| //===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the target-independent ELF writer. This file writes out |
| // the ELF file in the following order: |
| // |
| // #1. ELF Header |
| // #2. '.text' section |
| // #3. '.data' section |
| // #4. '.bss' section (conceptual position in file) |
| // ... |
| // #X. '.shstrtab' section |
| // #Y. Section Table |
| // |
| // The entries in the section table are laid out as: |
| // #0. Null entry [required] |
| // #1. ".text" entry - the program code |
| // #2. ".data" entry - global variables with initializers. [ if needed ] |
| // #3. ".bss" entry - global variables without initializers. [ if needed ] |
| // ... |
| // #N. ".shstrtab" entry - String table for the section names. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "elfwriter" |
| |
| #include "ELFWriter.h" |
| #include "ELFCodeEmitter.h" |
| #include "ELF.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Module.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/CodeGen/BinaryObject.h" |
| #include "llvm/CodeGen/FileWriters.h" |
| #include "llvm/CodeGen/MachineCodeEmitter.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/Mangler.h" |
| #include "llvm/Support/Streams.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/Debug.h" |
| #include <list> |
| using namespace llvm; |
| |
| char ELFWriter::ID = 0; |
| /// AddELFWriter - Concrete function to add the ELF writer to the function pass |
| /// manager. |
| MachineCodeEmitter *llvm::AddELFWriter(PassManagerBase &PM, |
| raw_ostream &O, |
| TargetMachine &TM) { |
| ELFWriter *EW = new ELFWriter(O, TM); |
| PM.add(EW); |
| return &EW->getMachineCodeEmitter(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ELFWriter Implementation |
| //===----------------------------------------------------------------------===// |
| |
| ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm) |
| : MachineFunctionPass(&ID), O(o), TM(tm), |
| is64Bit(TM.getTargetData()->getPointerSizeInBits() == 64), |
| isLittleEndian(TM.getTargetData()->isLittleEndian()), |
| ElfHdr(isLittleEndian, is64Bit) { |
| |
| TAI = TM.getTargetAsmInfo(); |
| TEW = TM.getELFWriterInfo(); |
| |
| // Create the machine code emitter object for this target. |
| MCE = new ELFCodeEmitter(*this); |
| |
| // Inital number of sections |
| NumSections = 0; |
| } |
| |
| ELFWriter::~ELFWriter() { |
| delete MCE; |
| } |
| |
| // doInitialization - Emit the file header and all of the global variables for |
| // the module to the ELF file. |
| bool ELFWriter::doInitialization(Module &M) { |
| Mang = new Mangler(M); |
| |
| // ELF Header |
| // ---------- |
| // Fields e_shnum e_shstrndx are only known after all section have |
| // been emitted. They locations in the ouput buffer are recorded so |
| // to be patched up later. |
| // |
| // Note |
| // ---- |
| // emitWord method behaves differently for ELF32 and ELF64, writing |
| // 4 bytes in the former and 8 in the last for *_off and *_addr elf types |
| |
| ElfHdr.emitByte(0x7f); // e_ident[EI_MAG0] |
| ElfHdr.emitByte('E'); // e_ident[EI_MAG1] |
| ElfHdr.emitByte('L'); // e_ident[EI_MAG2] |
| ElfHdr.emitByte('F'); // e_ident[EI_MAG3] |
| |
| ElfHdr.emitByte(TEW->getEIClass()); // e_ident[EI_CLASS] |
| ElfHdr.emitByte(TEW->getEIData()); // e_ident[EI_DATA] |
| ElfHdr.emitByte(EV_CURRENT); // e_ident[EI_VERSION] |
| ElfHdr.emitAlignment(16); // e_ident[EI_NIDENT-EI_PAD] |
| |
| ElfHdr.emitWord16(ET_REL); // e_type |
| ElfHdr.emitWord16(TEW->getEMachine()); // e_machine = target |
| ElfHdr.emitWord32(EV_CURRENT); // e_version |
| ElfHdr.emitWord(0); // e_entry, no entry point in .o file |
| ElfHdr.emitWord(0); // e_phoff, no program header for .o |
| ELFHdr_e_shoff_Offset = ElfHdr.size(); |
| ElfHdr.emitWord(0); // e_shoff = sec hdr table off in bytes |
| ElfHdr.emitWord32(TEW->getEFlags()); // e_flags = whatever the target wants |
| ElfHdr.emitWord16(TEW->getHdrSize()); // e_ehsize = ELF header size |
| ElfHdr.emitWord16(0); // e_phentsize = prog header entry size |
| ElfHdr.emitWord16(0); // e_phnum = # prog header entries = 0 |
| |
| // e_shentsize = Section header entry size |
| ElfHdr.emitWord16(TEW->getSHdrSize()); |
| |
| // e_shnum = # of section header ents |
| ELFHdr_e_shnum_Offset = ElfHdr.size(); |
| ElfHdr.emitWord16(0); // Placeholder |
| |
| // e_shstrndx = Section # of '.shstrtab' |
| ELFHdr_e_shstrndx_Offset = ElfHdr.size(); |
| ElfHdr.emitWord16(0); // Placeholder |
| |
| // Add the null section, which is required to be first in the file. |
| getNullSection(); |
| |
| return false; |
| } |
| |
| unsigned ELFWriter::getGlobalELFLinkage(const GlobalVariable *GV) { |
| if (GV->hasInternalLinkage()) |
| return ELFSym::STB_LOCAL; |
| |
| if (GV->hasWeakLinkage()) |
| return ELFSym::STB_WEAK; |
| |
| return ELFSym::STB_GLOBAL; |
| } |
| |
| // For global symbols without a section, return the Null section as a |
| // placeholder |
| ELFSection &ELFWriter::getGlobalSymELFSection(const GlobalVariable *GV, |
| ELFSym &Sym) { |
| const Section *S = TAI->SectionForGlobal(GV); |
| unsigned Flags = S->getFlags(); |
| unsigned SectionType = ELFSection::SHT_PROGBITS; |
| unsigned SHdrFlags = ELFSection::SHF_ALLOC; |
| DOUT << "Section " << S->getName() << " for global " << GV->getName() << "\n"; |
| |
| // If this is an external global, the symbol does not have a section. |
| if (!GV->hasInitializer()) { |
| Sym.SectionIdx = ELFSection::SHN_UNDEF; |
| return getNullSection(); |
| } |
| |
| const TargetData *TD = TM.getTargetData(); |
| unsigned Align = TD->getPreferredAlignment(GV); |
| Constant *CV = GV->getInitializer(); |
| |
| if (Flags & SectionFlags::Code) |
| SHdrFlags |= ELFSection::SHF_EXECINSTR; |
| if (Flags & SectionFlags::Writeable) |
| SHdrFlags |= ELFSection::SHF_WRITE; |
| if (Flags & SectionFlags::Mergeable) |
| SHdrFlags |= ELFSection::SHF_MERGE; |
| if (Flags & SectionFlags::TLS) |
| SHdrFlags |= ELFSection::SHF_TLS; |
| if (Flags & SectionFlags::Strings) |
| SHdrFlags |= ELFSection::SHF_STRINGS; |
| |
| // If this global has a zero initializer, go to .bss or common section. |
| // Variables are part of the common block if they are zero initialized |
| // and allowed to be merged with other symbols. |
| if (CV->isNullValue() || isa<UndefValue>(CV)) { |
| SectionType = ELFSection::SHT_NOBITS; |
| ELFSection &ElfS = getSection(S->getName(), SectionType, SHdrFlags); |
| if (GV->hasLinkOnceLinkage() || GV->hasWeakLinkage() || |
| GV->hasCommonLinkage()) { |
| Sym.SectionIdx = ELFSection::SHN_COMMON; |
| Sym.IsCommon = true; |
| ElfS.Align = 1; |
| return ElfS; |
| } |
| Sym.IsBss = true; |
| Sym.SectionIdx = ElfS.SectionIdx; |
| if (Align) ElfS.Size = (ElfS.Size + Align-1) & ~(Align-1); |
| ElfS.Align = std::max(ElfS.Align, Align); |
| return ElfS; |
| } |
| |
| Sym.IsConstant = true; |
| ELFSection &ElfS = getSection(S->getName(), SectionType, SHdrFlags); |
| Sym.SectionIdx = ElfS.SectionIdx; |
| ElfS.Align = std::max(ElfS.Align, Align); |
| return ElfS; |
| } |
| |
| void ELFWriter::EmitFunctionDeclaration(const Function *F) { |
| ELFSym GblSym(F); |
| GblSym.setBind(ELFSym::STB_GLOBAL); |
| GblSym.setType(ELFSym::STT_NOTYPE); |
| GblSym.SectionIdx = ELFSection::SHN_UNDEF; |
| SymbolList.push_back(GblSym); |
| } |
| |
| void ELFWriter::EmitGlobalVar(const GlobalVariable *GV) { |
| unsigned SymBind = getGlobalELFLinkage(GV); |
| unsigned Align=0, Size=0; |
| ELFSym GblSym(GV); |
| GblSym.setBind(SymBind); |
| |
| if (GV->hasInitializer()) { |
| GblSym.setType(ELFSym::STT_OBJECT); |
| const TargetData *TD = TM.getTargetData(); |
| Align = TD->getPreferredAlignment(GV); |
| Size = TD->getTypeAllocSize(GV->getInitializer()->getType()); |
| GblSym.Size = Size; |
| } else { |
| GblSym.setType(ELFSym::STT_NOTYPE); |
| } |
| |
| ELFSection &GblSection = getGlobalSymELFSection(GV, GblSym); |
| |
| if (GblSym.IsCommon) { |
| GblSym.Value = Align; |
| } else if (GblSym.IsBss) { |
| GblSym.Value = GblSection.Size; |
| GblSection.Size += Size; |
| } else if (GblSym.IsConstant){ |
| // GblSym.Value should contain the symbol index inside the section, |
| // and all symbols should start on their required alignment boundary |
| GblSym.Value = (GblSection.size() + (Align-1)) & (-Align); |
| GblSection.emitAlignment(Align); |
| EmitGlobalConstant(GV->getInitializer(), GblSection); |
| } |
| |
| // Local symbols should come first on the symbol table. |
| if (!GV->hasPrivateLinkage()) { |
| if (SymBind == ELFSym::STB_LOCAL) |
| SymbolList.push_front(GblSym); |
| else |
| SymbolList.push_back(GblSym); |
| } |
| } |
| |
| void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS, |
| ELFSection &GblS) { |
| |
| // Print the fields in successive locations. Pad to align if needed! |
| const TargetData *TD = TM.getTargetData(); |
| unsigned Size = TD->getTypeAllocSize(CVS->getType()); |
| const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); |
| uint64_t sizeSoFar = 0; |
| for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { |
| const Constant* field = CVS->getOperand(i); |
| |
| // Check if padding is needed and insert one or more 0s. |
| uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); |
| uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) |
| - cvsLayout->getElementOffset(i)) - fieldSize; |
| sizeSoFar += fieldSize + padSize; |
| |
| // Now print the actual field value. |
| EmitGlobalConstant(field, GblS); |
| |
| // Insert padding - this may include padding to increase the size of the |
| // current field up to the ABI size (if the struct is not packed) as well |
| // as padding to ensure that the next field starts at the right offset. |
| for (unsigned p=0; p < padSize; p++) |
| GblS.emitByte(0); |
| } |
| assert(sizeSoFar == cvsLayout->getSizeInBytes() && |
| "Layout of constant struct may be incorrect!"); |
| } |
| |
| void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) { |
| const TargetData *TD = TM.getTargetData(); |
| unsigned Size = TD->getTypeAllocSize(CV->getType()); |
| |
| if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { |
| if (CVA->isString()) { |
| std::string GblStr = CVA->getAsString(); |
| GblStr.resize(GblStr.size()-1); |
| GblS.emitString(GblStr); |
| } else { // Not a string. Print the values in successive locations |
| for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) |
| EmitGlobalConstant(CVA->getOperand(i), GblS); |
| } |
| return; |
| } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { |
| EmitGlobalConstantStruct(CVS, GblS); |
| return; |
| } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { |
| uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); |
| if (CFP->getType() == Type::DoubleTy) |
| GblS.emitWord64(Val); |
| else if (CFP->getType() == Type::FloatTy) |
| GblS.emitWord32(Val); |
| else if (CFP->getType() == Type::X86_FP80Ty) { |
| assert(0 && "X86_FP80Ty global emission not implemented"); |
| } else if (CFP->getType() == Type::PPC_FP128Ty) |
| assert(0 && "PPC_FP128Ty global emission not implemented"); |
| return; |
| } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { |
| if (Size == 4) |
| GblS.emitWord32(CI->getZExtValue()); |
| else if (Size == 8) |
| GblS.emitWord64(CI->getZExtValue()); |
| else |
| assert(0 && "LargeInt global emission not implemented"); |
| return; |
| } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { |
| const VectorType *PTy = CP->getType(); |
| for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) |
| EmitGlobalConstant(CP->getOperand(I), GblS); |
| return; |
| } |
| assert(0 && "unknown global constant"); |
| } |
| |
| |
| bool ELFWriter::runOnMachineFunction(MachineFunction &MF) { |
| // Nothing to do here, this is all done through the MCE object above. |
| return false; |
| } |
| |
| /// doFinalization - Now that the module has been completely processed, emit |
| /// the ELF file to 'O'. |
| bool ELFWriter::doFinalization(Module &M) { |
| /// FIXME: This should be removed when moving to ObjectCodeEmiter. Since the |
| /// current ELFCodeEmiter uses CurrBuff, ... it doesn't update S.Data |
| /// vector size for .text sections, so this is a quick dirty fix |
| ELFSection &TS = getTextSection(); |
| if (TS.Size) { |
| BinaryData &BD = TS.getData(); |
| for (unsigned e=0; e<TS.Size; ++e) |
| BD.push_back(BD[e]); |
| } |
| |
| // Emit .data section placeholder |
| getDataSection(); |
| |
| // Emit .bss section placeholder |
| getBSSSection(); |
| |
| // Build and emit data, bss and "common" sections. |
| for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) { |
| EmitGlobalVar(I); |
| GblSymLookup[I] = 0; |
| } |
| |
| // Emit all pending globals |
| // TODO: this should be done only for referenced symbols |
| for (SetVector<GlobalValue*>::const_iterator I = PendingGlobals.begin(), |
| E = PendingGlobals.end(); I != E; ++I) { |
| |
| // No need to emit the symbol again |
| if (GblSymLookup.find(*I) != GblSymLookup.end()) |
| continue; |
| |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(*I)) { |
| EmitGlobalVar(GV); |
| } else if (Function *F = dyn_cast<Function>(*I)) { |
| // If function is not in GblSymLookup, it doesn't have a body, |
| // so emit the symbol as a function declaration (no section associated) |
| EmitFunctionDeclaration(F); |
| } else { |
| assert("unknown howto handle pending global"); |
| } |
| GblSymLookup[*I] = 0; |
| } |
| |
| // Emit non-executable stack note |
| if (TAI->getNonexecutableStackDirective()) |
| getNonExecStackSection(); |
| |
| // Emit a symbol for each section created until now |
| for (std::map<std::string, ELFSection*>::iterator I = SectionLookup.begin(), |
| E = SectionLookup.end(); I != E; ++I) { |
| ELFSection *ES = I->second; |
| |
| // Skip null section |
| if (ES->SectionIdx == 0) continue; |
| |
| ELFSym SectionSym(0); |
| SectionSym.SectionIdx = ES->SectionIdx; |
| SectionSym.Size = 0; |
| SectionSym.setBind(ELFSym::STB_LOCAL); |
| SectionSym.setType(ELFSym::STT_SECTION); |
| |
| // Local symbols go in the list front |
| SymbolList.push_front(SectionSym); |
| } |
| |
| // Emit string table |
| EmitStringTable(); |
| |
| // Emit the symbol table now, if non-empty. |
| EmitSymbolTable(); |
| |
| // Emit the relocation sections. |
| EmitRelocations(); |
| |
| // Emit the sections string table. |
| EmitSectionTableStringTable(); |
| |
| // Dump the sections and section table to the .o file. |
| OutputSectionsAndSectionTable(); |
| |
| // We are done with the abstract symbols. |
| SectionList.clear(); |
| NumSections = 0; |
| |
| // Release the name mangler object. |
| delete Mang; Mang = 0; |
| return false; |
| } |
| |
| /// EmitRelocations - Emit relocations |
| void ELFWriter::EmitRelocations() { |
| |
| // Create Relocation sections for each section which needs it. |
| for (std::list<ELFSection>::iterator I = SectionList.begin(), |
| E = SectionList.end(); I != E; ++I) { |
| |
| // This section does not have relocations |
| if (!I->hasRelocations()) continue; |
| |
| // Get the relocation section for section 'I' |
| bool HasRelA = TEW->hasRelocationAddend(); |
| ELFSection &RelSec = getRelocSection(I->getName(), HasRelA); |
| |
| // 'Link' - Section hdr idx of the associated symbol table |
| // 'Info' - Section hdr idx of the section to which the relocation applies |
| ELFSection &SymTab = getSymbolTableSection(); |
| RelSec.Link = SymTab.SectionIdx; |
| RelSec.Info = I->SectionIdx; |
| RelSec.EntSize = TEW->getRelocationEntrySize(); |
| |
| // Get the relocations from Section |
| std::vector<MachineRelocation> Relos = I->getRelocations(); |
| for (std::vector<MachineRelocation>::iterator MRI = Relos.begin(), |
| MRE = Relos.end(); MRI != MRE; ++MRI) { |
| MachineRelocation &MR = *MRI; |
| |
| // Offset from the start of the section containing the symbol |
| unsigned Offset = MR.getMachineCodeOffset(); |
| |
| // Symbol index in the symbol table |
| unsigned SymIdx = 0; |
| |
| // Target specific ELF relocation type |
| unsigned RelType = TEW->getRelocationType(MR.getRelocationType()); |
| |
| // Constant addend used to compute the value to be stored |
| // into the relocatable field |
| int64_t Addend = 0; |
| |
| // There are several machine relocations types, and each one of |
| // them needs a different approach to retrieve the symbol table index. |
| if (MR.isGlobalValue()) { |
| const GlobalValue *G = MR.getGlobalValue(); |
| SymIdx = GblSymLookup[G]; |
| Addend = TEW->getAddendForRelTy(RelType); |
| } else { |
| unsigned SectionIdx = MR.getConstantVal(); |
| // TODO: use a map for this. |
| for (std::list<ELFSym>::iterator I = SymbolList.begin(), |
| E = SymbolList.end(); I != E; ++I) |
| if ((SectionIdx == I->SectionIdx) && |
| (I->getType() == ELFSym::STT_SECTION)) { |
| SymIdx = I->SymTabIdx; |
| break; |
| } |
| Addend = (uint64_t)MR.getResultPointer(); |
| } |
| |
| // Get the relocation entry and emit to the relocation section |
| ELFRelocation Rel(Offset, SymIdx, RelType, HasRelA, Addend); |
| EmitRelocation(RelSec, Rel, HasRelA); |
| } |
| } |
| } |
| |
| /// EmitRelocation - Write relocation 'Rel' to the relocation section 'Rel' |
| void ELFWriter::EmitRelocation(BinaryObject &RelSec, ELFRelocation &Rel, |
| bool HasRelA) { |
| RelSec.emitWord(Rel.getOffset()); |
| RelSec.emitWord(Rel.getInfo(is64Bit)); |
| if (HasRelA) |
| RelSec.emitWord(Rel.getAddend()); |
| } |
| |
| /// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable' |
| void ELFWriter::EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym) { |
| if (is64Bit) { |
| SymbolTable.emitWord32(Sym.NameIdx); |
| SymbolTable.emitByte(Sym.Info); |
| SymbolTable.emitByte(Sym.Other); |
| SymbolTable.emitWord16(Sym.SectionIdx); |
| SymbolTable.emitWord64(Sym.Value); |
| SymbolTable.emitWord64(Sym.Size); |
| } else { |
| SymbolTable.emitWord32(Sym.NameIdx); |
| SymbolTable.emitWord32(Sym.Value); |
| SymbolTable.emitWord32(Sym.Size); |
| SymbolTable.emitByte(Sym.Info); |
| SymbolTable.emitByte(Sym.Other); |
| SymbolTable.emitWord16(Sym.SectionIdx); |
| } |
| } |
| |
| /// EmitSectionHeader - Write section 'Section' header in 'SHdrTab' |
| /// Section Header Table |
| void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab, |
| const ELFSection &SHdr) { |
| SHdrTab.emitWord32(SHdr.NameIdx); |
| SHdrTab.emitWord32(SHdr.Type); |
| if (is64Bit) { |
| SHdrTab.emitWord64(SHdr.Flags); |
| SHdrTab.emitWord(SHdr.Addr); |
| SHdrTab.emitWord(SHdr.Offset); |
| SHdrTab.emitWord64(SHdr.Size); |
| SHdrTab.emitWord32(SHdr.Link); |
| SHdrTab.emitWord32(SHdr.Info); |
| SHdrTab.emitWord64(SHdr.Align); |
| SHdrTab.emitWord64(SHdr.EntSize); |
| } else { |
| SHdrTab.emitWord32(SHdr.Flags); |
| SHdrTab.emitWord(SHdr.Addr); |
| SHdrTab.emitWord(SHdr.Offset); |
| SHdrTab.emitWord32(SHdr.Size); |
| SHdrTab.emitWord32(SHdr.Link); |
| SHdrTab.emitWord32(SHdr.Info); |
| SHdrTab.emitWord32(SHdr.Align); |
| SHdrTab.emitWord32(SHdr.EntSize); |
| } |
| } |
| |
| /// EmitStringTable - If the current symbol table is non-empty, emit the string |
| /// table for it |
| void ELFWriter::EmitStringTable() { |
| if (!SymbolList.size()) return; // Empty symbol table. |
| ELFSection &StrTab = getStringTableSection(); |
| |
| // Set the zero'th symbol to a null byte, as required. |
| StrTab.emitByte(0); |
| |
| // Walk on the symbol list and write symbol names into the |
| // string table. |
| unsigned Index = 1; |
| for (std::list<ELFSym>::iterator I = SymbolList.begin(), |
| E = SymbolList.end(); I != E; ++I) { |
| |
| // Use the name mangler to uniquify the LLVM symbol. |
| std::string Name; |
| if (I->GV) Name.append(Mang->getValueName(I->GV)); |
| |
| if (Name.empty()) { |
| I->NameIdx = 0; |
| } else { |
| I->NameIdx = Index; |
| StrTab.emitString(Name); |
| |
| // Keep track of the number of bytes emitted to this section. |
| Index += Name.size()+1; |
| } |
| } |
| assert(Index == StrTab.size()); |
| StrTab.Size = Index; |
| } |
| |
| /// EmitSymbolTable - Emit the symbol table itself. |
| void ELFWriter::EmitSymbolTable() { |
| if (!SymbolList.size()) return; // Empty symbol table. |
| |
| unsigned FirstNonLocalSymbol = 1; |
| // Now that we have emitted the string table and know the offset into the |
| // string table of each symbol, emit the symbol table itself. |
| ELFSection &SymTab = getSymbolTableSection(); |
| SymTab.Align = TEW->getPrefELFAlignment(); |
| |
| // Section Index of .strtab. |
| SymTab.Link = getStringTableSection().SectionIdx; |
| |
| // Size of each symtab entry. |
| SymTab.EntSize = TEW->getSymTabEntrySize(); |
| |
| // The first entry in the symtab is the null symbol |
| ELFSym NullSym = ELFSym(0); |
| EmitSymbol(SymTab, NullSym); |
| |
| // Emit all the symbols to the symbol table. Skip the null |
| // symbol, cause it's emitted already |
| unsigned Index = 1; |
| for (std::list<ELFSym>::iterator I = SymbolList.begin(), |
| E = SymbolList.end(); I != E; ++I, ++Index) { |
| // Keep track of the first non-local symbol |
| if (I->getBind() == ELFSym::STB_LOCAL) |
| FirstNonLocalSymbol++; |
| |
| // Emit symbol to the symbol table |
| EmitSymbol(SymTab, *I); |
| |
| // Record the symbol table index for each global value |
| if (I->GV) |
| GblSymLookup[I->GV] = Index; |
| |
| // Keep track on the symbol index into the symbol table |
| I->SymTabIdx = Index; |
| } |
| |
| SymTab.Info = FirstNonLocalSymbol; |
| SymTab.Size = SymTab.size(); |
| } |
| |
| /// EmitSectionTableStringTable - This method adds and emits a section for the |
| /// ELF Section Table string table: the string table that holds all of the |
| /// section names. |
| void ELFWriter::EmitSectionTableStringTable() { |
| // First step: add the section for the string table to the list of sections: |
| ELFSection &SHStrTab = getSectionHeaderStringTableSection(); |
| |
| // Now that we know which section number is the .shstrtab section, update the |
| // e_shstrndx entry in the ELF header. |
| ElfHdr.fixWord16(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset); |
| |
| // Set the NameIdx of each section in the string table and emit the bytes for |
| // the string table. |
| unsigned Index = 0; |
| |
| for (std::list<ELFSection>::iterator I = SectionList.begin(), |
| E = SectionList.end(); I != E; ++I) { |
| // Set the index into the table. Note if we have lots of entries with |
| // common suffixes, we could memoize them here if we cared. |
| I->NameIdx = Index; |
| SHStrTab.emitString(I->getName()); |
| |
| // Keep track of the number of bytes emitted to this section. |
| Index += I->getName().size()+1; |
| } |
| |
| // Set the size of .shstrtab now that we know what it is. |
| assert(Index == SHStrTab.size()); |
| SHStrTab.Size = Index; |
| } |
| |
| /// OutputSectionsAndSectionTable - Now that we have constructed the file header |
| /// and all of the sections, emit these to the ostream destination and emit the |
| /// SectionTable. |
| void ELFWriter::OutputSectionsAndSectionTable() { |
| // Pass #1: Compute the file offset for each section. |
| size_t FileOff = ElfHdr.size(); // File header first. |
| |
| // Adjust alignment of all section if needed. |
| for (std::list<ELFSection>::iterator I = SectionList.begin(), |
| E = SectionList.end(); I != E; ++I) { |
| |
| // Section idx 0 has 0 offset |
| if (!I->SectionIdx) |
| continue; |
| |
| if (!I->size()) { |
| I->Offset = FileOff; |
| continue; |
| } |
| |
| // Update Section size |
| if (!I->Size) |
| I->Size = I->size(); |
| |
| // Align FileOff to whatever the alignment restrictions of the section are. |
| if (I->Align) |
| FileOff = (FileOff+I->Align-1) & ~(I->Align-1); |
| |
| I->Offset = FileOff; |
| FileOff += I->Size; |
| } |
| |
| // Align Section Header. |
| unsigned TableAlign = TEW->getPrefELFAlignment(); |
| FileOff = (FileOff+TableAlign-1) & ~(TableAlign-1); |
| |
| // Now that we know where all of the sections will be emitted, set the e_shnum |
| // entry in the ELF header. |
| ElfHdr.fixWord16(NumSections, ELFHdr_e_shnum_Offset); |
| |
| // Now that we know the offset in the file of the section table, update the |
| // e_shoff address in the ELF header. |
| ElfHdr.fixWord(FileOff, ELFHdr_e_shoff_Offset); |
| |
| // Now that we know all of the data in the file header, emit it and all of the |
| // sections! |
| O.write((char *)&ElfHdr.getData()[0], ElfHdr.size()); |
| FileOff = ElfHdr.size(); |
| |
| // Section Header Table blob |
| BinaryObject SHdrTable(isLittleEndian, is64Bit); |
| |
| // Emit all of sections to the file and build the section header table. |
| while (!SectionList.empty()) { |
| ELFSection &S = *SectionList.begin(); |
| DOUT << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName() |
| << ", Size: " << S.Size << ", Offset: " << S.Offset |
| << ", SectionData Size: " << S.size() << "\n"; |
| |
| // Align FileOff to whatever the alignment restrictions of the section are. |
| if (S.size()) { |
| if (S.Align) { |
| for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1); |
| FileOff != NewFileOff; ++FileOff) |
| O << (char)0xAB; |
| } |
| O.write((char *)&S.getData()[0], S.Size); |
| FileOff += S.Size; |
| } |
| |
| EmitSectionHeader(SHdrTable, S); |
| SectionList.pop_front(); |
| } |
| |
| // Align output for the section table. |
| for (size_t NewFileOff = (FileOff+TableAlign-1) & ~(TableAlign-1); |
| FileOff != NewFileOff; ++FileOff) |
| O << (char)0xAB; |
| |
| // Emit the section table itself. |
| O.write((char *)&SHdrTable.getData()[0], SHdrTable.size()); |
| } |