; |
| return subType; |
| } |
| |
| int test2(int mainType, int subType) { |
| if (mainType == 7) |
| subType = 4; |
| if (mainType == 9) |
| subType = 6; |
| if (mainType == 11) |
| subType = 9; |
| return subType; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| The following test case (from PR6576): |
| |
| define i32 @mul(i32 %a, i32 %b) nounwind readnone { |
| entry: |
| %cond1 = icmp eq i32 %b, 0 ; <i1> [#uses=1] |
| br i1 %cond1, label %exit, label %bb.nph |
| bb.nph: ; preds = %entry |
| %tmp = mul i32 %b, %a ; <i32> [#uses=1] |
| ret i32 %tmp |
| exit: ; preds = %entry |
| ret i32 0 |
| } |
| |
| could be reduced to: |
| |
| define i32 @mul(i32 %a, i32 %b) nounwind readnone { |
| entry: |
| %tmp = mul i32 %b, %a |
| ret i32 %tmp |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| We should use DSE + llvm.lifetime.end to delete dead vtable pointer updates. |
| See GCC PR34949 |
| |
| Another interesting case is that something related could be used for variables |
| that go const after their ctor has finished. In these cases, globalopt (which |
| can statically run the constructor) could mark the global const (so it gets put |
| in the readonly section). A testcase would be: |
| |
| #include <complex> |
| using namespace std; |
| const complex<char> should_be_in_rodata (42,-42); |
| complex<char> should_be_in_data (42,-42); |
| complex<char> should_be_in_bss; |
| |
| Where we currently evaluate the ctors but the globals don't become const because |
| the optimizer doesn't know they "become const" after the ctor is done. See |
| GCC PR4131 for more examples. |
| |
| //===---------------------------------------------------------------------===// |
| |
| In this code: |
| |
| long foo(long x) { |
| return x > 1 ? x : 1; |
| } |
| |
| LLVM emits a comparison with 1 instead of 0. 0 would be equivalent |
| and cheaper on most targets. |
| |
| LLVM prefers comparisons with zero over non-zero in general, but in this |
| case it choses instead to keep the max operation obvious. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Take the following testcase on x86-64 (similar testcases exist for all targets |
| with addc/adde): |
| |
| define void @a(i64* nocapture %s, i64* nocapture %t, i64 %a, i64 %b, |
| i64 %c) nounwind { |
| entry: |
| %0 = zext i64 %a to i128 ; <i128> [#uses=1] |
| %1 = zext i64 %b to i128 ; <i128> [#uses=1] |
| %2 = add i128 %1, %0 ; <i128> [#uses=2] |
| %3 = zext i64 %c to i128 ; <i128> [#uses=1] |
| %4 = shl i128 %3, 64 ; <i128> [#uses=1] |
| %5 = add i128 %4, %2 ; <i128> [#uses=1] |
| %6 = lshr i128 %5, 64 ; <i128> [#uses=1] |
| %7 = trunc i128 %6 to i64 ; <i64> [#uses=1] |
| store i64 %7, i64* %s, align 8 |
| %8 = trunc i128 %2 to i64 ; <i64> [#uses=1] |
| store i64 %8, i64* %t, align 8 |
| ret void |
| } |
| |
| Generated code: |
| addq %rcx, %rdx |
| movl $0, %eax |
| adcq $0, %rax |
| addq %r8, %rax |
| movq %rax, (%rdi) |
| movq %rdx, (%rsi) |
| ret |
| |
| Expected code: |
| addq %rcx, %rdx |
| adcq $0, %r8 |
| movq %r8, (%rdi) |
| movq %rdx, (%rsi) |
| ret |
| |
| The generated SelectionDAG has an ADD of an ADDE, where both operands of the |
| ADDE are zero. Replacing one of the operands of the ADDE with the other operand |
| of the ADD, and replacing the ADD with the ADDE, should give the desired result. |
| |
| (That said, we are doing a lot better than gcc on this testcase. :) ) |
| |
| //===---------------------------------------------------------------------===// |
| |
| Switch lowering generates less than ideal code for the following switch: |
| define void @a(i32 %x) nounwind { |
| entry: |
| switch i32 %x, label %if.end [ |
| i32 0, label %if.then |
| i32 1, label %if.then |
| i32 2, label %if.then |
| i32 3, label %if.then |
| i32 5, label %if.then |
| ] |
| if.then: |
| tail call void @foo() nounwind |
| ret void |
| if.end: |
| ret void |
| } |
| declare void @foo() |
| |
| Generated code on x86-64 (other platforms give similar results): |
| a: |
| cmpl $5, %edi |
| ja .LBB0_2 |
| movl %edi, %eax |
| movl $47, %ecx |
| btq %rax, %rcx |
| jb .LBB0_3 |
| .LBB0_2: |
| ret |
| .LBB0_3: |
| jmp foo # TAILCALL |
| |
| The movl+movl+btq+jb could be simplified to a cmpl+jne. |
| |
| Or, if we wanted to be really clever, we could simplify the whole thing to |
| something like the following, which eliminates a branch: |
| xorl $1, %edi |
| cmpl $4, %edi |
| ja .LBB0_2 |
| ret |
| .LBB0_2: |
| jmp foo # TAILCALL |
| //===---------------------------------------------------------------------===// |
| Given a branch where the two target blocks are identical ("ret i32 %b" in |
| both), simplifycfg will simplify them away. But not so for a switch statement: |
| |
| define i32 @f(i32 %a, i32 %b) nounwind readnone { |
| entry: |
| switch i32 %a, label %bb3 [ |
| i32 4, label %bb |
| i32 6, label %bb |
| ] |
| |
| bb: ; preds = %entry, %entry |
| ret i32 %b |
| |
| bb3: ; preds = %entry |
| ret i32 %b |
| } |
| //===---------------------------------------------------------------------===// |
| |
| clang -O3 fails to devirtualize this virtual inheritance case: (GCC PR45875) |
| Looks related to PR3100 |
| |
| struct c1 {}; |
| struct c10 : c1{ |
| virtual void foo (); |
| }; |
| struct c11 : c10, c1{ |
| virtual void f6 (); |
| }; |
| struct c28 : virtual c11{ |
| void f6 (); |
| }; |
| void check_c28 () { |
| c28 obj; |
| c11 *ptr = &obj; |
| ptr->f6 (); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| We compile this: |
| |
| int foo(int a) { return (a & (~15)) / 16; } |
| |
| Into: |
| |
| define i32 @foo(i32 %a) nounwind readnone ssp { |
| entry: |
| %and = and i32 %a, -16 |
| %div = sdiv i32 %and, 16 |
| ret i32 %div |
| } |
| |
| but this code (X & -A)/A is X >> log2(A) when A is a power of 2, so this case |
| should be instcombined into just "a >> 4". |
| |
| We do get this at the codegen level, so something knows about it, but |
| instcombine should catch it earlier: |
| |
| _foo: ## @foo |
| ## BB#0: ## %entry |
| movl %edi, %eax |
| sarl $4, %eax |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| This code (from GCC PR28685): |
| |
| int test(int a, int b) { |
| int lt = a < b; |
| int eq = a == b; |
| if (lt) |
| return 1; |
| return eq; |
| } |
| |
| Is compiled to: |
| |
| define i32 @test(i32 %a, i32 %b) nounwind readnone ssp { |
| entry: |
| %cmp = icmp slt i32 %a, %b |
| br i1 %cmp, label %return, label %if.end |
| |
| if.end: ; preds = %entry |
| %cmp5 = icmp eq i32 %a, %b |
| %conv6 = zext i1 %cmp5 to i32 |
| ret i32 %conv6 |
| |
| return: ; preds = %entry |
| ret i32 1 |
| } |
| |
| it could be: |
| |
| define i32 @test__(i32 %a, i32 %b) nounwind readnone ssp { |
| entry: |
| %0 = icmp sle i32 %a, %b |
| %retval = zext i1 %0 to i32 |
| ret i32 %retval |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| This code can be seen in viterbi: |
| |
| %64 = call noalias i8* @malloc(i64 %62) nounwind |
| ... |
| %67 = call i64 @llvm.objectsize.i64(i8* %64, i1 false) nounwind |
| %68 = call i8* @__memset_chk(i8* %64, i32 0, i64 %62, i64 %67) nounwind |
| |
| llvm.objectsize.i64 should be taught about malloc/calloc, allowing it to |
| fold to %62. This is a security win (overflows of malloc will get caught) |
| and also a performance win by exposing more memsets to the optimizer. |
| |
| This occurs several times in viterbi. |
| |
| Note that this would change the semantics of @llvm.objectsize which by its |
| current definition always folds to a constant. We also should make sure that |
| we remove checking in code like |
| |
| char *p = malloc(strlen(s)+1); |
| __strcpy_chk(p, s, __builtin_objectsize(p, 0)); |
| |
| //===---------------------------------------------------------------------===// |
| |
| This code (from Benchmarks/Dhrystone/dry.c): |
| |
| define i32 @Func1(i32, i32) nounwind readnone optsize ssp { |
| entry: |
| %sext = shl i32 %0, 24 |
| %conv = ashr i32 %sext, 24 |
| %sext6 = shl i32 %1, 24 |
| %conv4 = ashr i32 %sext6, 24 |
| %cmp = icmp eq i32 %conv, %conv4 |
| %. = select i1 %cmp, i32 10000, i32 0 |
| ret i32 %. |
| } |
| |
| Should be simplified into something like: |
| |
| define i32 @Func1(i32, i32) nounwind readnone optsize ssp { |
| entry: |
| %sext = shl i32 %0, 24 |
| %conv = and i32 %sext, 0xFF000000 |
| %sext6 = shl i32 %1, 24 |
| %conv4 = and i32 %sext6, 0xFF000000 |
| %cmp = icmp eq i32 %conv, %conv4 |
| %. = select i1 %cmp, i32 10000, i32 0 |
| ret i32 %. |
| } |
| |
| and then to: |
| |
| define i32 @Func1(i32, i32) nounwind readnone optsize ssp { |
| entry: |
| %conv = and i32 %0, 0xFF |
| %conv4 = and i32 %1, 0xFF |
| %cmp = icmp eq i32 %conv, %conv4 |
| %. = select i1 %cmp, i32 10000, i32 0 |
| ret i32 %. |
| } |
| //===---------------------------------------------------------------------===// |
| |
| clang -O3 currently compiles this code |
| |
| int g(unsigned int a) { |
| unsigned int c[100]; |
| c[10] = a; |
| c[11] = a; |
| unsigned int b = c[10] + c[11]; |
| if(b > a*2) a = 4; |
| else a = 8; |
| return a + 7; |
| } |
| |
| into |
| |
| define i32 @g(i32 a) nounwind readnone { |
| %add = shl i32 %a, 1 |
| %mul = shl i32 %a, 1 |
| %cmp = icmp ugt i32 %add, %mul |
| %a.addr.0 = select i1 %cmp, i32 11, i32 15 |
| ret i32 %a.addr.0 |
| } |
| |
| The icmp should fold to false. This CSE opportunity is only available |
| after GVN and InstCombine have run. |
| |
| //===---------------------------------------------------------------------===// |
| |
| memcpyopt should turn this: |
| |
| define i8* @test10(i32 %x) { |
| %alloc = call noalias i8* @malloc(i32 %x) nounwind |
| call void @llvm.memset.p0i8.i32(i8* %alloc, i8 0, i32 %x, i32 1, i1 false) |
| ret i8* %alloc |
| } |
| |
| into a call to calloc. We should make sure that we analyze calloc as |
| aggressively as malloc though. |
| |
| //===---------------------------------------------------------------------===// |
| |
| clang -O3 doesn't optimize this: |
| |
| void f1(int* begin, int* end) { |
| std::fill(begin, end, 0); |
| } |
| |
| into a memset. This is PR8942. |
| |
| //===---------------------------------------------------------------------===// |
| |
| clang -O3 -fno-exceptions currently compiles this code: |
| |
| void f(int N) { |
| std::vector<int> v(N); |
| |
| extern void sink(void*); sink(&v); |
| } |
| |
| into |
| |
| define void @_Z1fi(i32 %N) nounwind { |
| entry: |
| %v2 = alloca [3 x i32*], align 8 |
| %v2.sub = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 0 |
| %tmpcast = bitcast [3 x i32*]* %v2 to %"class.std::vector"* |
| %conv = sext i32 %N to i64 |
| store i32* null, i32** %v2.sub, align 8, !tbaa !0 |
| %tmp3.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 1 |
| store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0 |
| %tmp4.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 2 |
| store i32* null, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0 |
| %cmp.i.i.i.i = icmp eq i32 %N, 0 |
| br i1 %cmp.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i, label %cond.true.i.i.i.i |
| |
| _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i: ; preds = %entry |
| store i32* null, i32** %v2.sub, align 8, !tbaa !0 |
| store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0 |
| %add.ptr.i5.i.i = getelementptr inbounds i32* null, i64 %conv |
| store i32* %add.ptr.i5.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0 |
| br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit |
| |
| cond.true.i.i.i.i: ; preds = %entry |
| %cmp.i.i.i.i.i = icmp slt i32 %N, 0 |
| br i1 %cmp.i.i.i.i.i, label %if.then.i.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i |
| |
| if.then.i.i.i.i.i: ; preds = %cond.true.i.i.i.i |
| call void @_ZSt17__throw_bad_allocv() noreturn nounwind |
| unreachable |
| |
| _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i: ; preds = %cond.true.i.i.i.i |
| %mul.i.i.i.i.i = shl i64 %conv, 2 |
| %call3.i.i.i.i.i = call noalias i8* @_Znwm(i64 %mul.i.i.i.i.i) nounwind |
| %0 = bitcast i8* %call3.i.i.i.i.i to i32* |
| store i32* %0, i32** %v2.sub, align 8, !tbaa !0 |
| store i32* %0, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0 |
| %add.ptr.i.i.i = getelementptr inbounds i32* %0, i64 %conv |
| store i32* %add.ptr.i.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0 |
| call void @llvm.memset.p0i8.i64(i8* %call3.i.i.i.i.i, i8 0, i64 %mul.i.i.i.i.i, i32 4, i1 false) |
| br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit |
| |
| This is just the handling the construction of the vector. Most surprising here |
| is the fact that all three null stores in %entry are dead (because we do no |
| cross-block DSE). |
| |
| Also surprising is that %conv isn't simplified to 0 in %....exit.thread.i.i. |
| This is a because the client of LazyValueInfo doesn't simplify all instruction |
| operands, just selected ones. |
| |
| //===---------------------------------------------------------------------===// |
| |
| clang -O3 -fno-exceptions currently compiles this code: |
| |
| void f(char* a, int n) { |
| __builtin_memset(a, 0, n); |
| for (int i = 0; i < n; ++i) |
| a[i] = 0; |
| } |
| |
| into: |
| |
| define void @_Z1fPci(i8* nocapture %a, i32 %n) nounwind { |
| entry: |
| %conv = sext i32 %n to i64 |
| tail call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %conv, i32 1, i1 false) |
| %cmp8 = icmp sgt i32 %n, 0 |
| br i1 %cmp8, label %for.body.lr.ph, label %for.end |
| |
| for.body.lr.ph: ; preds = %entry |
| %tmp10 = add i32 %n, -1 |
| %tmp11 = zext i32 %tmp10 to i64 |
| %tmp12 = add i64 %tmp11, 1 |
| call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %tmp12, i32 1, i1 false) |
| ret void |
| |
| for.end: ; preds = %entry |
| ret void |
| } |
| |
| This shouldn't need the ((zext (%n - 1)) + 1) game, and it should ideally fold |
| the two memset's together. The issue with %n seems to stem from poor handling |
| of the original loop. |
| |
| To simplify this, we need SCEV to know that "n != 0" because of the dominating |
| conditional. That would turn the second memset into a simple memset of 'n'. |
| |
| //===---------------------------------------------------------------------===// |
| |
| clang -O3 -fno-exceptions currently compiles this code: |
| |
| struct S { |
| unsigned short m1, m2; |
| unsigned char m3, m4; |
| }; |
| |
| void f(int N) { |
| std::vector<S> v(N); |
| extern void sink(void*); sink(&v); |
| } |
| |
| into poor code for zero-initializing 'v' when N is >0. The problem is that |
| S is only 6 bytes, but each element is 8 byte-aligned. We generate a loop and |
| 4 stores on each iteration. If the struct were 8 bytes, this gets turned into |
| a memset. |
| |
| In order to handle this we have to: |
| A) Teach clang to generate metadata for memsets of structs that have holes in |
| them. |
| B) Teach clang to use such a memset for zero init of this struct (since it has |
| a hole), instead of doing elementwise zeroing. |
| |
| //===---------------------------------------------------------------------===// |
| |
| clang -O3 currently compiles this code: |
| |
| extern const int magic; |
| double f() { return 0.0 * magic; } |
| |
| into |
| |
| @magic = external constant i32 |
| |
| define double @_Z1fv() nounwind readnone { |
| entry: |
| %tmp = load i32* @magic, align 4, !tbaa !0 |
| %conv = sitofp i32 %tmp to double |
| %mul = fmul double %conv, 0.000000e+00 |
| ret double %mul |
| } |
| |
| We should be able to fold away this fmul to 0.0. More generally, fmul(x,0.0) |
| can be folded to 0.0 if we can prove that the LHS is not -0.0, not a NaN, and |
| not an INF. The CannotBeNegativeZero predicate in value tracking should be |
| extended to support general "fpclassify" operations that can return |
| yes/no/unknown for each of these predicates. |
| |
| In this predicate, we know that uitofp is trivially never NaN or -0.0, and |
| we know that it isn't +/-Inf if the floating point type has enough exponent bits |
| to represent the largest integer value as < inf. |
| |
| //===---------------------------------------------------------------------===// |
| |
| When optimizing a transformation that can change the sign of 0.0 (such as the |
| 0.0*val -> 0.0 transformation above), it might be provable that the sign of the |
| expression doesn't matter. For example, by the above rules, we can't transform |
| fmul(sitofp(x), 0.0) into 0.0, because x might be -1 and the result of the |
| expression is defined to be -0.0. |
| |
| If we look at the uses of the fmul for example, we might be able to prove that |
| all uses don't care about the sign of zero. For example, if we have: |
| |
| fadd(fmul(sitofp(x), 0.0), 2.0) |
| |
| Since we know that x+2.0 doesn't care about the sign of any zeros in X, we can |
| transform the fmul to 0.0, and then the fadd to 2.0. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We should enhance memcpy/memcpy/memset to allow a metadata node on them |
| indicating that some bytes of the transfer are undefined. This is useful for |
| frontends like clang when lowering struct copies, when some elements of the |
| struct are undefined. Consider something like this: |
| |
| struct x { |
| char a; |
| int b[4]; |
| }; |
| void foo(struct x*P); |
| struct x testfunc() { |
| struct x V1, V2; |
| foo(&V1); |
| V2 = V1; |
| |
| return V2; |
| } |
| |
| We currently compile this to: |
| $ clang t.c -S -o - -O0 -emit-llvm | opt -scalarrepl -S |
| |
| |
| %struct.x = type { i8, [4 x i32] } |
| |
| define void @testfunc(%struct.x* sret %agg.result) nounwind ssp { |
| entry: |
| %V1 = alloca %struct.x, align 4 |
| call void @foo(%struct.x* %V1) |
| %tmp1 = bitcast %struct.x* %V1 to i8* |
| %0 = bitcast %struct.x* %V1 to i160* |
| %srcval1 = load i160* %0, align 4 |
| %tmp2 = bitcast %struct.x* %agg.result to i8* |
| %1 = bitcast %struct.x* %agg.result to i160* |
| store i160 %srcval1, i160* %1, align 4 |
| ret void |
| } |
| |
| This happens because SRoA sees that the temp alloca has is being memcpy'd into |
| and out of and it has holes and it has to be conservative. If we knew about the |
| holes, then this could be much much better. |
| |
| Having information about these holes would also improve memcpy (etc) lowering at |
| llc time when it gets inlined, because we can use smaller transfers. This also |
| avoids partial register stalls in some important cases. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We miss an optzn when lowering divide by some constants. For example: |
| int test(int x) { return x/10; } |
| |
| We produce: |
| |
| _test: ## @test |
| ## BB#0: ## %entry |
| movslq %edi, %rax |
| imulq $1717986919, %rax, %rax ## imm = 0x66666667 |
| movq %rax, %rcx |
| shrq $63, %rcx |
| ** shrq $32, %rax |
| ** sarl $2, %eax |
| addl %ecx, %eax |
| ret |
| |
| The two starred instructions could be replaced with a "sarl $34, %rax". This |
| occurs in 186.crafty very frequently. |
| |
| //===---------------------------------------------------------------------===// |