| //===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the bison parser for LLVM assembly languages files. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| %{ |
| #include "UpgradeInternals.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "llvm/ParamAttrsList.h" |
| #include "llvm/ValueSymbolTable.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <algorithm> |
| #include <iostream> |
| #include <map> |
| #include <list> |
| #include <utility> |
| |
| // DEBUG_UPREFS - Define this symbol if you want to enable debugging output |
| // relating to upreferences in the input stream. |
| // |
| //#define DEBUG_UPREFS 1 |
| #ifdef DEBUG_UPREFS |
| #define UR_OUT(X) std::cerr << X |
| #else |
| #define UR_OUT(X) |
| #endif |
| |
| #define YYERROR_VERBOSE 1 |
| #define YYINCLUDED_STDLIB_H |
| #define YYDEBUG 1 |
| |
| int yylex(); |
| int yyparse(); |
| |
| int yyerror(const char*); |
| static void warning(const std::string& WarningMsg); |
| |
| namespace llvm { |
| |
| std::istream* LexInput; |
| static std::string CurFilename; |
| |
| // This bool controls whether attributes are ever added to function declarations |
| // definitions and calls. |
| static bool AddAttributes = false; |
| |
| static Module *ParserResult; |
| static bool ObsoleteVarArgs; |
| static bool NewVarArgs; |
| static BasicBlock *CurBB; |
| static GlobalVariable *CurGV; |
| static unsigned lastCallingConv; |
| |
| // This contains info used when building the body of a function. It is |
| // destroyed when the function is completed. |
| // |
| typedef std::vector<Value *> ValueList; // Numbered defs |
| |
| typedef std::pair<std::string,TypeInfo> RenameMapKey; |
| typedef std::map<RenameMapKey,std::string> RenameMapType; |
| |
| static void |
| ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers, |
| std::map<const Type *,ValueList> *FutureLateResolvers = 0); |
| |
| static struct PerModuleInfo { |
| Module *CurrentModule; |
| std::map<const Type *, ValueList> Values; // Module level numbered definitions |
| std::map<const Type *,ValueList> LateResolveValues; |
| std::vector<PATypeHolder> Types; |
| std::vector<Signedness> TypeSigns; |
| std::map<std::string,Signedness> NamedTypeSigns; |
| std::map<std::string,Signedness> NamedValueSigns; |
| std::map<ValID, PATypeHolder> LateResolveTypes; |
| static Module::Endianness Endian; |
| static Module::PointerSize PointerSize; |
| RenameMapType RenameMap; |
| |
| /// PlaceHolderInfo - When temporary placeholder objects are created, remember |
| /// how they were referenced and on which line of the input they came from so |
| /// that we can resolve them later and print error messages as appropriate. |
| std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo; |
| |
| // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward |
| // references to global values. Global values may be referenced before they |
| // are defined, and if so, the temporary object that they represent is held |
| // here. This is used for forward references of GlobalValues. |
| // |
| typedef std::map<std::pair<const PointerType *, ValID>, GlobalValue*> |
| GlobalRefsType; |
| GlobalRefsType GlobalRefs; |
| |
| void ModuleDone() { |
| // If we could not resolve some functions at function compilation time |
| // (calls to functions before they are defined), resolve them now... Types |
| // are resolved when the constant pool has been completely parsed. |
| // |
| ResolveDefinitions(LateResolveValues); |
| |
| // Check to make sure that all global value forward references have been |
| // resolved! |
| // |
| if (!GlobalRefs.empty()) { |
| std::string UndefinedReferences = "Unresolved global references exist:\n"; |
| |
| for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end(); |
| I != E; ++I) { |
| UndefinedReferences += " " + I->first.first->getDescription() + " " + |
| I->first.second.getName() + "\n"; |
| } |
| error(UndefinedReferences); |
| return; |
| } |
| |
| if (CurrentModule->getDataLayout().empty()) { |
| std::string dataLayout; |
| if (Endian != Module::AnyEndianness) |
| dataLayout.append(Endian == Module::BigEndian ? "E" : "e"); |
| if (PointerSize != Module::AnyPointerSize) { |
| if (!dataLayout.empty()) |
| dataLayout += "-"; |
| dataLayout.append(PointerSize == Module::Pointer64 ? |
| "p:64:64" : "p:32:32"); |
| } |
| CurrentModule->setDataLayout(dataLayout); |
| } |
| |
| Values.clear(); // Clear out function local definitions |
| Types.clear(); |
| TypeSigns.clear(); |
| NamedTypeSigns.clear(); |
| NamedValueSigns.clear(); |
| CurrentModule = 0; |
| } |
| |
| // GetForwardRefForGlobal - Check to see if there is a forward reference |
| // for this global. If so, remove it from the GlobalRefs map and return it. |
| // If not, just return null. |
| GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) { |
| // Check to see if there is a forward reference to this global variable... |
| // if there is, eliminate it and patch the reference to use the new def'n. |
| GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID)); |
| GlobalValue *Ret = 0; |
| if (I != GlobalRefs.end()) { |
| Ret = I->second; |
| GlobalRefs.erase(I); |
| } |
| return Ret; |
| } |
| void setEndianness(Module::Endianness E) { Endian = E; } |
| void setPointerSize(Module::PointerSize sz) { PointerSize = sz; } |
| } CurModule; |
| |
| Module::Endianness PerModuleInfo::Endian = Module::AnyEndianness; |
| Module::PointerSize PerModuleInfo::PointerSize = Module::AnyPointerSize; |
| |
| static struct PerFunctionInfo { |
| Function *CurrentFunction; // Pointer to current function being created |
| |
| std::map<const Type*, ValueList> Values; // Keep track of #'d definitions |
| std::map<const Type*, ValueList> LateResolveValues; |
| bool isDeclare; // Is this function a forward declararation? |
| GlobalValue::LinkageTypes Linkage;// Linkage for forward declaration. |
| |
| /// BBForwardRefs - When we see forward references to basic blocks, keep |
| /// track of them here. |
| std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs; |
| std::vector<BasicBlock*> NumberedBlocks; |
| RenameMapType RenameMap; |
| unsigned NextBBNum; |
| |
| inline PerFunctionInfo() { |
| CurrentFunction = 0; |
| isDeclare = false; |
| Linkage = GlobalValue::ExternalLinkage; |
| } |
| |
| inline void FunctionStart(Function *M) { |
| CurrentFunction = M; |
| NextBBNum = 0; |
| } |
| |
| void FunctionDone() { |
| NumberedBlocks.clear(); |
| |
| // Any forward referenced blocks left? |
| if (!BBForwardRefs.empty()) { |
| error("Undefined reference to label " + |
| BBForwardRefs.begin()->first->getName()); |
| return; |
| } |
| |
| // Resolve all forward references now. |
| ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues); |
| |
| Values.clear(); // Clear out function local definitions |
| RenameMap.clear(); |
| CurrentFunction = 0; |
| isDeclare = false; |
| Linkage = GlobalValue::ExternalLinkage; |
| } |
| } CurFun; // Info for the current function... |
| |
| static bool inFunctionScope() { return CurFun.CurrentFunction != 0; } |
| |
| /// This function is just a utility to make a Key value for the rename map. |
| /// The Key is a combination of the name, type, Signedness of the original |
| /// value (global/function). This just constructs the key and ensures that |
| /// named Signedness values are resolved to the actual Signedness. |
| /// @brief Make a key for the RenameMaps |
| static RenameMapKey makeRenameMapKey(const std::string &Name, const Type* Ty, |
| const Signedness &Sign) { |
| TypeInfo TI; |
| TI.T = Ty; |
| if (Sign.isNamed()) |
| // Don't allow Named Signedness nodes because they won't match. The actual |
| // Signedness must be looked up in the NamedTypeSigns map. |
| TI.S.copy(CurModule.NamedTypeSigns[Sign.getName()]); |
| else |
| TI.S.copy(Sign); |
| return std::make_pair(Name, TI); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Code to handle definitions of all the types |
| //===----------------------------------------------------------------------===// |
| |
| static int InsertValue(Value *V, |
| std::map<const Type*,ValueList> &ValueTab = CurFun.Values) { |
| if (V->hasName()) return -1; // Is this a numbered definition? |
| |
| // Yes, insert the value into the value table... |
| ValueList &List = ValueTab[V->getType()]; |
| List.push_back(V); |
| return List.size()-1; |
| } |
| |
| static const Type *getType(const ValID &D, bool DoNotImprovise = false) { |
| switch (D.Type) { |
| case ValID::NumberVal: // Is it a numbered definition? |
| // Module constants occupy the lowest numbered slots... |
| if ((unsigned)D.Num < CurModule.Types.size()) { |
| return CurModule.Types[(unsigned)D.Num]; |
| } |
| break; |
| case ValID::NameVal: // Is it a named definition? |
| if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) { |
| return N; |
| } |
| break; |
| default: |
| error("Internal parser error: Invalid symbol type reference"); |
| return 0; |
| } |
| |
| // If we reached here, we referenced either a symbol that we don't know about |
| // or an id number that hasn't been read yet. We may be referencing something |
| // forward, so just create an entry to be resolved later and get to it... |
| // |
| if (DoNotImprovise) return 0; // Do we just want a null to be returned? |
| |
| if (inFunctionScope()) { |
| if (D.Type == ValID::NameVal) { |
| error("Reference to an undefined type: '" + D.getName() + "'"); |
| return 0; |
| } else { |
| error("Reference to an undefined type: #" + itostr(D.Num)); |
| return 0; |
| } |
| } |
| |
| std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D); |
| if (I != CurModule.LateResolveTypes.end()) |
| return I->second; |
| |
| Type *Typ = OpaqueType::get(); |
| CurModule.LateResolveTypes.insert(std::make_pair(D, Typ)); |
| return Typ; |
| } |
| |
| /// This is like the getType method except that instead of looking up the type |
| /// for a given ID, it looks up that type's sign. |
| /// @brief Get the signedness of a referenced type |
| static Signedness getTypeSign(const ValID &D) { |
| switch (D.Type) { |
| case ValID::NumberVal: // Is it a numbered definition? |
| // Module constants occupy the lowest numbered slots... |
| if ((unsigned)D.Num < CurModule.TypeSigns.size()) { |
| return CurModule.TypeSigns[(unsigned)D.Num]; |
| } |
| break; |
| case ValID::NameVal: { // Is it a named definition? |
| std::map<std::string,Signedness>::const_iterator I = |
| CurModule.NamedTypeSigns.find(D.Name); |
| if (I != CurModule.NamedTypeSigns.end()) |
| return I->second; |
| // Perhaps its a named forward .. just cache the name |
| Signedness S; |
| S.makeNamed(D.Name); |
| return S; |
| } |
| default: |
| break; |
| } |
| // If we don't find it, its signless |
| Signedness S; |
| S.makeSignless(); |
| return S; |
| } |
| |
| /// This function is analagous to getElementType in LLVM. It provides the same |
| /// function except that it looks up the Signedness instead of the type. This is |
| /// used when processing GEP instructions that need to extract the type of an |
| /// indexed struct/array/ptr member. |
| /// @brief Look up an element's sign. |
| static Signedness getElementSign(const ValueInfo& VI, |
| const std::vector<Value*> &Indices) { |
| const Type *Ptr = VI.V->getType(); |
| assert(isa<PointerType>(Ptr) && "Need pointer type"); |
| |
| unsigned CurIdx = 0; |
| Signedness S(VI.S); |
| while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) { |
| if (CurIdx == Indices.size()) |
| break; |
| |
| Value *Index = Indices[CurIdx++]; |
| assert(!isa<PointerType>(CT) || CurIdx == 1 && "Invalid type"); |
| Ptr = CT->getTypeAtIndex(Index); |
| if (const Type* Ty = Ptr->getForwardedType()) |
| Ptr = Ty; |
| assert(S.isComposite() && "Bad Signedness type"); |
| if (isa<StructType>(CT)) { |
| S = S.get(cast<ConstantInt>(Index)->getZExtValue()); |
| } else { |
| S = S.get(0UL); |
| } |
| if (S.isNamed()) |
| S = CurModule.NamedTypeSigns[S.getName()]; |
| } |
| Signedness Result; |
| Result.makeComposite(S); |
| return Result; |
| } |
| |
| /// This function just translates a ConstantInfo into a ValueInfo and calls |
| /// getElementSign(ValueInfo,...). Its just a convenience. |
| /// @brief ConstantInfo version of getElementSign. |
| static Signedness getElementSign(const ConstInfo& CI, |
| const std::vector<Constant*> &Indices) { |
| ValueInfo VI; |
| VI.V = CI.C; |
| VI.S.copy(CI.S); |
| std::vector<Value*> Idx; |
| for (unsigned i = 0; i < Indices.size(); ++i) |
| Idx.push_back(Indices[i]); |
| Signedness result = getElementSign(VI, Idx); |
| VI.destroy(); |
| return result; |
| } |
| |
| // getExistingValue - Look up the value specified by the provided type and |
| // the provided ValID. If the value exists and has already been defined, return |
| // it. Otherwise return null. |
| // |
| static Value *getExistingValue(const Type *Ty, const ValID &D) { |
| if (isa<FunctionType>(Ty)) { |
| error("Functions are not values and must be referenced as pointers"); |
| } |
| |
| switch (D.Type) { |
| case ValID::NumberVal: { // Is it a numbered definition? |
| unsigned Num = (unsigned)D.Num; |
| |
| // Module constants occupy the lowest numbered slots... |
| std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty); |
| if (VI != CurModule.Values.end()) { |
| if (Num < VI->second.size()) |
| return VI->second[Num]; |
| Num -= VI->second.size(); |
| } |
| |
| // Make sure that our type is within bounds |
| VI = CurFun.Values.find(Ty); |
| if (VI == CurFun.Values.end()) return 0; |
| |
| // Check that the number is within bounds... |
| if (VI->second.size() <= Num) return 0; |
| |
| return VI->second[Num]; |
| } |
| |
| case ValID::NameVal: { // Is it a named definition? |
| // Get the name out of the ID |
| RenameMapKey Key = makeRenameMapKey(D.Name, Ty, D.S); |
| Value *V = 0; |
| if (inFunctionScope()) { |
| // See if the name was renamed |
| RenameMapType::const_iterator I = CurFun.RenameMap.find(Key); |
| std::string LookupName; |
| if (I != CurFun.RenameMap.end()) |
| LookupName = I->second; |
| else |
| LookupName = D.Name; |
| ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable(); |
| V = SymTab.lookup(LookupName); |
| if (V && V->getType() != Ty) |
| V = 0; |
| } |
| if (!V) { |
| RenameMapType::const_iterator I = CurModule.RenameMap.find(Key); |
| std::string LookupName; |
| if (I != CurModule.RenameMap.end()) |
| LookupName = I->second; |
| else |
| LookupName = D.Name; |
| V = CurModule.CurrentModule->getValueSymbolTable().lookup(LookupName); |
| if (V && V->getType() != Ty) |
| V = 0; |
| } |
| if (!V) |
| return 0; |
| |
| D.destroy(); // Free old strdup'd memory... |
| return V; |
| } |
| |
| // Check to make sure that "Ty" is an integral type, and that our |
| // value will fit into the specified type... |
| case ValID::ConstSIntVal: // Is it a constant pool reference?? |
| if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) { |
| error("Signed integral constant '" + itostr(D.ConstPool64) + |
| "' is invalid for type '" + Ty->getDescription() + "'"); |
| } |
| return ConstantInt::get(Ty, D.ConstPool64); |
| |
| case ValID::ConstUIntVal: // Is it an unsigned const pool reference? |
| if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) { |
| if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) |
| error("Integral constant '" + utostr(D.UConstPool64) + |
| "' is invalid or out of range"); |
| else // This is really a signed reference. Transmogrify. |
| return ConstantInt::get(Ty, D.ConstPool64); |
| } else |
| return ConstantInt::get(Ty, D.UConstPool64); |
| |
| case ValID::ConstFPVal: // Is it a floating point const pool reference? |
| if (!ConstantFP::isValueValidForType(Ty, *D.ConstPoolFP)) |
| error("FP constant invalid for type"); |
| // Lexer has no type info, so builds all FP constants as double. |
| // Fix this here. |
| if (Ty==Type::FloatTy) |
| D.ConstPoolFP->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven); |
| return ConstantFP::get(Ty, *D.ConstPoolFP); |
| |
| case ValID::ConstNullVal: // Is it a null value? |
| if (!isa<PointerType>(Ty)) |
| error("Cannot create a a non pointer null"); |
| return ConstantPointerNull::get(cast<PointerType>(Ty)); |
| |
| case ValID::ConstUndefVal: // Is it an undef value? |
| return UndefValue::get(Ty); |
| |
| case ValID::ConstZeroVal: // Is it a zero value? |
| return Constant::getNullValue(Ty); |
| |
| case ValID::ConstantVal: // Fully resolved constant? |
| if (D.ConstantValue->getType() != Ty) |
| error("Constant expression type different from required type"); |
| return D.ConstantValue; |
| |
| case ValID::InlineAsmVal: { // Inline asm expression |
| const PointerType *PTy = dyn_cast<PointerType>(Ty); |
| const FunctionType *FTy = |
| PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; |
| if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints)) |
| error("Invalid type for asm constraint string"); |
| InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints, |
| D.IAD->HasSideEffects); |
| D.destroy(); // Free InlineAsmDescriptor. |
| return IA; |
| } |
| default: |
| assert(0 && "Unhandled case"); |
| return 0; |
| } // End of switch |
| |
| assert(0 && "Unhandled case"); |
| return 0; |
| } |
| |
| // getVal - This function is identical to getExistingValue, except that if a |
| // value is not already defined, it "improvises" by creating a placeholder var |
| // that looks and acts just like the requested variable. When the value is |
| // defined later, all uses of the placeholder variable are replaced with the |
| // real thing. |
| // |
| static Value *getVal(const Type *Ty, const ValID &ID) { |
| if (Ty == Type::LabelTy) |
| error("Cannot use a basic block here"); |
| |
| // See if the value has already been defined. |
| Value *V = getExistingValue(Ty, ID); |
| if (V) return V; |
| |
| if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty)) |
| error("Invalid use of a composite type"); |
| |
| // If we reached here, we referenced either a symbol that we don't know about |
| // or an id number that hasn't been read yet. We may be referencing something |
| // forward, so just create an entry to be resolved later and get to it... |
| V = new Argument(Ty); |
| |
| // Remember where this forward reference came from. FIXME, shouldn't we try |
| // to recycle these things?? |
| CurModule.PlaceHolderInfo.insert( |
| std::make_pair(V, std::make_pair(ID, Upgradelineno))); |
| |
| if (inFunctionScope()) |
| InsertValue(V, CurFun.LateResolveValues); |
| else |
| InsertValue(V, CurModule.LateResolveValues); |
| return V; |
| } |
| |
| /// @brief This just makes any name given to it unique, up to MAX_UINT times. |
| static std::string makeNameUnique(const std::string& Name) { |
| static unsigned UniqueNameCounter = 1; |
| std::string Result(Name); |
| Result += ".upgrd." + llvm::utostr(UniqueNameCounter++); |
| return Result; |
| } |
| |
| /// getBBVal - This is used for two purposes: |
| /// * If isDefinition is true, a new basic block with the specified ID is being |
| /// defined. |
| /// * If isDefinition is true, this is a reference to a basic block, which may |
| /// or may not be a forward reference. |
| /// |
| static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) { |
| assert(inFunctionScope() && "Can't get basic block at global scope"); |
| |
| std::string Name; |
| BasicBlock *BB = 0; |
| switch (ID.Type) { |
| default: |
| error("Illegal label reference " + ID.getName()); |
| break; |
| case ValID::NumberVal: // Is it a numbered definition? |
| if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size()) |
| CurFun.NumberedBlocks.resize(ID.Num+1); |
| BB = CurFun.NumberedBlocks[ID.Num]; |
| break; |
| case ValID::NameVal: // Is it a named definition? |
| Name = ID.Name; |
| if (Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name)) { |
| if (N->getType() != Type::LabelTy) { |
| // Register names didn't use to conflict with basic block names |
| // because of type planes. Now they all have to be unique. So, we just |
| // rename the register and treat this name as if no basic block |
| // had been found. |
| RenameMapKey Key = makeRenameMapKey(ID.Name, N->getType(), ID.S); |
| N->setName(makeNameUnique(N->getName())); |
| CurModule.RenameMap[Key] = N->getName(); |
| BB = 0; |
| } else { |
| BB = cast<BasicBlock>(N); |
| } |
| } |
| break; |
| } |
| |
| // See if the block has already been defined. |
| if (BB) { |
| // If this is the definition of the block, make sure the existing value was |
| // just a forward reference. If it was a forward reference, there will be |
| // an entry for it in the PlaceHolderInfo map. |
| if (isDefinition && !CurFun.BBForwardRefs.erase(BB)) |
| // The existing value was a definition, not a forward reference. |
| error("Redefinition of label " + ID.getName()); |
| |
| ID.destroy(); // Free strdup'd memory. |
| return BB; |
| } |
| |
| // Otherwise this block has not been seen before. |
| BB = new BasicBlock("", CurFun.CurrentFunction); |
| if (ID.Type == ValID::NameVal) { |
| BB->setName(ID.Name); |
| } else { |
| CurFun.NumberedBlocks[ID.Num] = BB; |
| } |
| |
| // If this is not a definition, keep track of it so we can use it as a forward |
| // reference. |
| if (!isDefinition) { |
| // Remember where this forward reference came from. |
| CurFun.BBForwardRefs[BB] = std::make_pair(ID, Upgradelineno); |
| } else { |
| // The forward declaration could have been inserted anywhere in the |
| // function: insert it into the correct place now. |
| CurFun.CurrentFunction->getBasicBlockList().remove(BB); |
| CurFun.CurrentFunction->getBasicBlockList().push_back(BB); |
| } |
| ID.destroy(); |
| return BB; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Code to handle forward references in instructions |
| //===----------------------------------------------------------------------===// |
| // |
| // This code handles the late binding needed with statements that reference |
| // values not defined yet... for example, a forward branch, or the PHI node for |
| // a loop body. |
| // |
| // This keeps a table (CurFun.LateResolveValues) of all such forward references |
| // and back patchs after we are done. |
| // |
| |
| // ResolveDefinitions - If we could not resolve some defs at parsing |
| // time (forward branches, phi functions for loops, etc...) resolve the |
| // defs now... |
| // |
| static void |
| ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers, |
| std::map<const Type*,ValueList> *FutureLateResolvers) { |
| |
| // Loop over LateResolveDefs fixing up stuff that couldn't be resolved |
| for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(), |
| E = LateResolvers.end(); LRI != E; ++LRI) { |
| const Type* Ty = LRI->first; |
| ValueList &List = LRI->second; |
| while (!List.empty()) { |
| Value *V = List.back(); |
| List.pop_back(); |
| |
| std::map<Value*, std::pair<ValID, int> >::iterator PHI = |
| CurModule.PlaceHolderInfo.find(V); |
| assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error"); |
| |
| ValID &DID = PHI->second.first; |
| |
| Value *TheRealValue = getExistingValue(Ty, DID); |
| if (TheRealValue) { |
| V->replaceAllUsesWith(TheRealValue); |
| delete V; |
| CurModule.PlaceHolderInfo.erase(PHI); |
| } else if (FutureLateResolvers) { |
| // Functions have their unresolved items forwarded to the module late |
| // resolver table |
| InsertValue(V, *FutureLateResolvers); |
| } else { |
| if (DID.Type == ValID::NameVal) { |
| error("Reference to an invalid definition: '" + DID.getName() + |
| "' of type '" + V->getType()->getDescription() + "'", |
| PHI->second.second); |
| return; |
| } else { |
| error("Reference to an invalid definition: #" + |
| itostr(DID.Num) + " of type '" + |
| V->getType()->getDescription() + "'", PHI->second.second); |
| return; |
| } |
| } |
| } |
| } |
| |
| LateResolvers.clear(); |
| } |
| |
| /// This function is used for type resolution and upref handling. When a type |
| /// becomes concrete, this function is called to adjust the signedness for the |
| /// concrete type. |
| static void ResolveTypeSign(const Type* oldTy, const Signedness &Sign) { |
| std::string TyName = CurModule.CurrentModule->getTypeName(oldTy); |
| if (!TyName.empty()) |
| CurModule.NamedTypeSigns[TyName] = Sign; |
| } |
| |
| /// ResolveTypeTo - A brand new type was just declared. This means that (if |
| /// name is not null) things referencing Name can be resolved. Otherwise, |
| /// things refering to the number can be resolved. Do this now. |
| static void ResolveTypeTo(char *Name, const Type *ToTy, const Signedness& Sign){ |
| ValID D; |
| if (Name) |
| D = ValID::create(Name); |
| else |
| D = ValID::create((int)CurModule.Types.size()); |
| D.S.copy(Sign); |
| |
| if (Name) |
| CurModule.NamedTypeSigns[Name] = Sign; |
| |
| std::map<ValID, PATypeHolder>::iterator I = |
| CurModule.LateResolveTypes.find(D); |
| if (I != CurModule.LateResolveTypes.end()) { |
| const Type *OldTy = I->second.get(); |
| ((DerivedType*)OldTy)->refineAbstractTypeTo(ToTy); |
| CurModule.LateResolveTypes.erase(I); |
| } |
| } |
| |
| /// This is the implementation portion of TypeHasInteger. It traverses the |
| /// type given, avoiding recursive types, and returns true as soon as it finds |
| /// an integer type. If no integer type is found, it returns false. |
| static bool TypeHasIntegerI(const Type *Ty, std::vector<const Type*> Stack) { |
| // Handle some easy cases |
| if (Ty->isPrimitiveType() || (Ty->getTypeID() == Type::OpaqueTyID)) |
| return false; |
| if (Ty->isInteger()) |
| return true; |
| if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) |
| return STy->getElementType()->isInteger(); |
| |
| // Avoid type structure recursion |
| for (std::vector<const Type*>::iterator I = Stack.begin(), E = Stack.end(); |
| I != E; ++I) |
| if (Ty == *I) |
| return false; |
| |
| // Push us on the type stack |
| Stack.push_back(Ty); |
| |
| if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) { |
| if (TypeHasIntegerI(FTy->getReturnType(), Stack)) |
| return true; |
| FunctionType::param_iterator I = FTy->param_begin(); |
| FunctionType::param_iterator E = FTy->param_end(); |
| for (; I != E; ++I) |
| if (TypeHasIntegerI(*I, Stack)) |
| return true; |
| return false; |
| } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| StructType::element_iterator I = STy->element_begin(); |
| StructType::element_iterator E = STy->element_end(); |
| for (; I != E; ++I) { |
| if (TypeHasIntegerI(*I, Stack)) |
| return true; |
| } |
| return false; |
| } |
| // There shouldn't be anything else, but its definitely not integer |
| assert(0 && "What type is this?"); |
| return false; |
| } |
| |
| /// This is the interface to TypeHasIntegerI. It just provides the type stack, |
| /// to avoid recursion, and then calls TypeHasIntegerI. |
| static inline bool TypeHasInteger(const Type *Ty) { |
| std::vector<const Type*> TyStack; |
| return TypeHasIntegerI(Ty, TyStack); |
| } |
| |
| // setValueName - Set the specified value to the name given. The name may be |
| // null potentially, in which case this is a noop. The string passed in is |
| // assumed to be a malloc'd string buffer, and is free'd by this function. |
| // |
| static void setValueName(const ValueInfo &V, char *NameStr) { |
| if (NameStr) { |
| std::string Name(NameStr); // Copy string |
| free(NameStr); // Free old string |
| |
| if (V.V->getType() == Type::VoidTy) { |
| error("Can't assign name '" + Name + "' to value with void type"); |
| return; |
| } |
| |
| assert(inFunctionScope() && "Must be in function scope"); |
| |
| // Search the function's symbol table for an existing value of this name |
| ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable(); |
| Value* Existing = ST.lookup(Name); |
| if (Existing) { |
| // An existing value of the same name was found. This might have happened |
| // because of the integer type planes collapsing in LLVM 2.0. |
| if (Existing->getType() == V.V->getType() && |
| !TypeHasInteger(Existing->getType())) { |
| // If the type does not contain any integers in them then this can't be |
| // a type plane collapsing issue. It truly is a redefinition and we |
| // should error out as the assembly is invalid. |
| error("Redefinition of value named '" + Name + "' of type '" + |
| V.V->getType()->getDescription() + "'"); |
| return; |
| } |
| // In LLVM 2.0 we don't allow names to be re-used for any values in a |
| // function, regardless of Type. Previously re-use of names was okay as |
| // long as they were distinct types. With type planes collapsing because |
| // of the signedness change and because of PR411, this can no longer be |
| // supported. We must search the entire symbol table for a conflicting |
| // name and make the name unique. No warning is needed as this can't |
| // cause a problem. |
| std::string NewName = makeNameUnique(Name); |
| // We're changing the name but it will probably be used by other |
| // instructions as operands later on. Consequently we have to retain |
| // a mapping of the renaming that we're doing. |
| RenameMapKey Key = makeRenameMapKey(Name, V.V->getType(), V.S); |
| CurFun.RenameMap[Key] = NewName; |
| Name = NewName; |
| } |
| |
| // Set the name. |
| V.V->setName(Name); |
| } |
| } |
| |
| /// ParseGlobalVariable - Handle parsing of a global. If Initializer is null, |
| /// this is a declaration, otherwise it is a definition. |
| static GlobalVariable * |
| ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage, |
| bool isConstantGlobal, const Type *Ty, |
| Constant *Initializer, |
| const Signedness &Sign) { |
| if (isa<FunctionType>(Ty)) |
| error("Cannot declare global vars of function type"); |
| |
| const PointerType *PTy = PointerType::getUnqual(Ty); |
| |
| std::string Name; |
| if (NameStr) { |
| Name = NameStr; // Copy string |
| free(NameStr); // Free old string |
| } |
| |
| // See if this global value was forward referenced. If so, recycle the |
| // object. |
| ValID ID; |
| if (!Name.empty()) { |
| ID = ValID::create((char*)Name.c_str()); |
| } else { |
| ID = ValID::create((int)CurModule.Values[PTy].size()); |
| } |
| ID.S.makeComposite(Sign); |
| |
| if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) { |
| // Move the global to the end of the list, from whereever it was |
| // previously inserted. |
| GlobalVariable *GV = cast<GlobalVariable>(FWGV); |
| CurModule.CurrentModule->getGlobalList().remove(GV); |
| CurModule.CurrentModule->getGlobalList().push_back(GV); |
| GV->setInitializer(Initializer); |
| GV->setLinkage(Linkage); |
| GV->setConstant(isConstantGlobal); |
| InsertValue(GV, CurModule.Values); |
| return GV; |
| } |
| |
| // If this global has a name, check to see if there is already a definition |
| // of this global in the module and emit warnings if there are conflicts. |
| if (!Name.empty()) { |
| // The global has a name. See if there's an existing one of the same name. |
| if (CurModule.CurrentModule->getNamedGlobal(Name) || |
| CurModule.CurrentModule->getFunction(Name)) { |
| // We found an existing global of the same name. This isn't allowed |
| // in LLVM 2.0. Consequently, we must alter the name of the global so it |
| // can at least compile. This can happen because of type planes |
| // There is alread a global of the same name which means there is a |
| // conflict. Let's see what we can do about it. |
| std::string NewName(makeNameUnique(Name)); |
| if (Linkage != GlobalValue::InternalLinkage) { |
| // The linkage of this gval is external so we can't reliably rename |
| // it because it could potentially create a linking problem. |
| // However, we can't leave the name conflict in the output either or |
| // it won't assemble with LLVM 2.0. So, all we can do is rename |
| // this one to something unique and emit a warning about the problem. |
| warning("Renaming global variable '" + Name + "' to '" + NewName + |
| "' may cause linkage errors"); |
| } |
| |
| // Put the renaming in the global rename map |
| RenameMapKey Key = |
| makeRenameMapKey(Name, PointerType::getUnqual(Ty), ID.S); |
| CurModule.RenameMap[Key] = NewName; |
| |
| // Rename it |
| Name = NewName; |
| } |
| } |
| |
| // Otherwise there is no existing GV to use, create one now. |
| GlobalVariable *GV = |
| new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name, |
| CurModule.CurrentModule); |
| InsertValue(GV, CurModule.Values); |
| // Remember the sign of this global. |
| CurModule.NamedValueSigns[Name] = ID.S; |
| return GV; |
| } |
| |
| // setTypeName - Set the specified type to the name given. The name may be |
| // null potentially, in which case this is a noop. The string passed in is |
| // assumed to be a malloc'd string buffer, and is freed by this function. |
| // |
| // This function returns true if the type has already been defined, but is |
| // allowed to be redefined in the specified context. If the name is a new name |
| // for the type plane, it is inserted and false is returned. |
| static bool setTypeName(const PATypeInfo& TI, char *NameStr) { |
| assert(!inFunctionScope() && "Can't give types function-local names"); |
| if (NameStr == 0) return false; |
| |
| std::string Name(NameStr); // Copy string |
| free(NameStr); // Free old string |
| |
| const Type* Ty = TI.PAT->get(); |
| |
| // We don't allow assigning names to void type |
| if (Ty == Type::VoidTy) { |
| error("Can't assign name '" + Name + "' to the void type"); |
| return false; |
| } |
| |
| // Set the type name, checking for conflicts as we do so. |
| bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, Ty); |
| |
| // Save the sign information for later use |
| CurModule.NamedTypeSigns[Name] = TI.S; |
| |
| if (AlreadyExists) { // Inserting a name that is already defined??? |
| const Type *Existing = CurModule.CurrentModule->getTypeByName(Name); |
| assert(Existing && "Conflict but no matching type?"); |
| |
| // There is only one case where this is allowed: when we are refining an |
| // opaque type. In this case, Existing will be an opaque type. |
| if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) { |
| // We ARE replacing an opaque type! |
| const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(Ty); |
| return true; |
| } |
| |
| // Otherwise, this is an attempt to redefine a type. That's okay if |
| // the redefinition is identical to the original. This will be so if |
| // Existing and T point to the same Type object. In this one case we |
| // allow the equivalent redefinition. |
| if (Existing == Ty) return true; // Yes, it's equal. |
| |
| // Any other kind of (non-equivalent) redefinition is an error. |
| error("Redefinition of type named '" + Name + "' in the '" + |
| Ty->getDescription() + "' type plane"); |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Code for handling upreferences in type names... |
| // |
| |
| // TypeContains - Returns true if Ty directly contains E in it. |
| // |
| static bool TypeContains(const Type *Ty, const Type *E) { |
| return std::find(Ty->subtype_begin(), Ty->subtype_end(), |
| E) != Ty->subtype_end(); |
| } |
| |
| namespace { |
| struct UpRefRecord { |
| // NestingLevel - The number of nesting levels that need to be popped before |
| // this type is resolved. |
| unsigned NestingLevel; |
| |
| // LastContainedTy - This is the type at the current binding level for the |
| // type. Every time we reduce the nesting level, this gets updated. |
| const Type *LastContainedTy; |
| |
| // UpRefTy - This is the actual opaque type that the upreference is |
| // represented with. |
| OpaqueType *UpRefTy; |
| |
| UpRefRecord(unsigned NL, OpaqueType *URTy) |
| : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) { } |
| }; |
| } |
| |
| // UpRefs - A list of the outstanding upreferences that need to be resolved. |
| static std::vector<UpRefRecord> UpRefs; |
| |
| /// HandleUpRefs - Every time we finish a new layer of types, this function is |
| /// called. It loops through the UpRefs vector, which is a list of the |
| /// currently active types. For each type, if the up reference is contained in |
| /// the newly completed type, we decrement the level count. When the level |
| /// count reaches zero, the upreferenced type is the type that is passed in: |
| /// thus we can complete the cycle. |
| /// |
| static PATypeHolder HandleUpRefs(const Type *ty, const Signedness& Sign) { |
| // If Ty isn't abstract, or if there are no up-references in it, then there is |
| // nothing to resolve here. |
| if (!ty->isAbstract() || UpRefs.empty()) return ty; |
| |
| PATypeHolder Ty(ty); |
| UR_OUT("Type '" << Ty->getDescription() << |
| "' newly formed. Resolving upreferences.\n" << |
| UpRefs.size() << " upreferences active!\n"); |
| |
| // If we find any resolvable upreferences (i.e., those whose NestingLevel goes |
| // to zero), we resolve them all together before we resolve them to Ty. At |
| // the end of the loop, if there is anything to resolve to Ty, it will be in |
| // this variable. |
| OpaqueType *TypeToResolve = 0; |
| |
| unsigned i = 0; |
| for (; i != UpRefs.size(); ++i) { |
| UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " |
| << UpRefs[i].UpRefTy->getDescription() << ") = " |
| << (TypeContains(Ty, UpRefs[i].UpRefTy) ? "true" : "false") << "\n"); |
| if (TypeContains(Ty, UpRefs[i].LastContainedTy)) { |
| // Decrement level of upreference |
| unsigned Level = --UpRefs[i].NestingLevel; |
| UpRefs[i].LastContainedTy = Ty; |
| UR_OUT(" Uplevel Ref Level = " << Level << "\n"); |
| if (Level == 0) { // Upreference should be resolved! |
| if (!TypeToResolve) { |
| TypeToResolve = UpRefs[i].UpRefTy; |
| } else { |
| UR_OUT(" * Resolving upreference for " |
| << UpRefs[i].UpRefTy->getDescription() << "\n"; |
| std::string OldName = UpRefs[i].UpRefTy->getDescription()); |
| ResolveTypeSign(UpRefs[i].UpRefTy, Sign); |
| UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve); |
| UR_OUT(" * Type '" << OldName << "' refined upreference to: " |
| << (const void*)Ty << ", " << Ty->getDescription() << "\n"); |
| } |
| UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list... |
| --i; // Do not skip the next element... |
| } |
| } |
| } |
| |
| if (TypeToResolve) { |
| UR_OUT(" * Resolving upreference for " |
| << UpRefs[i].UpRefTy->getDescription() << "\n"; |
| std::string OldName = TypeToResolve->getDescription()); |
| ResolveTypeSign(TypeToResolve, Sign); |
| TypeToResolve->refineAbstractTypeTo(Ty); |
| } |
| |
| return Ty; |
| } |
| |
| bool Signedness::operator<(const Signedness &that) const { |
| if (isNamed()) { |
| if (that.isNamed()) |
| return *(this->name) < *(that.name); |
| else |
| return CurModule.NamedTypeSigns[*name] < that; |
| } else if (that.isNamed()) { |
| return *this < CurModule.NamedTypeSigns[*that.name]; |
| } |
| |
| if (isComposite() && that.isComposite()) { |
| if (sv->size() == that.sv->size()) { |
| SignVector::const_iterator thisI = sv->begin(), thisE = sv->end(); |
| SignVector::const_iterator thatI = that.sv->begin(), |
| thatE = that.sv->end(); |
| for (; thisI != thisE; ++thisI, ++thatI) { |
| if (*thisI < *thatI) |
| return true; |
| else if (!(*thisI == *thatI)) |
| return false; |
| } |
| return false; |
| } |
| return sv->size() < that.sv->size(); |
| } |
| return kind < that.kind; |
| } |
| |
| bool Signedness::operator==(const Signedness &that) const { |
| if (isNamed()) |
| if (that.isNamed()) |
| return *(this->name) == *(that.name); |
| else |
| return CurModule.NamedTypeSigns[*(this->name)] == that; |
| else if (that.isNamed()) |
| return *this == CurModule.NamedTypeSigns[*(that.name)]; |
| if (isComposite() && that.isComposite()) { |
| if (sv->size() == that.sv->size()) { |
| SignVector::const_iterator thisI = sv->begin(), thisE = sv->end(); |
| SignVector::const_iterator thatI = that.sv->begin(), |
| thatE = that.sv->end(); |
| for (; thisI != thisE; ++thisI, ++thatI) { |
| if (!(*thisI == *thatI)) |
| return false; |
| } |
| return true; |
| } |
| return false; |
| } |
| return kind == that.kind; |
| } |
| |
| void Signedness::copy(const Signedness &that) { |
| if (that.isNamed()) { |
| kind = Named; |
| name = new std::string(*that.name); |
| } else if (that.isComposite()) { |
| kind = Composite; |
| sv = new SignVector(); |
| *sv = *that.sv; |
| } else { |
| kind = that.kind; |
| sv = 0; |
| } |
| } |
| |
| void Signedness::destroy() { |
| if (isNamed()) { |
| delete name; |
| } else if (isComposite()) { |
| delete sv; |
| } |
| } |
| |
| #ifndef NDEBUG |
| void Signedness::dump() const { |
| if (isComposite()) { |
| if (sv->size() == 1) { |
| (*sv)[0].dump(); |
| std::cerr << "*"; |
| } else { |
| std::cerr << "{ " ; |
| for (unsigned i = 0; i < sv->size(); ++i) { |
| if (i != 0) |
| std::cerr << ", "; |
| (*sv)[i].dump(); |
| } |
| std::cerr << "} " ; |
| } |
| } else if (isNamed()) { |
| std::cerr << *name; |
| } else if (isSigned()) { |
| std::cerr << "S"; |
| } else if (isUnsigned()) { |
| std::cerr << "U"; |
| } else |
| std::cerr << "."; |
| } |
| #endif |
| |
| static inline Instruction::TermOps |
| getTermOp(TermOps op) { |
| switch (op) { |
| default : assert(0 && "Invalid OldTermOp"); |
| case RetOp : return Instruction::Ret; |
| case BrOp : return Instruction::Br; |
| case SwitchOp : return Instruction::Switch; |
| case InvokeOp : return Instruction::Invoke; |
| case UnwindOp : return Instruction::Unwind; |
| case UnreachableOp: return Instruction::Unreachable; |
| } |
| } |
| |
| static inline Instruction::BinaryOps |
| getBinaryOp(BinaryOps op, const Type *Ty, const Signedness& Sign) { |
| switch (op) { |
| default : assert(0 && "Invalid OldBinaryOps"); |
| case SetEQ : |
| case SetNE : |
| case SetLE : |
| case SetGE : |
| case SetLT : |
| case SetGT : assert(0 && "Should use getCompareOp"); |
| case AddOp : return Instruction::Add; |
| case SubOp : return Instruction::Sub; |
| case MulOp : return Instruction::Mul; |
| case DivOp : { |
| // This is an obsolete instruction so we must upgrade it based on the |
| // types of its operands. |
| bool isFP = Ty->isFloatingPoint(); |
| if (const VectorType* PTy = dyn_cast<VectorType>(Ty)) |
| // If its a vector type we want to use the element type |
| isFP = PTy->getElementType()->isFloatingPoint(); |
| if (isFP) |
| return Instruction::FDiv; |
| else if (Sign.isSigned()) |
| return Instruction::SDiv; |
| return Instruction::UDiv; |
| } |
| case UDivOp : return Instruction::UDiv; |
| case SDivOp : return Instruction::SDiv; |
| case FDivOp : return Instruction::FDiv; |
| case RemOp : { |
| // This is an obsolete instruction so we must upgrade it based on the |
| // types of its operands. |
| bool isFP = Ty->isFloatingPoint(); |
| if (const VectorType* PTy = dyn_cast<VectorType>(Ty)) |
| // If its a vector type we want to use the element type |
| isFP = PTy->getElementType()->isFloatingPoint(); |
| // Select correct opcode |
| if (isFP) |
| return Instruction::FRem; |
| else if (Sign.isSigned()) |
| return Instruction::SRem; |
| return Instruction::URem; |
| } |
| case URemOp : return Instruction::URem; |
| case SRemOp : return Instruction::SRem; |
| case FRemOp : return Instruction::FRem; |
| case LShrOp : return Instruction::LShr; |
| case AShrOp : return Instruction::AShr; |
| case ShlOp : return Instruction::Shl; |
| case ShrOp : |
| if (Sign.isSigned()) |
| return Instruction::AShr; |
| return Instruction::LShr; |
| case AndOp : return Instruction::And; |
| case OrOp : return Instruction::Or; |
| case XorOp : return Instruction::Xor; |
| } |
| } |
| |
| static inline Instruction::OtherOps |
| getCompareOp(BinaryOps op, unsigned short &predicate, const Type* &Ty, |
| const Signedness &Sign) { |
| bool isSigned = Sign.isSigned(); |
| bool isFP = Ty->isFloatingPoint(); |
| switch (op) { |
| default : assert(0 && "Invalid OldSetCC"); |
| case SetEQ : |
| if (isFP) { |
| predicate = FCmpInst::FCMP_OEQ; |
| return Instruction::FCmp; |
| } else { |
| predicate = ICmpInst::ICMP_EQ; |
| return Instruction::ICmp; |
| } |
| case SetNE : |
| if (isFP) { |
| predicate = FCmpInst::FCMP_UNE; |
| return Instruction::FCmp; |
| } else { |
| predicate = ICmpInst::ICMP_NE; |
| return Instruction::ICmp; |
| } |
| case SetLE : |
| if (isFP) { |
| predicate = FCmpInst::FCMP_OLE; |
| return Instruction::FCmp; |
| } else { |
| if (isSigned) |
| predicate = ICmpInst::ICMP_SLE; |
| else |
| predicate = ICmpInst::ICMP_ULE; |
| return Instruction::ICmp; |
| } |
| case SetGE : |
| if (isFP) { |
| predicate = FCmpInst::FCMP_OGE; |
| return Instruction::FCmp; |
| } else { |
| if (isSigned) |
| predicate = ICmpInst::ICMP_SGE; |
| else |
| predicate = ICmpInst::ICMP_UGE; |
| return Instruction::ICmp; |
| } |
| case SetLT : |
| if (isFP) { |
| predicate = FCmpInst::FCMP_OLT; |
| return Instruction::FCmp; |
| } else { |
| if (isSigned) |
| predicate = ICmpInst::ICMP_SLT; |
| else |
| predicate = ICmpInst::ICMP_ULT; |
| return Instruction::ICmp; |
| } |
| case SetGT : |
| if (isFP) { |
| predicate = FCmpInst::FCMP_OGT; |
| return Instruction::FCmp; |
| } else { |
| if (isSigned) |
| predicate = ICmpInst::ICMP_SGT; |
| else |
| predicate = ICmpInst::ICMP_UGT; |
| return Instruction::ICmp; |
| } |
| } |
| } |
| |
| static inline Instruction::MemoryOps getMemoryOp(MemoryOps op) { |
| switch (op) { |
| default : assert(0 && "Invalid OldMemoryOps"); |
| case MallocOp : return Instruction::Malloc; |
| case FreeOp : return Instruction::Free; |
| case AllocaOp : return Instruction::Alloca; |
| case LoadOp : return Instruction::Load; |
| case StoreOp : return Instruction::Store; |
| case GetElementPtrOp : return Instruction::GetElementPtr; |
| } |
| } |
| |
| static inline Instruction::OtherOps |
| getOtherOp(OtherOps op, const Signedness &Sign) { |
| switch (op) { |
| default : assert(0 && "Invalid OldOtherOps"); |
| case PHIOp : return Instruction::PHI; |
| case CallOp : return Instruction::Call; |
| case SelectOp : return Instruction::Select; |
| case UserOp1 : return Instruction::UserOp1; |
| case UserOp2 : return Instruction::UserOp2; |
| case VAArg : return Instruction::VAArg; |
| case ExtractElementOp : return Instruction::ExtractElement; |
| case InsertElementOp : return Instruction::InsertElement; |
| case ShuffleVectorOp : return Instruction::ShuffleVector; |
| case ICmpOp : return Instruction::ICmp; |
| case FCmpOp : return Instruction::FCmp; |
| }; |
| } |
| |
| static inline Value* |
| getCast(CastOps op, Value *Src, const Signedness &SrcSign, const Type *DstTy, |
| const Signedness &DstSign, bool ForceInstruction = false) { |
| Instruction::CastOps Opcode; |
| const Type* SrcTy = Src->getType(); |
| if (op == CastOp) { |
| if (SrcTy->isFloatingPoint() && isa<PointerType>(DstTy)) { |
| // fp -> ptr cast is no longer supported but we must upgrade this |
| // by doing a double cast: fp -> int -> ptr |
| SrcTy = Type::Int64Ty; |
| Opcode = Instruction::IntToPtr; |
| if (isa<Constant>(Src)) { |
| Src = ConstantExpr::getCast(Instruction::FPToUI, |
| cast<Constant>(Src), SrcTy); |
| } else { |
| std::string NewName(makeNameUnique(Src->getName())); |
| Src = new FPToUIInst(Src, SrcTy, NewName, CurBB); |
| } |
| } else if (isa<IntegerType>(DstTy) && |
| cast<IntegerType>(DstTy)->getBitWidth() == 1) { |
| // cast type %x to bool was previously defined as setne type %x, null |
| // The cast semantic is now to truncate, not compare so we must retain |
| // the original intent by replacing the cast with a setne |
| Constant* Null = Constant::getNullValue(SrcTy); |
| Instruction::OtherOps Opcode = Instruction::ICmp; |
| unsigned short predicate = ICmpInst::ICMP_NE; |
| if (SrcTy->isFloatingPoint()) { |
| Opcode = Instruction::FCmp; |
| predicate = FCmpInst::FCMP_ONE; |
| } else if (!SrcTy->isInteger() && !isa<PointerType>(SrcTy)) { |
| error("Invalid cast to bool"); |
| } |
| if (isa<Constant>(Src) && !ForceInstruction) |
| return ConstantExpr::getCompare(predicate, cast<Constant>(Src), Null); |
| else |
| return CmpInst::create(Opcode, predicate, Src, Null); |
| } |
| // Determine the opcode to use by calling CastInst::getCastOpcode |
| Opcode = |
| CastInst::getCastOpcode(Src, SrcSign.isSigned(), DstTy, |
| DstSign.isSigned()); |
| |
| } else switch (op) { |
| default: assert(0 && "Invalid cast token"); |
| case TruncOp: Opcode = Instruction::Trunc; break; |
| case ZExtOp: Opcode = Instruction::ZExt; break; |
| case SExtOp: Opcode = Instruction::SExt; break; |
| case FPTruncOp: Opcode = Instruction::FPTrunc; break; |
| case FPExtOp: Opcode = Instruction::FPExt; break; |
| case FPToUIOp: Opcode = Instruction::FPToUI; break; |
| case FPToSIOp: Opcode = Instruction::FPToSI; break; |
| case UIToFPOp: Opcode = Instruction::UIToFP; break; |
| case SIToFPOp: Opcode = Instruction::SIToFP; break; |
| case PtrToIntOp: Opcode = Instruction::PtrToInt; break; |
| case IntToPtrOp: Opcode = Instruction::IntToPtr; break; |
| case BitCastOp: Opcode = Instruction::BitCast; break; |
| } |
| |
| if (isa<Constant>(Src) && !ForceInstruction) |
| return ConstantExpr::getCast(Opcode, cast<Constant>(Src), DstTy); |
| return CastInst::create(Opcode, Src, DstTy); |
| } |
| |
| static Instruction * |
| upgradeIntrinsicCall(const Type* RetTy, const ValID &ID, |
| std::vector<Value*>& Args) { |
| |
| std::string Name = ID.Type == ValID::NameVal ? ID.Name : ""; |
| if (Name.length() <= 5 || Name[0] != 'l' || Name[1] != 'l' || |
| Name[2] != 'v' || Name[3] != 'm' || Name[4] != '.') |
| return 0; |
| |
| switch (Name[5]) { |
| case 'i': |
| if (Name == "llvm.isunordered.f32" || Name == "llvm.isunordered.f64") { |
| if (Args.size() != 2) |
| error("Invalid prototype for " + Name); |
| return new FCmpInst(FCmpInst::FCMP_UNO, Args[0], Args[1]); |
| } |
| break; |
| |
| case 'v' : { |
| const Type* PtrTy = PointerType::getUnqual(Type::Int8Ty); |
| std::vector<const Type*> Params; |
| if (Name == "llvm.va_start" || Name == "llvm.va_end") { |
| if (Args.size() != 1) |
| error("Invalid prototype for " + Name + " prototype"); |
| Params.push_back(PtrTy); |
| const FunctionType *FTy = |
| FunctionType::get(Type::VoidTy, Params, false); |
| const PointerType *PFTy = PointerType::getUnqual(FTy); |
| Value* Func = getVal(PFTy, ID); |
| Args[0] = new BitCastInst(Args[0], PtrTy, makeNameUnique("va"), CurBB); |
| return new CallInst(Func, Args.begin(), Args.end()); |
| } else if (Name == "llvm.va_copy") { |
| if (Args.size() != 2) |
| error("Invalid prototype for " + Name + " prototype"); |
| Params.push_back(PtrTy); |
| Params.push_back(PtrTy); |
| const FunctionType *FTy = |
| FunctionType::get(Type::VoidTy, Params, false); |
| const PointerType *PFTy = PointerType::getUnqual(FTy); |
| Value* Func = getVal(PFTy, ID); |
| std::string InstName0(makeNameUnique("va0")); |
| std::string InstName1(makeNameUnique("va1")); |
| Args[0] = new BitCastInst(Args[0], PtrTy, InstName0, CurBB); |
| Args[1] = new BitCastInst(Args[1], PtrTy, InstName1, CurBB); |
| return new CallInst(Func, Args.begin(), Args.end()); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| const Type* upgradeGEPCEIndices(const Type* PTy, |
| std::vector<ValueInfo> *Indices, |
| std::vector<Constant*> &Result) { |
| const Type *Ty = PTy; |
| Result.clear(); |
| for (unsigned i = 0, e = Indices->size(); i != e ; ++i) { |
| Constant *Index = cast<Constant>((*Indices)[i].V); |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Index)) { |
| // LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte |
| // struct indices to i32 struct indices with ZExt for compatibility. |
| if (CI->getBitWidth() < 32) |
| Index = ConstantExpr::getCast(Instruction::ZExt, CI, Type::Int32Ty); |
| } |
| |
| if (isa<SequentialType>(Ty)) { |
| // Make sure that unsigned SequentialType indices are zext'd to |
| // 64-bits if they were smaller than that because LLVM 2.0 will sext |
| // all indices for SequentialType elements. We must retain the same |
| // semantic (zext) for unsigned types. |
| if (const IntegerType *Ity = dyn_cast<IntegerType>(Index->getType())) { |
| if (Ity->getBitWidth() < 64 && (*Indices)[i].S.isUnsigned()) { |
| Index = ConstantExpr::getCast(Instruction::ZExt, Index,Type::Int64Ty); |
| } |
| } |
| } |
| Result.push_back(Index); |
| Ty = GetElementPtrInst::getIndexedType(PTy, Result.begin(), |
| Result.end(),true); |
| if (!Ty) |
| error("Index list invalid for constant getelementptr"); |
| } |
| return Ty; |
| } |
| |
| const Type* upgradeGEPInstIndices(const Type* PTy, |
| std::vector<ValueInfo> *Indices, |
| std::vector<Value*> &Result) { |
| const Type *Ty = PTy; |
| Result.clear(); |
| for (unsigned i = 0, e = Indices->size(); i != e ; ++i) { |
| Value *Index = (*Indices)[i].V; |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Index)) { |
| // LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte |
| // struct indices to i32 struct indices with ZExt for compatibility. |
| if (CI->getBitWidth() < 32) |
| Index = ConstantExpr::getCast(Instruction::ZExt, CI, Type::Int32Ty); |
| } |
| |
| |
| if (isa<StructType>(Ty)) { // Only change struct indices |
| if (!isa<Constant>(Index)) { |
| error("Invalid non-constant structure index"); |
| return 0; |
| } |
| } else { |
| // Make sure that unsigned SequentialType indices are zext'd to |
| // 64-bits if they were smaller than that because LLVM 2.0 will sext |
| // all indices for SequentialType elements. We must retain the same |
| // semantic (zext) for unsigned types. |
| if (const IntegerType *Ity = dyn_cast<IntegerType>(Index->getType())) { |
| if (Ity->getBitWidth() < 64 && (*Indices)[i].S.isUnsigned()) { |
| if (isa<Constant>(Index)) |
| Index = ConstantExpr::getCast(Instruction::ZExt, |
| cast<Constant>(Index), Type::Int64Ty); |
| else |
| Index = CastInst::create(Instruction::ZExt, Index, Type::Int64Ty, |
| makeNameUnique("gep"), CurBB); |
| } |
| } |
| } |
| Result.push_back(Index); |
| Ty = GetElementPtrInst::getIndexedType(PTy, Result.begin(), |
| Result.end(),true); |
| if (!Ty) |
| error("Index list invalid for constant getelementptr"); |
| } |
| return Ty; |
| } |
| |
| unsigned upgradeCallingConv(unsigned CC) { |
| switch (CC) { |
| case OldCallingConv::C : return CallingConv::C; |
| case OldCallingConv::CSRet : return CallingConv::C; |
| case OldCallingConv::Fast : return CallingConv::Fast; |
| case OldCallingConv::Cold : return CallingConv::Cold; |
| case OldCallingConv::X86_StdCall : return CallingConv::X86_StdCall; |
| case OldCallingConv::X86_FastCall: return CallingConv::X86_FastCall; |
| default: |
| return CC; |
| } |
| } |
| |
| Module* UpgradeAssembly(const std::string &infile, std::istream& in, |
| bool debug, bool addAttrs) |
| { |
| Upgradelineno = 1; |
| CurFilename = infile; |
| LexInput = ∈ |
| yydebug = debug; |
| AddAttributes = addAttrs; |
| ObsoleteVarArgs = false; |
| NewVarArgs = false; |
| |
| CurModule.CurrentModule = new Module(CurFilename); |
| |
| // Check to make sure the parser succeeded |
| if (yyparse()) { |
| if (ParserResult) |
| delete ParserResult; |
| std::cerr << "llvm-upgrade: parse failed.\n"; |
| return 0; |
| } |
| |
| // Check to make sure that parsing produced a result |
| if (!ParserResult) { |
| std::cerr << "llvm-upgrade: no parse result.\n"; |
| return 0; |
| } |
| |
| // Reset ParserResult variable while saving its value for the result. |
| Module *Result = ParserResult; |
| ParserResult = 0; |
| |
| //Not all functions use vaarg, so make a second check for ObsoleteVarArgs |
| { |
| Function* F; |
| if ((F = Result->getFunction("llvm.va_start")) |
| && F->getFunctionType()->getNumParams() == 0) |
| ObsoleteVarArgs = true; |
| if((F = Result->getFunction("llvm.va_copy")) |
| && F->getFunctionType()->getNumParams() == 1) |
| ObsoleteVarArgs = true; |
| } |
| |
| if (ObsoleteVarArgs && NewVarArgs) { |
| error("This file is corrupt: it uses both new and old style varargs"); |
| return 0; |
| } |
| |
| if(ObsoleteVarArgs) { |
| if(Function* F = Result->getFunction("llvm.va_start")) { |
| if (F->arg_size() != 0) { |
| error("Obsolete va_start takes 0 argument"); |
| return 0; |
| } |
| |
| //foo = va_start() |
| // -> |
| //bar = alloca typeof(foo) |
| //va_start(bar) |
| //foo = load bar |
| |
| const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID); |
| const Type* ArgTy = F->getFunctionType()->getReturnType(); |
| const Type* ArgTyPtr = PointerType::getUnqual(ArgTy); |
| Function* NF = cast<Function>(Result->getOrInsertFunction( |
| "llvm.va_start", RetTy, ArgTyPtr, (Type *)0)); |
| |
| while (!F->use_empty()) { |
| CallInst* CI = cast<CallInst>(F->use_back()); |
| AllocaInst* bar = new AllocaInst(ArgTy, 0, "vastart.fix.1", CI); |
| new CallInst(NF, bar, "", CI); |
| Value* foo = new LoadInst(bar, "vastart.fix.2", CI); |
| CI->replaceAllUsesWith(foo); |
| CI->getParent()->getInstList().erase(CI); |
| } |
| Result->getFunctionList().erase(F); |
| } |
| |
| if(Function* F = Result->getFunction("llvm.va_end")) { |
| if(F->arg_size() != 1) { |
| error("Obsolete va_end takes 1 argument"); |
| return 0; |
| } |
| |
| //vaend foo |
| // -> |
| //bar = alloca 1 of typeof(foo) |
| //vaend bar |
| const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID); |
| const Type* ArgTy = F->getFunctionType()->getParamType(0); |
| const Type* ArgTyPtr = PointerType::getUnqual(ArgTy); |
| Function* NF = cast<Function>(Result->getOrInsertFunction( |
| "llvm.va_end", RetTy, ArgTyPtr, (Type *)0)); |
| |
| while (!F->use_empty()) { |
| CallInst* CI = cast<CallInst>(F->use_back()); |
| AllocaInst* bar = new AllocaInst(ArgTy, 0, "vaend.fix.1", CI); |
| new StoreInst(CI->getOperand(1), bar, CI); |
| new CallInst(NF, bar, "", CI); |
| CI->getParent()->getInstList().erase(CI); |
| } |
| Result->getFunctionList().erase(F); |
| } |
| |
| if(Function* F = Result->getFunction("llvm.va_copy")) { |
| if(F->arg_size() != 1) { |
| error("Obsolete va_copy takes 1 argument"); |
| return 0; |
| } |
| //foo = vacopy(bar) |
| // -> |
| //a = alloca 1 of typeof(foo) |
| //b = alloca 1 of typeof(foo) |
| //store bar -> b |
| //vacopy(a, b) |
| //foo = load a |
| |
| const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID); |
| const Type* ArgTy = F->getFunctionType()->getReturnType(); |
| const Type* ArgTyPtr = PointerType::getUnqual(ArgTy); |
| Function* NF = cast<Function>(Result->getOrInsertFunction( |
| "llvm.va_copy", RetTy, ArgTyPtr, ArgTyPtr, (Type *)0)); |
| |
| while (!F->use_empty()) { |
| CallInst* CI = cast<CallInst>(F->use_back()); |
| Value *Args[2] = { |
| new AllocaInst(ArgTy, 0, "vacopy.fix.1", CI), |
| new AllocaInst(ArgTy, 0, "vacopy.fix.2", CI) |
| }; |
| new StoreInst(CI->getOperand(1), Args[1], CI); |
| new CallInst(NF, Args, Args + 2, "", CI); |
| Value* foo = new LoadInst(Args[0], "vacopy.fix.3", CI); |
| CI->replaceAllUsesWith(foo); |
| CI->getParent()->getInstList().erase(CI); |
| } |
| Result->getFunctionList().erase(F); |
| } |
| } |
| |
| return Result; |
| } |
| |
| } // end llvm namespace |
| |
| using namespace llvm; |
| |
| %} |
| |
| %union { |
| llvm::Module *ModuleVal; |
| llvm::Function *FunctionVal; |
| std::pair<llvm::PATypeInfo, char*> *ArgVal; |
| llvm::BasicBlock *BasicBlockVal; |
| llvm::TermInstInfo TermInstVal; |
| llvm::InstrInfo InstVal; |
| llvm::ConstInfo ConstVal; |
| llvm::ValueInfo ValueVal; |
| llvm::PATypeInfo TypeVal; |
| llvm::TypeInfo PrimType; |
| llvm::PHIListInfo PHIList; |
| std::list<llvm::PATypeInfo> *TypeList; |
| std::vector<llvm::ValueInfo> *ValueList; |
| std::vector<llvm::ConstInfo> *ConstVector; |
| |
| |
| std::vector<std::pair<llvm::PATypeInfo,char*> > *ArgList; |
| // Represent the RHS of PHI node |
| std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable; |
| |
| llvm::GlobalValue::LinkageTypes Linkage; |
| int64_t SInt64Val; |
| uint64_t UInt64Val; |
| int SIntVal; |
| unsigned UIntVal; |
| llvm::APFloat *FPVal; |
| bool BoolVal; |
| |
| char *StrVal; // This memory is strdup'd! |
| llvm::ValID ValIDVal; // strdup'd memory maybe! |
| |
| llvm::BinaryOps BinaryOpVal; |
| llvm::TermOps TermOpVal; |
| llvm::MemoryOps MemOpVal; |
| llvm::OtherOps OtherOpVal; |
| llvm::CastOps CastOpVal; |
| llvm::ICmpInst::Predicate IPred; |
| llvm::FCmpInst::Predicate FPred; |
| llvm::Module::Endianness Endianness; |
| } |
| |
| %type <ModuleVal> Module FunctionList |
| %type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList |
| %type <BasicBlockVal> BasicBlock InstructionList |
| %type <TermInstVal> BBTerminatorInst |
| %type <InstVal> Inst InstVal MemoryInst |
| %type <ConstVal> ConstVal ConstExpr |
| %type <ConstVector> ConstVector |
| %type <ArgList> ArgList ArgListH |
| %type <ArgVal> ArgVal |
| %type <PHIList> PHIList |
| %type <ValueList> ValueRefList ValueRefListE // For call param lists |
| %type <ValueList> IndexList // For GEP derived indices |
| %type <TypeList> TypeListI ArgTypeListI |
| %type <JumpTable> JumpTable |
| %type <BoolVal> GlobalType // GLOBAL or CONSTANT? |
| %type <BoolVal> OptVolatile // 'volatile' or not |
| %type <BoolVal> OptTailCall // TAIL CALL or plain CALL. |
| %type <BoolVal> OptSideEffect // 'sideeffect' or not. |
| %type <Linkage> OptLinkage FnDeclareLinkage |
| %type <Endianness> BigOrLittle |
| |
| // ValueRef - Unresolved reference to a definition or BB |
| %type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef |
| %type <ValueVal> ResolvedVal // <type> <valref> pair |
| |
| // Tokens and types for handling constant integer values |
| // |
| // ESINT64VAL - A negative number within long long range |
| %token <SInt64Val> ESINT64VAL |
| |
| // EUINT64VAL - A positive number within uns. long long range |
| %token <UInt64Val> EUINT64VAL |
| %type <SInt64Val> EINT64VAL |
| |
| %token <SIntVal> SINTVAL // Signed 32 bit ints... |
| %token <UIntVal> UINTVAL // Unsigned 32 bit ints... |
| %type <SIntVal> INTVAL |
| %token <FPVal> FPVAL // Float or Double constant |
| |
| // Built in types... |
| %type <TypeVal> Types TypesV UpRTypes UpRTypesV |
| %type <PrimType> SIntType UIntType IntType FPType PrimType // Classifications |
| %token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG |
| %token <PrimType> FLOAT DOUBLE TYPE LABEL |
| |
| %token <StrVal> VAR_ID LABELSTR STRINGCONSTANT |
| %type <StrVal> Name OptName OptAssign |
| %type <UIntVal> OptAlign OptCAlign |
| %type <StrVal> OptSection SectionString |
| |
| %token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK |
| %token DECLARE GLOBAL CONSTANT SECTION VOLATILE |
| %token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK APPENDING |
| %token DLLIMPORT DLLEXPORT EXTERN_WEAK |
| %token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG ALIGN |
| %token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT |
| %token CC_TOK CCC_TOK CSRETCC_TOK FASTCC_TOK COLDCC_TOK |
| %token X86_STDCALLCC_TOK X86_FASTCALLCC_TOK |
| %token DATALAYOUT |
| %type <UIntVal> OptCallingConv |
| |
| // Basic Block Terminating Operators |
| %token <TermOpVal> RET BR SWITCH INVOKE UNREACHABLE |
| %token UNWIND EXCEPT |
| |
| // Binary Operators |
| %type <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories |
| %type <BinaryOpVal> ShiftOps |
| %token <BinaryOpVal> ADD SUB MUL DIV UDIV SDIV FDIV REM UREM SREM FREM |
| %token <BinaryOpVal> AND OR XOR SHL SHR ASHR LSHR |
| %token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comparators |
| %token <OtherOpVal> ICMP FCMP |
| |
| // Memory Instructions |
| %token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR |
| |
| // Other Operators |
| %token <OtherOpVal> PHI_TOK SELECT VAARG |
| %token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR |
| %token VAARG_old VANEXT_old //OBSOLETE |
| |
| // Support for ICmp/FCmp Predicates, which is 1.9++ but not 2.0 |
| %type <IPred> IPredicates |
| %type <FPred> FPredicates |
| %token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE |
| %token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE |
| |
| %token <CastOpVal> CAST TRUNC ZEXT SEXT FPTRUNC FPEXT FPTOUI FPTOSI |
| %token <CastOpVal> UITOFP SITOFP PTRTOINT INTTOPTR BITCAST |
| %type <CastOpVal> CastOps |
| |
| %start Module |
| |
| %% |
| |
| // Handle constant integer size restriction and conversion... |
| // |
| INTVAL |
| : SINTVAL |
| | UINTVAL { |
| if ($1 > (uint32_t)INT32_MAX) // Outside of my range! |
| error("Value too large for type"); |
| $$ = (int32_t)$1; |
| } |
| ; |
| |
| EINT64VAL |
| : ESINT64VAL // These have same type and can't cause problems... |
| | EUINT64VAL { |
| if ($1 > (uint64_t)INT64_MAX) // Outside of my range! |
| error("Value too large for type"); |
| $$ = (int64_t)$1; |
| }; |
| |
| // Operations that are notably excluded from this list include: |
| // RET, BR, & SWITCH because they end basic blocks and are treated specially. |
| // |
| ArithmeticOps |
| : ADD | SUB | MUL | DIV | UDIV | SDIV | FDIV | REM | UREM | SREM | FREM |
| ; |
| |
| LogicalOps |
| : AND | OR | XOR |
| ; |
| |
| SetCondOps |
| : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE |
| ; |
| |
| IPredicates |
| : EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; } |
| | SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; } |
| | SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; } |
| | ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; } |
| | ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; } |
| ; |
| |
| FPredicates |
| : OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; } |
| | OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; } |
| | OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; } |
| | ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; } |
| | UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; } |
| | ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; } |
| | ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; } |
| | TRUETOK { $$ = FCmpInst::FCMP_TRUE; } |
| | FALSETOK { $$ = FCmpInst::FCMP_FALSE; } |
| ; |
| ShiftOps |
| : SHL | SHR | ASHR | LSHR |
| ; |
| |
| CastOps |
| : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | FPTOUI | FPTOSI |
| | UITOFP | SITOFP | PTRTOINT | INTTOPTR | BITCAST | CAST |
| ; |
| |
| // These are some types that allow classification if we only want a particular |
| // thing... for example, only a signed, unsigned, or integral type. |
| SIntType |
| : LONG | INT | SHORT | SBYTE |
| ; |
| |
| UIntType |
| : ULONG | UINT | USHORT | UBYTE |
| ; |
| |
| IntType |
| : SIntType | UIntType |
| ; |
| |
| FPType |
| : FLOAT | DOUBLE |
| ; |
| |
| // OptAssign - Value producing statements have an optional assignment component |
| OptAssign |
| : Name '=' { |
| $$ = $1; |
| } |
| | /*empty*/ { |
| $$ = 0; |
| }; |
| |
| OptLinkage |
| : INTERNAL { $$ = GlobalValue::InternalLinkage; } |
| | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; } |
| | WEAK { $$ = GlobalValue::WeakLinkage; } |
| | APPENDING { $$ = GlobalValue::AppendingLinkage; } |
| | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; } |
| | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; } |
| | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; } |
| | /*empty*/ { $$ = GlobalValue::ExternalLinkage; } |
| ; |
| |
| OptCallingConv |
| : /*empty*/ { $$ = lastCallingConv = OldCallingConv::C; } |
| | CCC_TOK { $$ = lastCallingConv = OldCallingConv::C; } |
| | CSRETCC_TOK { $$ = lastCallingConv = OldCallingConv::CSRet; } |
| | FASTCC_TOK { $$ = lastCallingConv = OldCallingConv::Fast; } |
| | COLDCC_TOK { $$ = lastCallingConv = OldCallingConv::Cold; } |
| | X86_STDCALLCC_TOK { $$ = lastCallingConv = OldCallingConv::X86_StdCall; } |
| | X86_FASTCALLCC_TOK { $$ = lastCallingConv = OldCallingConv::X86_FastCall; } |
| | CC_TOK EUINT64VAL { |
| if ((unsigned)$2 != $2) |
| error("Calling conv too large"); |
| $$ = lastCallingConv = $2; |
| } |
| ; |
| |
| // OptAlign/OptCAlign - An optional alignment, and an optional alignment with |
| // a comma before it. |
| OptAlign |
| : /*empty*/ { $$ = 0; } |
| | ALIGN EUINT64VAL { |
| $$ = $2; |
| if ($$ != 0 && !isPowerOf2_32($$)) |
| error("Alignment must be a power of two"); |
| } |
| ; |
| |
| OptCAlign |
| : /*empty*/ { $$ = 0; } |
| | ',' ALIGN EUINT64VAL { |
| $$ = $3; |
| if ($$ != 0 && !isPowerOf2_32($$)) |
| error("Alignment must be a power of two"); |
| } |
| ; |
| |
| SectionString |
| : SECTION STRINGCONSTANT { |
| for (unsigned i = 0, e = strlen($2); i != e; ++i) |
| if ($2[i] == '"' || $2[i] == '\\') |
| error("Invalid character in section name"); |
| $$ = $2; |
| } |
| ; |
| |
| OptSection |
| : /*empty*/ { $$ = 0; } |
| | SectionString { $$ = $1; } |
| ; |
| |
| // GlobalVarAttributes - Used to pass the attributes string on a global. CurGV |
| // is set to be the global we are processing. |
| // |
| GlobalVarAttributes |
| : /* empty */ {} |
| | ',' GlobalVarAttribute GlobalVarAttributes {} |
| ; |
| |
| GlobalVarAttribute |
| : SectionString { |
| CurGV->setSection($1); |
| free($1); |
| } |
| | ALIGN EUINT64VAL { |
| if ($2 != 0 && !isPowerOf2_32($2)) |
| error("Alignment must be a power of two"); |
| CurGV->setAlignment($2); |
| |
| } |
| ; |
| |
| //===----------------------------------------------------------------------===// |
| // Types includes all predefined types... except void, because it can only be |
| // used in specific contexts (function returning void for example). To have |
| // access to it, a user must explicitly use TypesV. |
| // |
| |
| // TypesV includes all of 'Types', but it also includes the void type. |
| TypesV |
| : Types |
| | VOID { |
| $$.PAT = new PATypeHolder($1.T); |
| $$.S.makeSignless(); |
| } |
| ; |
| |
| UpRTypesV |
| : UpRTypes |
| | VOID { |
| $$.PAT = new PATypeHolder($1.T); |
| $$.S.makeSignless(); |
| } |
| ; |
| |
| Types |
| : UpRTypes { |
| if (!UpRefs.empty()) |
| error("Invalid upreference in type: " + (*$1.PAT)->getDescription()); |
| $$ = $1; |
| } |
| ; |
| |
| PrimType |
| : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT |
| | LONG | ULONG | FLOAT | DOUBLE | LABEL |
| ; |
| |
| // Derived types are added later... |
| UpRTypes |
| : PrimType { |
| $$.PAT = new PATypeHolder($1.T); |
| $$.S.copy($1.S); |
| } |
| | OPAQUE { |
| $$.PAT = new PATypeHolder(OpaqueType::get()); |
| $$.S.makeSignless(); |
| } |
| | SymbolicValueRef { // Named types are also simple types... |
| $$.S.copy(getTypeSign($1)); |
| const Type* tmp = getType($1); |
| $$.PAT = new PATypeHolder(tmp); |
| } |
| | '\\' EUINT64VAL { // Type UpReference |
| if ($2 > (uint64_t)~0U) |
| error("Value out of range"); |
| OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder |
| UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector... |
| $$.PAT = new PATypeHolder(OT); |
| $$.S.makeSignless(); |
| UR_OUT("New Upreference!\n"); |
| } |
| | UpRTypesV '(' ArgTypeListI ')' { // Function derived type? |
| $$.S.makeComposite($1.S); |
| std::vector<const Type*> Params; |
| for (std::list<llvm::PATypeInfo>::iterator I = $3->begin(), |
| E = $3->end(); I != E; ++I) { |
| Params.push_back(I->PAT->get()); |
| $$.S.add(I->S); |
| } |
| bool isVarArg = Params.size() && Params.back() == Type::VoidTy; |
| if (isVarArg) Params.pop_back(); |
| |
| const ParamAttrsList *PAL = 0; |
| if (lastCallingConv == OldCallingConv::CSRet) { |
| ParamAttrsVector Attrs; |
| ParamAttrsWithIndex PAWI; |
| PAWI.index = 1; PAWI.attrs = ParamAttr::StructRet; // first arg |
| Attrs.push_back(PAWI); |
| PAL = ParamAttrsList::get(Attrs); |
| } |
| |
| const FunctionType *FTy = |
| FunctionType::get($1.PAT->get(), Params, isVarArg); |
| |
| $$.PAT = new PATypeHolder( HandleUpRefs(FTy, $$.S) ); |
| delete $1.PAT; // Delete the return type handle |
| delete $3; // Delete the argument list |
| } |
| | '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type? |
| $$.S.makeComposite($4.S); |
| $$.PAT = new PATypeHolder(HandleUpRefs(ArrayType::get($4.PAT->get(), |
| (unsigned)$2), $$.S)); |
| delete $4.PAT; |
| } |
| | '<' EUINT64VAL 'x' UpRTypes '>' { // Vector type? |
| const llvm::Type* ElemTy = $4.PAT->get(); |
| if ((unsigned)$2 != $2) |
| error("Unsigned result not equal to signed result"); |
| if (!(ElemTy->isInteger() || ElemTy->isFloatingPoint())) |
| error("Elements of a VectorType must be integer or floating point"); |
| if (!isPowerOf2_32($2)) |
| error("VectorType length should be a power of 2"); |
| $$.S.makeComposite($4.S); |
| $$.PAT = new PATypeHolder(HandleUpRefs(VectorType::get(ElemTy, |
| (unsigned)$2), $$.S)); |
| delete $4.PAT; |
| } |
| | '{' TypeListI '}' { // Structure type? |
| std::vector<const Type*> Elements; |
| $$.S.makeComposite(); |
| for (std::list<llvm::PATypeInfo>::iterator I = $2->begin(), |
| E = $2->end(); I != E; ++I) { |
| Elements.push_back(I->PAT->get()); |
| $$.S.add(I->S); |
| } |
| $$.PAT = new PATypeHolder(HandleUpRefs(StructType::get(Elements), $$.S)); |
| delete $2; |
| } |
| | '{' '}' { // Empty structure type? |
| $$.PAT = new PATypeHolder(StructType::get(std::vector<const Type*>())); |
| $$.S.makeComposite(); |
| } |
| | '<' '{' TypeListI '}' '>' { // Packed Structure type? |
| $$.S.makeComposite(); |
| std::vector<const Type*> Elements; |
| for (std::list<llvm::PATypeInfo>::iterator I = $3->begin(), |
| E = $3->end(); I != E; ++I) { |
| Elements.push_back(I->PAT->get()); |
| $$.S.add(I->S); |
| delete I->PAT; |
| } |
| $$.PAT = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true), |
| $$.S)); |
| delete $3; |
| } |
| | '<' '{' '}' '>' { // Empty packed structure type? |
| $$.PAT = new PATypeHolder(StructType::get(std::vector<const Type*>(),true)); |
| $$.S.makeComposite(); |
| } |
| | UpRTypes '*' { // Pointer type? |
| if ($1.PAT->get() == Type::LabelTy) |
| error("Cannot form a pointer to a basic block"); |
| $$.S.makeComposite($1.S); |
| $$.PAT = new |
| PATypeHolder(HandleUpRefs(PointerType::getUnqual($1.PAT->get()), |
| $$.S)); |
| delete $1.PAT; |
| } |
| ; |
| |
| // TypeList - Used for struct declarations and as a basis for function type |
| // declaration type lists |
| // |
| TypeListI |
| : UpRTypes { |
| $$ = new std::list<PATypeInfo>(); |
| $$->push_back($1); |
| } |
| | TypeListI ',' UpRTypes { |
| ($$=$1)->push_back($3); |
| } |
| ; |
| |
| // ArgTypeList - List of types for a function type declaration... |
| ArgTypeListI |
| : TypeListI |
| | TypeListI ',' DOTDOTDOT { |
| PATypeInfo VoidTI; |
| VoidTI.PAT = new PATypeHolder(Type::VoidTy); |
| VoidTI.S.makeSignless(); |
| ($$=$1)->push_back(VoidTI); |
| } |
| | DOTDOTDOT { |
| $$ = new std::list<PATypeInfo>(); |
| PATypeInfo VoidTI; |
| VoidTI.PAT = new PATypeHolder(Type::VoidTy); |
| VoidTI.S.makeSignless(); |
| $$->push_back(VoidTI); |
| } |
| | /*empty*/ { |
| $$ = new std::list<PATypeInfo>(); |
| } |
| ; |
| |
| // ConstVal - The various declarations that go into the constant pool. This |
| // production is used ONLY to represent constants that show up AFTER a 'const', |
| // 'constant' or 'global' token at global scope. Constants that can be inlined |
| // into other expressions (such as integers and constexprs) are handled by the |
| // ResolvedVal, ValueRef and ConstValueRef productions. |
| // |
| ConstVal |
| : Types '[' ConstVector ']' { // Nonempty unsized arr |
| const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get()); |
| if (ATy == 0) |
| error("Cannot make array constant with type: '" + |
| $1.PAT->get()->getDescription() + "'"); |
| const Type *ETy = ATy->getElementType(); |
| int NumElements = ATy->getNumElements(); |
| |
| // Verify that we have the correct size... |
| if (NumElements != -1 && NumElements != (int)$3->size()) |
| error("Type mismatch: constant sized array initialized with " + |
| utostr($3->size()) + " arguments, but has size of " + |
| itostr(NumElements) + ""); |
| |
| // Verify all elements are correct type! |
| std::vector<Constant*> Elems; |
| for (unsigned i = 0; i < $3->size(); i++) { |
| Constant *C = (*$3)[i].C; |
| const Type* ValTy = C->getType(); |
| if (ETy != ValTy) |
| error("Element #" + utostr(i) + " is not of type '" + |
| ETy->getDescription() +"' as required!\nIt is of type '"+ |
| ValTy->getDescription() + "'"); |
| Elems.push_back(C); |
| } |
| $$.C = ConstantArray::get(ATy, Elems); |
| $$.S.copy($1.S); |
| delete $1.PAT; |
| delete $3; |
| } |
| | Types '[' ']' { |
| const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get()); |
| if (ATy == 0) |
| error("Cannot make array constant with type: '" + |
| $1.PAT->get()->getDescription() + "'"); |
| int NumElements = ATy->getNumElements(); |
| if (NumElements != -1 && NumElements != 0) |
| error("Type mismatch: constant sized array initialized with 0" |
| " arguments, but has size of " + itostr(NumElements) +""); |
| $$.C = ConstantArray::get(ATy, std::vector<Constant*>()); |
| $$.S.copy($1.S); |
| delete $1.PAT; |
| } |
| | Types 'c' STRINGCONSTANT { |
| const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get()); |
| if (ATy == 0) |
| error("Cannot make array constant with type: '" + |
| $1.PAT->get()->getDescription() + "'"); |
| int NumElements = ATy->getNumElements(); |
| const Type *ETy = dyn_cast<IntegerType>(ATy->getElementType()); |
| if (!ETy || cast<IntegerType>(ETy)->getBitWidth() != 8) |
| error("String arrays require type i8, not '" + ETy->getDescription() + |
| "'"); |
| char *EndStr = UnEscapeLexed($3, true); |
| if (NumElements != -1 && NumElements != (EndStr-$3)) |
| error("Can't build string constant of size " + |
| itostr((int)(EndStr-$3)) + " when array has size " + |
| itostr(NumElements) + ""); |
| std::vector<Constant*> Vals; |
| for (char *C = (char *)$3; C != (char *)EndStr; ++C) |
| Vals.push_back(ConstantInt::get(ETy, *C)); |
| free($3); |
| $$.C = ConstantArray::get(ATy, Vals); |
| $$.S.copy($1.S); |
| delete $1.PAT; |
| } |
| | Types '<' ConstVector '>' { // Nonempty unsized arr |
| const VectorType *PTy = dyn_cast<VectorType>($1.PAT->get()); |
| if (PTy == 0) |
| error("Cannot make packed constant with type: '" + |
| $1.PAT->get()->getDescription() + "'"); |
| const Type *ETy = PTy->getElementType(); |
| int NumElements = PTy->getNumElements(); |
| // Verify that we have the correct size... |
| if (NumElements != -1 && NumElements != (int)$3->size()) |
| error("Type mismatch: constant sized packed initialized with " + |
| utostr($3->size()) + " arguments, but has size of " + |
| itostr(NumElements) + ""); |
| // Verify all elements are correct type! |
| std::vector<Constant*> Elems; |
| for (unsigned i = 0; i < $3->size(); i++) { |
| Constant *C = (*$3)[i].C; |
| const Type* ValTy = C->getType(); |
| if (ETy != ValTy) |
| error("Element #" + utostr(i) + " is not of type '" + |
| ETy->getDescription() +"' as required!\nIt is of type '"+ |
| ValTy->getDescription() + "'"); |
| Elems.push_back(C); |
| } |
| $$.C = ConstantVector::get(PTy, Elems); |
| $$.S.copy($1.S); |
| delete $1.PAT; |
| delete $3; |
| } |
| | Types '{' ConstVector '}' { |
| const StructType *STy = dyn_cast<StructType>($1.PAT->get()); |
| if (STy == 0) |
| error("Cannot make struct constant with type: '" + |
| $1.PAT->get()->getDescription() + "'"); |
| if ($3->size() != STy->getNumContainedTypes()) |
| error("Illegal number of initializers for structure type"); |
| |
| // Check to ensure that constants are compatible with the type initializer! |
| std::vector<Constant*> Fields; |
| for (unsigned i = 0, e = $3->size(); i != e; ++i) { |
| Constant *C = (*$3)[i].C; |
| if (C->getType() != STy->getElementType(i)) |
| error("Expected type '" + STy->getElementType(i)->getDescription() + |
| "' for element #" + utostr(i) + " of structure initializer"); |
| Fields.push_back(C); |
| } |
| $$.C = ConstantStruct::get(STy, Fields); |
| $$.S.copy($1.S); |
| delete $1.PAT; |
| delete $3; |
| } |
| | Types '{' '}' { |
| const StructType *STy = dyn_cast<StructType>($1.PAT->get()); |
| if (STy == 0) |
| error("Cannot make struct constant with type: '" + |
| $1.PAT->get()->getDescription() + "'"); |
| if (STy->getNumContainedTypes() != 0) |
| error("Illegal number of initializers for structure type"); |
| $$.C = ConstantStruct::get(STy, std::vector<Constant*>()); |
| $$.S.copy($1.S); |
| delete $1.PAT; |
| } |
| | Types '<' '{' ConstVector '}' '>' { |
| const StructType *STy = dyn_cast<StructType>($1.PAT->get()); |
| if (STy == 0) |
| error("Cannot make packed struct constant with type: '" + |
| $1.PAT->get()->getDescription() + "'"); |
| if ($4->size() != STy->getNumContainedTypes()) |
| error("Illegal number of initializers for packed structure type"); |
| |
| // Check to ensure that constants are compatible with the type initializer! |
| std::vector<Constant*> Fields; |
| for (unsigned i = 0, e = $4->size(); i != e; ++i) { |
| Constant *C = (*$4)[i].C; |
| if (C->getType() != STy->getElementType(i)) |
| error("Expected type '" + STy->getElementType(i)->getDescription() + |
| "' for element #" + utostr(i) + " of packed struct initializer"); |
| Fields.push_back(C); |
| } |
| $$.C = ConstantStruct::get(STy, Fields); |
| $$.S.copy($1.S); |
| delete $1.PAT; |
| delete $4; |
| } |
| | Types '<' '{' '}' '>' { |
| const StructType *STy = dyn_cast<StructType>($1.PAT->get()); |
| if (STy == 0) |
| error("Cannot make packed struct constant with type: '" + |
| $1.PAT->get()->getDescription() + "'"); |
| if (STy->getNumContainedTypes() != 0) |
| error("Illegal number of initializers for packed structure type"); |
| $$.C = ConstantStruct::get(STy, std::vector<Constant*>()); |
| $$.S.copy($1.S); |
| delete $1.PAT; |
| } |
| | Types NULL_TOK { |
| const PointerType *PTy = dyn_cast<PointerType>($1.PAT->get()); |
| if (PTy == 0) |
| error("Cannot make null pointer constant with type: '" + |
| $1.PAT->get()->getDescription() + "'"); |
| $$.C = ConstantPointerNull::get(PTy); |
| $$.S.copy($1.S); |
| delete $1.PAT; |
| } |
| | Types UNDEF { |
| $$.C = UndefValue::get($1.PAT->get()); |
| $$.S.copy($1.S); |
| delete $1.PAT; |
| } |
| | Types SymbolicValueRef { |
| const PointerType *Ty = dyn_cast<PointerType>($1.PAT->get()); |
| if (Ty == 0) |
| error("Global const reference must be a pointer type, not" + |
| $1.PAT->get()->getDescription()); |
| |
| // ConstExprs can exist in the body of a function, thus creating |
| // GlobalValues whenever they refer to a variable. Because we are in |
| // the context of a function, getExistingValue will search the functions |
| // symbol table instead of the module symbol table for the global symbol, |
| // which throws things all off. To get around this, we just tell |
| // getExistingValue that we are at global scope here. |
| // |
| Function *SavedCurFn = CurFun.CurrentFunction; |
| CurFun.CurrentFunction = 0; |
| $2.S.copy($1.S); |
| Value *V = getExistingValue(Ty, $2); |
| CurFun.CurrentFunction = SavedCurFn; |
| |
| // If this is an initializer for a constant pointer, which is referencing a |
| // (currently) undefined variable, create a stub now that shall be replaced |
| // in the future with the right type of variable. |
| // |
| if (V == 0) { |
| assert(isa<PointerType>(Ty) && "Globals may only be used as pointers"); |
| const PointerType *PT = cast<PointerType>(Ty); |
| |
| // First check to see if the forward references value is already created! |
| PerModuleInfo::GlobalRefsType::iterator I = |
| CurModule.GlobalRefs.find(std::make_pair(PT, $2)); |
| |
| if (I != CurModule.GlobalRefs.end()) { |
| V = I->second; // Placeholder already exists, use it... |
| $2.destroy(); |
| } else { |
| std::string Name; |
| if ($2.Type == ValID::NameVal) Name = $2.Name; |
| |
| // Create the forward referenced global. |
| GlobalValue *GV; |
| if (const FunctionType *FTy = |
| dyn_cast<FunctionType>(PT->getElementType())) { |
| GV = new Function(FTy, GlobalValue::ExternalLinkage, Name, |
| CurModule.CurrentModule); |
| } else { |
| GV = new GlobalVariable(PT->getElementType(), false, |
| GlobalValue::ExternalLinkage, 0, |
| Name, CurModule.CurrentModule); |
| } |
| |
| // Keep track of the fact that we have a forward ref to recycle it |
| CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV)); |
| V = GV; |
| } |
| } |
| $$.C = cast<GlobalValue>(V); |
| $$.S.copy($1.S); |
| delete $1.PAT; // Free the type handle |
| } |
| | Types ConstExpr { |
| if ($1.PAT->get() != $2.C->getType()) |
| error("Mismatched types for constant expression"); |
| $$ = $2; |
| $$.S.copy($1.S); |
| delete $1.PAT; |
| } |
| | Types ZEROINITIALIZER { |
| const Type *Ty = $1.PAT->get(); |
| if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty)) |
| error("Cannot create a null initialized value of this type"); |
| $$.C = Constant::getNullValue(Ty); |
| $$.S.copy($1.S); |
| delete $1.PAT; |
| } |
| | SIntType EINT64VAL { // integral constants |
| const Type *Ty = $1.T; |
| if (!ConstantInt::isValueValidForType(Ty, $2)) |
| error("Constant value doesn't fit in type"); |
| $$.C = ConstantInt::get(Ty, $2); |
| $$.S.makeSigned(); |
| } |
| | UIntType EUINT64VAL { // integral constants |
| const Type *Ty = $1.T; |
| if (!ConstantInt::isValueValidForType(Ty, $2)) |
| error("Constant value doesn't fit in type"); |
| $$.C = ConstantInt::get(Ty, $2); |
| $$.S.makeUnsigned(); |
| } |
| | BOOL TRUETOK { // Boolean constants |
| $$.C = ConstantInt::get(Type::Int1Ty, true); |
| $$.S.makeUnsigned(); |
| } |
| | BOOL FALSETOK { // Boolean constants |
| $$.C = ConstantInt::get(Type::Int1Ty, false); |
| $$.S.makeUnsigned(); |
| } |
| | FPType FPVAL { // Float & Double constants |
| if (!ConstantFP::isValueValidForType($1.T, *$2)) |
| error("Floating point constant invalid for type"); |
| // Lexer has no type info, so builds all FP constants as double. |
| // Fix this here. |
| if ($1.T==Type::FloatTy) |
| $2->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven); |
| $$.C = ConstantFP::get($1.T, *$2); |
| delete $2; |
| $$.S.makeSignless(); |
| } |
| ; |
| |
| ConstExpr |
| : CastOps '(' ConstVal TO Types ')' { |
| const Type* SrcTy = $3.C->getType(); |
| const Type* DstTy = $5.PAT->get(); |
| Signedness SrcSign($3.S); |
| Signedness DstSign($5.S); |
| if (!SrcTy->isFirstClassType()) |
| error("cast constant expression from a non-primitive type: '" + |
| SrcTy->getDescription() + "'"); |
| if (!DstTy->isFirstClassType()) |
| error("cast constant expression to a non-primitive type: '" + |
| DstTy->getDescription() + "'"); |
| $$.C = cast<Constant>(getCast($1, $3.C, SrcSign, DstTy, DstSign)); |
| $$.S.copy(DstSign); |
| delete $5.PAT; |
| } |
| | GETELEMENTPTR '(' ConstVal IndexList ')' { |
| const Type *Ty = $3.C->getType(); |
| if (!isa<PointerType>(Ty)) |
| error("GetElementPtr requires a pointer operand"); |
| |
| std::vector<Constant*> CIndices; |
| upgradeGEPCEIndices($3.C->getType(), $4, CIndices); |
| |
| delete $4; |
| $$.C = ConstantExpr::getGetElementPtr($3.C, &CIndices[0], CIndices.size()); |
| $$.S.copy(getElementSign($3, CIndices)); |
| } |
| | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' { |
| if (!$3.C->getType()->isInteger() || |
| cast<IntegerType>($3.C->getType())->getBitWidth() != 1) |
| error("Select condition must be bool type"); |
| if ($5.C->getType() != $7.C->getType()) |
| error("Select operand types must match"); |
| $$.C = ConstantExpr::getSelect($3.C, $5.C, $7.C); |
| $$.S.copy($5.S); |
| } |
| | ArithmeticOps '(' ConstVal ',' ConstVal ')' { |
| const Type *Ty = $3.C->getType(); |
| if (Ty != $5.C->getType()) |
| error("Binary operator types must match"); |
| // First, make sure we're dealing with the right opcode by upgrading from |
| // obsolete versions. |
| Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S); |
| |
| // HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs. |
| // To retain backward compatibility with these early compilers, we emit a |
| // cast to the appropriate integer type automatically if we are in the |
| // broken case. See PR424 for more information. |
| if (!isa<PointerType>(Ty)) { |
| $$.C = ConstantExpr::get(Opcode, $3.C, $5.C); |
| } else { |
| const Type *IntPtrTy = 0; |
| switch (CurModule.CurrentModule->getPointerSize()) { |
| case Module::Pointer32: IntPtrTy = Type::Int32Ty; break; |
| case Module::Pointer64: IntPtrTy = Type::Int64Ty; break; |
| default: error("invalid pointer binary constant expr"); |
| } |
| $$.C = ConstantExpr::get(Opcode, |
| ConstantExpr::getCast(Instruction::PtrToInt, $3.C, IntPtrTy), |
| ConstantExpr::getCast(Instruction::PtrToInt, $5.C, IntPtrTy)); |
| $$.C = ConstantExpr::getCast(Instruction::IntToPtr, $$.C, Ty); |
| } |
| $$.S.copy($3.S); |
| } |
| | LogicalOps '(' ConstVal ',' ConstVal ')' { |
| const Type* Ty = $3.C->getType(); |
| if (Ty != $5.C->getType()) |
| error("Logical operator types must match"); |
| if (!Ty->isInteger()) { |
| if (!isa<VectorType>(Ty) || |
| !cast<VectorType>(Ty)->getElementType()->isInteger()) |
| error("Logical operator requires integer operands"); |
| } |
| Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S); |
| $$.C = ConstantExpr::get(Opcode, $3.C, $5.C); |
| $$.S.copy($3.S); |
| } |
| | SetCondOps '(' ConstVal ',' ConstVal ')' { |
| const Type* Ty = $3.C->getType(); |
| if (Ty != $5.C->getType()) |
| error("setcc operand types must match"); |
| unsigned short pred; |
| Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $3.S); |
| $$.C = ConstantExpr::getCompare(Opcode, $3.C, $5.C); |
| $$.S.makeUnsigned(); |
| } |
| | ICMP IPredicates '(' ConstVal ',' ConstVal ')' { |
| if ($4.C->getType() != $6.C->getType()) |
| error("icmp operand types must match"); |
| $$.C = ConstantExpr::getCompare($2, $4.C, $6.C); |
| $$.S.makeUnsigned(); |
| } |
| | FCMP FPredicates '(' ConstVal ',' ConstVal ')' { |
| if ($4.C->getType() != $6.C->getType()) |
| error("fcmp operand types must match"); |
| $$.C = ConstantExpr::getCompare($2, $4.C, $6.C); |
| $$.S.makeUnsigned(); |
| } |
| | ShiftOps '(' ConstVal ',' ConstVal ')' { |
| if (!$5.C->getType()->isInteger() || |
| cast<IntegerType>($5.C->getType())->getBitWidth() != 8) |
| error("Shift count for shift constant must be unsigned byte"); |
| const Type* Ty = $3.C->getType(); |
| if (!$3.C->getType()->isInteger()) |
| error("Shift constant expression requires integer operand"); |
| Constant *ShiftAmt = ConstantExpr::getZExt($5.C, Ty); |
| $$.C = ConstantExpr::get(getBinaryOp($1, Ty, $3.S), $3.C, ShiftAmt); |
| $$.S.copy($3.S); |
| } |
| | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' { |
| if (!ExtractElementInst::isValidOperands($3.C, $5.C)) |
| error("Invalid extractelement operands"); |
| $$.C = ConstantExpr::getExtractElement($3.C, $5.C); |
| $$.S.copy($3.S.get(0)); |
| } |
| | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' { |
| if (!InsertElementInst::isValidOperands($3.C, $5.C, $7.C)) |
| error("Invalid insertelement operands"); |
| $$.C = ConstantExpr::getInsertElement($3.C, $5.C, $7.C); |
| $$.S.copy($3.S); |
| } |
| | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' { |
| if (!ShuffleVectorInst::isValidOperands($3.C, $5.C, $7.C)) |
| error("Invalid shufflevector operands"); |
| $$.C = ConstantExpr::getShuffleVector($3.C, $5.C, $7.C); |
| $$.S.copy($3.S); |
| } |
| ; |
| |
| |
| // ConstVector - A list of comma separated constants. |
| ConstVector |
| : ConstVector ',' ConstVal { ($$ = $1)->push_back($3); } |
| | ConstVal { |
| $$ = new std::vector<ConstInfo>(); |
| $$->push_back($1); |
| } |
| ; |
| |
| |
| // GlobalType - Match either GLOBAL or CONSTANT for global declarations... |
| GlobalType |
| : GLOBAL { $$ = false; } |
| | CONSTANT { $$ = true; } |
| ; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Rules to match Modules |
| //===----------------------------------------------------------------------===// |
| |
| // Module rule: Capture the result of parsing the whole file into a result |
| // variable... |
| // |
| Module |
| : FunctionList { |
| $$ = ParserResult = $1; |
| CurModule.ModuleDone(); |
| } |
| ; |
| |
| // FunctionList - A list of functions, preceeded by a constant pool. |
| // |
| FunctionList |
| : FunctionList Function { $$ = $1; CurFun.FunctionDone(); } |
| | FunctionList FunctionProto { $$ = $1; } |
| | FunctionList MODULE ASM_TOK AsmBlock { $$ = $1; } |
| | FunctionList IMPLEMENTATION { $$ = $1; } |
| | ConstPool { |
| $$ = CurModule.CurrentModule; |
| // Emit an error if there are any unresolved types left. |
| if (!CurModule.LateResolveTypes.empty()) { |
| const ValID &DID = CurModule.LateResolveTypes.begin()->first; |
| if (DID.Type == ValID::NameVal) { |
| error("Reference to an undefined type: '"+DID.getName() + "'"); |
| } else { |
| error("Reference to an undefined type: #" + itostr(DID.Num)); |
| } |
| } |
| } |
| ; |
| |
| // ConstPool - Constants with optional names assigned to them. |
| ConstPool |
| : ConstPool OptAssign TYPE TypesV { |
| // Eagerly resolve types. This is not an optimization, this is a |
| // requirement that is due to the fact that we could have this: |
| // |
| // %list = type { %list * } |
| // %list = type { %list * } ; repeated type decl |
| // |
| // If types are not resolved eagerly, then the two types will not be |
| // determined to be the same type! |
| // |
| ResolveTypeTo($2, $4.PAT->get(), $4.S); |
| |
| if (!setTypeName($4, $2) && !$2) { |
| // If this is a numbered type that is not a redefinition, add it to the |
| // slot table. |
| CurModule.Types.push_back($4.PAT->get()); |
| CurModule.TypeSigns.push_back($4.S); |
| } |
| delete $4.PAT; |
| } |
| | ConstPool FunctionProto { // Function prototypes can be in const pool |
| } |
| | ConstPool MODULE ASM_TOK AsmBlock { // Asm blocks can be in the const pool |
| } |
| | ConstPool OptAssign OptLinkage GlobalType ConstVal { |
| if ($5.C == 0) |
| error("Global value initializer is not a constant"); |
| CurGV = ParseGlobalVariable($2, $3, $4, $5.C->getType(), $5.C, $5.S); |
| } GlobalVarAttributes { |
| CurGV = 0; |
| } |
| | ConstPool OptAssign EXTERNAL GlobalType Types { |
| const Type *Ty = $5.PAT->get(); |
| CurGV = ParseGlobalVariable($2, GlobalValue::ExternalLinkage, $4, Ty, 0, |
| $5.S); |
| delete $5.PAT; |
| } GlobalVarAttributes { |
| CurGV = 0; |
| } |
| | ConstPool OptAssign DLLIMPORT GlobalType Types { |
| const Type *Ty = $5.PAT->get(); |
| CurGV = ParseGlobalVariable($2, GlobalValue::DLLImportLinkage, $4, Ty, 0, |
| $5.S); |
| delete $5.PAT; |
| } GlobalVarAttributes { |
| CurGV = 0; |
| } |
| | ConstPool OptAssign EXTERN_WEAK GlobalType Types { |
| const Type *Ty = $5.PAT->get(); |
| CurGV = |
| ParseGlobalVariable($2, GlobalValue::ExternalWeakLinkage, $4, Ty, 0, |
| $5.S); |
| delete $5.PAT; |
| } GlobalVarAttributes { |
| CurGV = 0; |
| } |
| | ConstPool TARGET TargetDefinition { |
| } |
| | ConstPool DEPLIBS '=' LibrariesDefinition { |
| } |
| | /* empty: end of list */ { |
| } |
| ; |
| |
| AsmBlock |
| : STRINGCONSTANT { |
| const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm(); |
| char *EndStr = UnEscapeLexed($1, true); |
| std::string NewAsm($1, EndStr); |
| free($1); |
| |
| if (AsmSoFar.empty()) |
| CurModule.CurrentModule->setModuleInlineAsm(NewAsm); |
| else |
| CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+NewAsm); |
| } |
| ; |
| |
| BigOrLittle |
| : BIG { $$ = Module::BigEndian; } |
| | LITTLE { $$ = Module::LittleEndian; } |
| ; |
| |
| TargetDefinition |
| : ENDIAN '=' BigOrLittle { |
| CurModule.setEndianness($3); |
| } |
| | POINTERSIZE '=' EUINT64VAL { |
| if ($3 == 32) |
| CurModule.setPointerSize(Module::Pointer32); |
| else if ($3 == 64) |
| CurModule.setPointerSize(Module::Pointer64); |
| else |
| error("Invalid pointer size: '" + utostr($3) + "'"); |
| } |
| | TRIPLE '=' STRINGCONSTANT { |
| CurModule.CurrentModule->setTargetTriple($3); |
| free($3); |
| } |
| | DATALAYOUT '=' STRINGCONSTANT { |
| CurModule.CurrentModule->setDataLayout($3); |
| free($3); |
| } |
| ; |
| |
| LibrariesDefinition |
| : '[' LibList ']' |
| ; |
| |
| LibList |
| : LibList ',' STRINGCONSTANT { |
| CurModule.CurrentModule->addLibrary($3); |
| free($3); |
| } |
| | STRINGCONSTANT { |
| CurModule.CurrentModule->addLibrary($1); |
| free($1); |
| } |
| | /* empty: end of list */ { } |
| ; |
| |
| //===----------------------------------------------------------------------===// |
| // Rules to match Function Headers |
| //===----------------------------------------------------------------------===// |
| |
| Name |
| : VAR_ID | STRINGCONSTANT |
| ; |
| |
| OptName |
| : Name |
| | /*empty*/ { $$ = 0; } |
| ; |
| |
| ArgVal |
| : Types OptName { |
| if ($1.PAT->get() == Type::VoidTy) |
| error("void typed arguments are invalid"); |
| $$ = new std::pair<PATypeInfo, char*>($1, $2); |
| } |
| ; |
| |
| ArgListH |
| : ArgListH ',' ArgVal { |
| $$ = $1; |
| $$->push_back(*$3); |
| delete $3; |
| } |
| | ArgVal { |
| $$ = new std::vector<std::pair<PATypeInfo,char*> >(); |
| $$->push_back(*$1); |
| delete $1; |
| } |
| ; |
| |
| ArgList |
| : ArgListH { $$ = $1; } |
| | ArgListH ',' DOTDOTDOT { |
| $$ = $1; |
| PATypeInfo VoidTI; |
| VoidTI.PAT = new PATypeHolder(Type::VoidTy); |
| VoidTI.S.makeSignless(); |
| $$->push_back(std::pair<PATypeInfo, char*>(VoidTI, 0)); |
| } |
| | DOTDOTDOT { |
| $$ = new std::vector<std::pair<PATypeInfo,char*> >(); |
| PATypeInfo VoidTI; |
| VoidTI.PAT = new PATypeHolder(Type::VoidTy); |
| VoidTI.S.makeSignless(); |
| $$->push_back(std::pair<PATypeInfo, char*>(VoidTI, 0)); |
| } |
| | /* empty */ { $$ = 0; } |
| ; |
| |
| FunctionHeaderH |
| : OptCallingConv TypesV Name '(' ArgList ')' OptSection OptAlign { |
| UnEscapeLexed($3); |
| std::string FunctionName($3); |
| free($3); // Free strdup'd memory! |
| |
| const Type* RetTy = $2.PAT->get(); |
| |
| if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy) |
| error("LLVM functions cannot return aggregate types"); |
| |
| Signedness FTySign; |
| FTySign.makeComposite($2.S); |
| std::vector<const Type*> ParamTyList; |
| |
| // In LLVM 2.0 the signatures of three varargs intrinsics changed to take |
| // i8*. We check here for those names and override the parameter list |
| // types to ensure the prototype is correct. |
| if (FunctionName == "llvm.va_start" || FunctionName == "llvm.va_end") { |
| ParamTyList.push_back(PointerType::getUnqual(Type::Int8Ty)); |
| } else if (FunctionName == "llvm.va_copy") { |
| ParamTyList.push_back(PointerType::getUnqual(Type::Int8Ty)); |
| ParamTyList.push_back(PointerType::getUnqual(Type::Int8Ty)); |
| } else if ($5) { // If there are arguments... |
| for (std::vector<std::pair<PATypeInfo,char*> >::iterator |
| I = $5->begin(), E = $5->end(); I != E; ++I) { |
| const Type *Ty = I->first.PAT->get(); |
| ParamTyList.push_back(Ty); |
| FTySign.add(I->first.S); |
| } |
| } |
| |
| bool isVarArg = ParamTyList.size() && ParamTyList.back() == Type::VoidTy; |
| if (isVarArg) |
| ParamTyList.pop_back(); |
| |
| const FunctionType *FT = FunctionType::get(RetTy, ParamTyList, isVarArg); |
| const PointerType *PFT = PointerType::getUnqual(FT); |
| delete $2.PAT; |
| |
| ValID ID; |
| if (!FunctionName.empty()) { |
| ID = ValID::create((char*)FunctionName.c_str()); |
| } else { |
| ID = ValID::create((int)CurModule.Values[PFT].size()); |
| } |
| ID.S.makeComposite(FTySign); |
| |
| Function *Fn = 0; |
| Module* M = CurModule.CurrentModule; |
| |
| // See if this function was forward referenced. If so, recycle the object. |
| if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) { |
| // Move the function to the end of the list, from whereever it was |
| // previously inserted. |
| Fn = cast<Function>(FWRef); |
| M->getFunctionList().remove(Fn); |
| M->getFunctionList().push_back(Fn); |
| } else if (!FunctionName.empty()) { |
| GlobalValue *Conflict = M->getFunction(FunctionName); |
| if (!Conflict) |
| Conflict = M->getNamedGlobal(FunctionName); |
| if (Conflict && PFT == Conflict->getType()) { |
| if (!CurFun.isDeclare && !Conflict->isDeclaration()) { |
| // We have two function definitions that conflict, same type, same |
| // name. We should really check to make sure that this is the result |
| // of integer type planes collapsing and generate an error if it is |
| // not, but we'll just rename on the assumption that it is. However, |
| // let's do it intelligently and rename the internal linkage one |
| // if there is one. |
| std::string NewName(makeNameUnique(FunctionName)); |
| if (Conflict->hasInternalLinkage()) { |
| Conflict->setName(NewName); |
| RenameMapKey Key = |
| makeRenameMapKey(FunctionName, Conflict->getType(), ID.S); |
| CurModule.RenameMap[Key] = NewName; |
| Fn = new Function(FT, CurFun.Linkage, FunctionName, M); |
| InsertValue(Fn, CurModule.Values); |
| } else { |
| Fn = new Function(FT, CurFun.Linkage, NewName, M); |
| InsertValue(Fn, CurModule.Values); |
| RenameMapKey Key = |
| makeRenameMapKey(FunctionName, PFT, ID.S); |
| CurModule.RenameMap[Key] = NewName; |
| } |
| } else { |
| // If they are not both definitions, then just use the function we |
| // found since the types are the same. |
| Fn = cast<Function>(Conflict); |
| |
| // Make sure to strip off any argument names so we can't get |
| // conflicts. |
| if (Fn->isDeclaration()) |
| for (Function::arg_iterator AI = Fn->arg_begin(), |
| AE = Fn->arg_end(); AI != AE; ++AI) |
| AI->setName(""); |
| } |
| } else if (Conflict) { |
| // We have two globals with the same name and different types. |
| // Previously, this was permitted because the symbol table had |
| // "type planes" and names only needed to be distinct within a |
| // type plane. After PR411 was fixed, this is no loner the case. |
| // To resolve this we must rename one of the two. |
| if (Conflict->hasInternalLinkage()) { |
| // We can safely rename the Conflict. |
| RenameMapKey Key = |
| makeRenameMapKey(Conflict->getName(), Conflict->getType(), |
| CurModule.NamedValueSigns[Conflict->getName()]); |
| Conflict->setName(makeNameUnique(Conflict->getName())); |
| CurModule.RenameMap[Key] = Conflict->getName(); |
| Fn = new Function(FT, CurFun.Linkage, FunctionName, M); |
| InsertValue(Fn, CurModule.Values); |
| } else { |
| // We can't quietly rename either of these things, but we must |
| // rename one of them. Only if the function's linkage is internal can |
| // we forgo a warning message about the renamed function. |
| std::string NewName = makeNameUnique(FunctionName); |
| if (CurFun.Linkage != GlobalValue::InternalLinkage) { |
| warning("Renaming function '" + FunctionName + "' as '" + NewName + |
| "' may cause linkage errors"); |
| } |
| // Elect to rename the thing we're now defining. |
| Fn = new Function(FT, CurFun.Linkage, NewName, M); |
| InsertValue(Fn, CurModule.Values); |
| RenameMapKey Key = makeRenameMapKey(FunctionName, PFT, ID.S); |
| CurModule.RenameMap[Key] = NewName; |
| } |
| } else { |
| // There's no conflict, just define the function |
| Fn = new Function(FT, CurFun.Linkage, FunctionName, M); |
| InsertValue(Fn, CurModule.Values); |
| } |
| } else { |
| // There's no conflict, just define the function |
| Fn = new Function(FT, CurFun.Linkage, FunctionName, M); |
| InsertValue(Fn, CurModule.Values); |
| } |
| |
| |
| CurFun.FunctionStart(Fn); |
| |
| if (CurFun.isDeclare) { |
| // If we have declaration, always overwrite linkage. This will allow us |
| // to correctly handle cases, when pointer to function is passed as |
| // argument to another function. |
| Fn->setLinkage(CurFun.Linkage); |
| } |
| Fn->setCallingConv(upgradeCallingConv($1)); |
| Fn->setAlignment($8); |
| if ($7) { |
| Fn->setSection($7); |
| free($7); |
| } |
| |
| // Convert the CSRet calling convention into the corresponding parameter |
| // attribute. |
| if ($1 == OldCallingConv::CSRet) { |
| ParamAttrsVector Attrs; |
| ParamAttrsWithIndex PAWI; |
| PAWI.index = 1; PAWI.attrs = ParamAttr::StructRet; // first arg |
| Attrs.push_back(PAWI); |
| Fn->setParamAttrs(ParamAttrsList::get(Attrs)); |
| } |
| |
| // Add all of the arguments we parsed to the function... |
| if ($5) { // Is null if empty... |
| if (isVarArg) { // Nuke the last entry |
| assert($5->back().first.PAT->get() == Type::VoidTy && |
| $5->back().second == 0 && "Not a varargs marker"); |
| delete $5->back().first.PAT; |
| $5->pop_back(); // Delete the last entry |
| } |
| Function::arg_iterator ArgIt = Fn->arg_begin(); |
| Function::arg_iterator ArgEnd = Fn->arg_end(); |
| std::vector<std::pair<PATypeInfo,char*> >::iterator I = $5->begin(); |
| std::vector<std::pair<PATypeInfo,char*> >::iterator E = $5->end(); |
| for ( ; I != E && ArgIt != ArgEnd; ++I, ++ArgIt) { |
| delete I->first.PAT; // Delete the typeholder... |
| ValueInfo VI; VI.V = ArgIt; VI.S.copy(I->first.S); |
| setValueName(VI, I->second); // Insert arg into symtab... |
| InsertValue(ArgIt); |
| } |
| delete $5; // We're now done with the argument list |
| } |
| lastCallingConv = OldCallingConv::C; |
| } |
| ; |
| |
| BEGIN |
| : BEGINTOK | '{' // Allow BEGIN or '{' to start a function |
| ; |
| |
| FunctionHeader |
| : OptLinkage { CurFun.Linkage = $1; } FunctionHeaderH BEGIN { |
| $$ = CurFun.CurrentFunction; |
| |
| // Make sure that we keep track of the linkage type even if there was a |
| // previous "declare". |
| $$->setLinkage($1); |
| } |
| ; |
| |
| END |
| : ENDTOK | '}' // Allow end of '}' to end a function |
| ; |
| |
| Function |
| : BasicBlockList END { |
| $$ = $1; |
| }; |
| |
| FnDeclareLinkage |
| : /*default*/ { $$ = GlobalValue::ExternalLinkage; } |
| | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; } |
| | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; } |
| ; |
| |
| FunctionProto |
| : DECLARE { CurFun.isDeclare = true; } |
| FnDeclareLinkage { CurFun.Linkage = $3; } FunctionHeaderH { |
| $$ = CurFun.CurrentFunction; |
| CurFun.FunctionDone(); |
| |
| } |
| ; |
| |
| //===----------------------------------------------------------------------===// |
| // Rules to match Basic Blocks |
| //===----------------------------------------------------------------------===// |
| |
| OptSideEffect |
| : /* empty */ { $$ = false; } |
| | SIDEEFFECT { $$ = true; } |
| ; |
| |
| ConstValueRef |
| // A reference to a direct constant |
| : ESINT64VAL { $$ = ValID::create($1); } |
| | EUINT64VAL { $$ = ValID::create($1); } |
| | FPVAL { $$ = ValID::create($1); } |
| | TRUETOK { |
| $$ = ValID::create(ConstantInt::get(Type::Int1Ty, true)); |
| $$.S.makeUnsigned(); |
| } |
| | FALSETOK { |
| $$ = ValID::create(ConstantInt::get(Type::Int1Ty, false)); |
| $$.S.makeUnsigned(); |
| } |
| | NULL_TOK { $$ = ValID::createNull(); } |
| | UNDEF { $$ = ValID::createUndef(); } |
| | ZEROINITIALIZER { $$ = ValID::createZeroInit(); } |
| | '<' ConstVector '>' { // Nonempty unsized packed vector |
| const Type *ETy = (*$2)[0].C->getType(); |
| int NumElements = $2->size(); |
| VectorType* pt = VectorType::get(ETy, NumElements); |
| $$.S.makeComposite((*$2)[0].S); |
| PATypeHolder* PTy = new PATypeHolder(HandleUpRefs(pt, $$.S)); |
| |
| // Verify all elements are correct type! |
| std::vector<Constant*> Elems; |
| for (unsigned i = 0; i < $2->size(); i++) { |
| Constant *C = (*$2)[i].C; |
| const Type *CTy = C->getType(); |
| if (ETy != CTy) |
| error("Element #" + utostr(i) + " is not of type '" + |
| ETy->getDescription() +"' as required!\nIt is of type '" + |
| CTy->getDescription() + "'"); |
| Elems.push_back(C); |
| } |
| $$ = ValID::create(ConstantVector::get(pt, Elems)); |
| delete PTy; delete $2; |
| } |
| | ConstExpr { |
| $$ = ValID::create($1.C); |
| $$.S.copy($1.S); |
| } |
| | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT { |
| char *End = UnEscapeLexed($3, true); |
| std::string AsmStr = std::string($3, End); |
| End = UnEscapeLexed($5, true); |
| std::string Constraints = std::string($5, End); |
| $$ = ValID::createInlineAsm(AsmStr, Constraints, $2); |
| free($3); |
| free($5); |
| } |
| ; |
| |
| // SymbolicValueRef - Reference to one of two ways of symbolically refering to |
| // another value. |
| // |
| SymbolicValueRef |
| : INTVAL { $$ = ValID::create($1); $$.S.makeSignless(); } |
| | Name { $$ = ValID::create($1); $$.S.makeSignless(); } |
| ; |
| |
| // ValueRef - A reference to a definition... either constant or symbolic |
| ValueRef |
| : SymbolicValueRef | ConstValueRef |
| ; |
| |
| |
| // ResolvedVal - a <type> <value> pair. This is used only in cases where the |
| // type immediately preceeds the value reference, and allows complex constant |
| // pool references (for things like: 'ret [2 x int] [ int 12, int 42]') |
| ResolvedVal |
| : Types ValueRef { |
| const Type *Ty = $1.PAT->get(); |
| $2.S.copy($1.S); |
| $$.V = getVal(Ty, $2); |
| $$.S.copy($1.S); |
| delete $1.PAT; |
| } |
| ; |
| |
| BasicBlockList |
| : BasicBlockList BasicBlock { |
| $$ = $1; |
| } |
| | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks |
| $$ = $1; |
| }; |
| |
| |
| // Basic blocks are terminated by branching instructions: |
| // br, br/cc, switch, ret |
| // |
| BasicBlock |
| : InstructionList OptAssign BBTerminatorInst { |
| ValueInfo VI; VI.V = $3.TI; VI.S.copy($3.S); |
| setValueName(VI, $2); |
| InsertValue($3.TI); |
| $1->getInstList().push_back($3.TI); |
| InsertValue($1); |
| $$ = $1; |
| } |
| ; |
| |
| InstructionList |
| : InstructionList Inst { |
| if ($2.I) |
| $1->getInstList().push_back($2.I); |
| $$ = $1; |
| } |
| | /* empty */ { |
| $$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++),true); |
| // Make sure to move the basic block to the correct location in the |
| // function, instead of leaving it inserted wherever it was first |
| // referenced. |
| Function::BasicBlockListType &BBL = |
| CurFun.CurrentFunction->getBasicBlockList(); |
| BBL.splice(BBL.end(), BBL, $$); |
| } |
| | LABELSTR { |
| $$ = CurBB = getBBVal(ValID::create($1), true); |
| // Make sure to move the basic block to the correct location in the |
| // function, instead of leaving it inserted wherever it was first |
| // referenced. |
| Function::BasicBlockListType &BBL = |
| CurFun.CurrentFunction->getBasicBlockList(); |
| BBL.splice(BBL.end(), BBL, $$); |
| } |
| ; |
| |
| Unwind : UNWIND | EXCEPT; |
| |
| BBTerminatorInst |
| : RET ResolvedVal { // Return with a result... |
| $$.TI = new ReturnInst($2.V); |
| $$.S.makeSignless(); |
| } |
| | RET VOID { // Return with no result... |
| $$.TI = new ReturnInst(); |
| $$.S.makeSignless(); |
| } |
| | BR LABEL ValueRef { // Unconditional Branch... |
| BasicBlock* tmpBB = getBBVal($3); |
| $$.TI = new BranchInst(tmpBB); |
| $$.S.makeSignless(); |
| } // Conditional Branch... |
| | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef { |
| $6.S.makeSignless(); |
| $9.S.makeSignless(); |
| BasicBlock* tmpBBA = getBBVal($6); |
| BasicBlock* tmpBBB = getBBVal($9); |
| $3.S.makeUnsigned(); |
| Value* tmpVal = getVal(Type::Int1Ty, $3); |
| $$.TI = new BranchInst(tmpBBA, tmpBBB, tmpVal); |
| $$.S.makeSignless(); |
| } |
| | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' { |
| $3.S.copy($2.S); |
| Value* tmpVal = getVal($2.T, $3); |
| $6.S.makeSignless(); |
| BasicBlock* tmpBB = getBBVal($6); |
| SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size()); |
| $$.TI = S; |
| $$.S.makeSignless(); |
| std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(), |
| E = $8->end(); |
| for (; I != E; ++I) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first)) |
| S->addCase(CI, I->second); |
| else |
| error("Switch case is constant, but not a simple integer"); |
| } |
| delete $8; |
| } |
| | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' { |
| $3.S.copy($2.S); |
| Value* tmpVal = getVal($2.T, $3); |
| $6.S.makeSignless(); |
| BasicBlock* tmpBB = getBBVal($6); |
| SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0); |
| $$.TI = S; |
| $$.S.makeSignless(); |
| } |
| | INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')' |
| TO LABEL ValueRef Unwind LABEL ValueRef { |
| const PointerType *PFTy; |
| const FunctionType *Ty; |
| Signedness FTySign; |
| |
| if (!(PFTy = dyn_cast<PointerType>($3.PAT->get())) || |
| !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { |
| // Pull out the types of all of the arguments... |
| std::vector<const Type*> ParamTypes; |
| FTySign.makeComposite($3.S); |
| if ($6) { |
| for (std::vector<ValueInfo>::iterator I = $6->begin(), E = $6->end(); |
| I != E; ++I) { |
| ParamTypes.push_back((*I).V->getType()); |
| FTySign.add(I->S); |
| } |
| } |
| bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy; |
| if (isVarArg) ParamTypes.pop_back(); |
| Ty = FunctionType::get($3.PAT->get(), ParamTypes, isVarArg); |
| PFTy = PointerType::getUnqual(Ty); |
| $$.S.copy($3.S); |
| } else { |
| FTySign = $3.S; |
| // Get the signedness of the result type. $3 is the pointer to the |
| // function type so we get the 0th element to extract the function type, |
| // and then the 0th element again to get the result type. |
| $$.S.copy($3.S.get(0).get(0)); |
| } |
| |
| $4.S.makeComposite(FTySign); |
| Value *V = getVal(PFTy, $4); // Get the function we're calling... |
| BasicBlock *Normal = getBBVal($10); |
| BasicBlock *Except = getBBVal($13); |
| |
| // Create the call node... |
| if (!$6) { // Has no arguments? |
| std::vector<Value*> Args; |
| $$.TI = new InvokeInst(V, Normal, Except, Args.begin(), Args.end()); |
| } else { // Has arguments? |
| // Loop through FunctionType's arguments and ensure they are specified |
| // correctly! |
| // |
| FunctionType::param_iterator I = Ty->param_begin(); |
| FunctionType::param_iterator E = Ty->param_end(); |
| std::vector<ValueInfo>::iterator ArgI = $6->begin(), ArgE = $6->end(); |
| |
| std::vector<Value*> Args; |
| for (; ArgI != ArgE && I != E; ++ArgI, ++I) { |
| if ((*ArgI).V->getType() != *I) |
| error("Parameter " +(*ArgI).V->getName()+ " is not of type '" + |
| (*I)->getDescription() + "'"); |
| Args.push_back((*ArgI).V); |
| } |
| |
| if (I != E || (ArgI != ArgE && !Ty->isVarArg())) |
| error("Invalid number of parameters detected"); |
| |
| $$.TI = new InvokeInst(V, Normal, Except, Args.begin(), Args.end()); |
| } |
| cast<InvokeInst>($$.TI)->setCallingConv(upgradeCallingConv($2)); |
| if ($2 == OldCallingConv::CSRet) { |
| ParamAttrsVector Attrs; |
| ParamAttrsWithIndex PAWI; |
| PAWI.index = 1; PAWI.attrs = ParamAttr::StructRet; // first arg |
| Attrs.push_back(PAWI); |
| cast<InvokeInst>($$.TI)->setParamAttrs(ParamAttrsList::get(Attrs)); |
| } |
| delete $3.PAT; |
| delete $6; |
| lastCallingConv = OldCallingConv::C; |
| } |
| | Unwind { |
| $$.TI = new UnwindInst(); |
| $$.S.makeSignless(); |
| } |
| | UNREACHABLE { |
| $$.TI = new UnreachableInst(); |
| $$.S.makeSignless(); |
| } |
| ; |
| |
| JumpTable |
| : JumpTable IntType ConstValueRef ',' LABEL ValueRef { |
| $$ = $1; |
| $3.S.copy($2.S); |
| Constant *V = cast<Constant>(getExistingValue($2.T, $3)); |
| |
| if (V == 0) |
| error("May only switch on a constant pool value"); |
| |
| $6.S.makeSignless(); |
| BasicBlock* tmpBB = getBBVal($6); |
| $$->push_back(std::make_pair(V, tmpBB)); |
| } |
| | IntType ConstValueRef ',' LABEL ValueRef { |
| $$ = new std::vector<std::pair<Constant*, BasicBlock*> >(); |
| $2.S.copy($1.S); |
| Constant *V = cast<Constant>(getExistingValue($1.T, $2)); |
| |
| if (V == 0) |
| error("May only switch on a constant pool value"); |
| |
| $5.S.makeSignless(); |
| BasicBlock* tmpBB = getBBVal($5); |
| $$->push_back(std::make_pair(V, tmpBB)); |
| } |
| ; |
| |
| Inst |
| : OptAssign InstVal { |
| bool omit = false; |
| if ($1) |
| if (BitCastInst *BCI = dyn_cast<BitCastInst>($2.I)) |
| if (BCI->getSrcTy() == BCI->getDestTy() && |
| BCI->getOperand(0)->getName() == $1) |
| // This is a useless bit cast causing a name redefinition. It is |
| // a bit cast from a type to the same type of an operand with the |
| // same name as the name we would give this instruction. Since this |
| // instruction results in no code generation, it is safe to omit |
| // the instruction. This situation can occur because of collapsed |
| // type planes. For example: |
| // %X = add int %Y, %Z |
| // %X = cast int %Y to uint |
| // After upgrade, this looks like: |
| // %X = add i32 %Y, %Z |
| // %X = bitcast i32 to i32 |
| // The bitcast is clearly useless so we omit it. |
| omit = true; |
| if (omit) { |
| $$.I = 0; |
| $$.S.makeSignless(); |
| } else { |
| ValueInfo VI; VI.V = $2.I; VI.S.copy($2.S); |
| setValueName(VI, $1); |
| InsertValue($2.I); |
| $$ = $2; |
| } |
| }; |
| |
| PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes |
| $$.P = new std::list<std::pair<Value*, BasicBlock*> >(); |
| $$.S.copy($1.S); |
| $3.S.copy($1.S); |
| Value* tmpVal = getVal($1.PAT->get(), $3); |
| $5.S.makeSignless(); |
| BasicBlock* tmpBB = getBBVal($5); |
| $$.P->push_back(std::make_pair(tmpVal, tmpBB)); |
| delete $1.PAT; |
| } |
| | PHIList ',' '[' ValueRef ',' ValueRef ']' { |
| $$ = $1; |
| $4.S.copy($1.S); |
| Value* tmpVal = getVal($1.P->front().first->getType(), $4); |
| $6.S.makeSignless(); |
| BasicBlock* tmpBB = getBBVal($6); |
| $1.P->push_back(std::make_pair(tmpVal, tmpBB)); |
| } |
| ; |
| |
| ValueRefList : ResolvedVal { // Used for call statements, and memory insts... |
| $$ = new std::vector<ValueInfo>(); |
| $$->push_back($1); |
| } |
| | ValueRefList ',' ResolvedVal { |
| $$ = $1; |
| $1->push_back($3); |
| }; |
| |
| // ValueRefListE - Just like ValueRefList, except that it may also be empty! |
| ValueRefListE |
| : ValueRefList |
| | /*empty*/ { $$ = 0; } |
| ; |
| |
| OptTailCall |
| : TAIL CALL { |
| $$ = true; |
| } |
| | CALL { |
| $$ = false; |
| } |
| ; |
| |
| InstVal |
| : ArithmeticOps Types ValueRef ',' ValueRef { |
| $3.S.copy($2.S); |
| $5.S.copy($2.S); |
| const Type* Ty = $2.PAT->get(); |
| if (!Ty->isInteger() && !Ty->isFloatingPoint() && !isa<VectorType>(Ty)) |
| error("Arithmetic operator requires integer, FP, or packed operands"); |
| if (isa<VectorType>(Ty) && |
| ($1 == URemOp || $1 == SRemOp || $1 == FRemOp || $1 == RemOp)) |
| error("Remainder not supported on vector types"); |
| // Upgrade the opcode from obsolete versions before we do anything with it. |
| Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S); |
| Value* val1 = getVal(Ty, $3); |
| Value* val2 = getVal(Ty, $5); |
| $$.I = BinaryOperator::create(Opcode, val1, val2); |
| if ($$.I == 0) |
| error("binary operator returned null"); |
| $$.S.copy($2.S); |
| delete $2.PAT; |
| } |
| | LogicalOps Types ValueRef ',' ValueRef { |
| $3.S.copy($2.S); |
| $5.S.copy($2.S); |
| const Type *Ty = $2.PAT->get(); |
| if (!Ty->isInteger()) { |
| if (!isa<VectorType>(Ty) || |
| !cast<VectorType>(Ty)->getElementType()->isInteger()) |
| error("Logical operator requires integral operands"); |
| } |
| Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S); |
| Value* tmpVal1 = getVal(Ty, $3); |
| Value* tmpVal2 = getVal(Ty, $5); |
| $$.I = BinaryOperator::create(Opcode, tmpVal1, tmpVal2); |
| if ($$.I == 0) |
| error("binary operator returned null"); |
| $$.S.copy($2.S); |
| delete $2.PAT; |
| } |
| | SetCondOps Types ValueRef ',' ValueRef { |
| $3.S.copy($2.S); |
| $5.S.copy($2.S); |
| const Type* Ty = $2.PAT->get(); |
| if(isa<VectorType>(Ty)) |
| error("VectorTypes currently not supported in setcc instructions"); |
| unsigned short pred; |
| Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $2.S); |
| Value* tmpVal1 = getVal(Ty, $3); |
| Value* tmpVal2 = getVal(Ty, $5); |
| $$.I = CmpInst::create(Opcode, pred, tmpVal1, tmpVal2); |
| if ($$.I == 0) |
| error("binary operator returned null"); |
| $$.S.makeUnsigned(); |
| delete $2.PAT; |
| } |
| | ICMP IPredicates Types ValueRef ',' ValueRef { |
| $4.S.copy($3.S); |
| $6.S.copy($3.S); |
| const Type *Ty = $3.PAT->get(); |
| if (isa<VectorType>(Ty)) |
| error("VectorTypes currently not supported in icmp instructions"); |
| else if (!Ty->isInteger() && !isa<PointerType>(Ty)) |
| error("icmp requires integer or pointer typed operands"); |
| Value* tmpVal1 = getVal(Ty, $4); |
| Value* tmpVal2 = getVal(Ty, $6); |
| $$.I = new ICmpInst($2, tmpVal1, tmpVal2); |
| $$.S.makeUnsigned(); |
| delete $3.PAT; |
| } |
| | FCMP FPredicates Types ValueRef ',' ValueRef { |
| $4.S.copy($3.S); |
| $6.S.copy($3.S); |
| const Type *Ty = $3.PAT->get(); |
| if (isa<VectorType>(Ty)) |
| error("VectorTypes currently not supported in fcmp instructions"); |
| else if (!Ty->isFloatingPoint()) |
| error("fcmp instruction requires floating point operands"); |
| Value* tmpVal1 = getVal(Ty, $4); |
| Value* tmpVal2 = getVal(Ty, $6); |
| $$.I = new FCmpInst($2, tmpVal1, tmpVal2); |
| $$.S.makeUnsigned(); |
| delete $3.PAT; |
| } |
| | NOT ResolvedVal { |
| warning("Use of obsolete 'not' instruction: Replacing with 'xor"); |
| const Type *Ty = $2.V->getType(); |
| Value *Ones = ConstantInt::getAllOnesValue(Ty); |
| if (Ones == 0) |
| error("Expected integral type for not instruction"); |
| $$.I = BinaryOperator::create(Instruction::Xor, $2.V, Ones); |
| if ($$.I == 0) |
| error("Could not create a xor instruction"); |
| $$.S.copy($2.S); |
| } |
| | ShiftOps ResolvedVal ',' ResolvedVal { |
| if (!$4.V->getType()->isInteger() || |
| cast<IntegerType>($4.V->getType())->getBitWidth() != 8) |
| error("Shift amount must be int8"); |
| const Type* Ty = $2.V->getType(); |
| if (!Ty->isInteger()) |
| error("Shift constant expression requires integer operand"); |
| Value* ShiftAmt = 0; |
| if (cast<IntegerType>(Ty)->getBitWidth() > Type::Int8Ty->getBitWidth()) |
| if (Constant *C = dyn_cast<Constant>($4.V)) |
| ShiftAmt = ConstantExpr::getZExt(C, Ty); |
| else |
| ShiftAmt = new ZExtInst($4.V, Ty, makeNameUnique("shift"), CurBB); |
| else |
| ShiftAmt = $4.V; |
| $$.I = BinaryOperator::create(getBinaryOp($1, Ty, $2.S), $2.V, ShiftAmt); |
| $$.S.copy($2.S); |
| } |
| | CastOps ResolvedVal TO Types { |
| const Type *DstTy = $4.PAT->get(); |
| if (!DstTy->isFirstClassType()) |
| error("cast instruction to a non-primitive type: '" + |
| DstTy->getDescription() + "'"); |
| $$.I = cast<Instruction>(getCast($1, $2.V, $2.S, DstTy, $4.S, true)); |
| $$.S.copy($4.S); |
| delete $4.PAT; |
| } |
| | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal { |
| if (!$2.V->getType()->isInteger() || |
| cast<IntegerType>($2.V->getType())->getBitWidth() != 1) |
| error("select condition must be bool"); |
| if ($4.V->getType() != $6.V->getType()) |
| error("select value types should match"); |
| $$.I = new SelectInst($2.V, $4.V, $6.V); |
| $$.S.copy($4.S); |
| } |
| | VAARG ResolvedVal ',' Types { |
| const Type *Ty = $4.PAT->get(); |
| NewVarArgs = true; |
| $$.I = new VAArgInst($2.V, Ty); |
| $$.S.copy($4.S); |
| delete $4.PAT; |
| } |
| | VAARG_old ResolvedVal ',' Types { |
| const Type* ArgTy = $2.V->getType(); |
| const Type* DstTy = $4.PAT->get(); |
| ObsoleteVarArgs = true; |
| Function* NF = cast<Function>(CurModule.CurrentModule-> |
| getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0)); |
| |
| //b = vaarg a, t -> |
| //foo = alloca 1 of t |
| //bar = vacopy a |
| //store bar -> foo |
| //b = vaarg foo, t |
| AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix"); |
| CurBB->getInstList().push_back(foo); |
| CallInst* bar = new CallInst(NF, $2.V); |
| CurBB->getInstList().push_back(bar); |
| CurBB->getInstList().push_back(new StoreInst(bar, foo)); |
| $$.I = new VAArgInst(foo, DstTy); |
| $$.S.copy($4.S); |
| delete $4.PAT; |
| } |
| | VANEXT_old ResolvedVal ',' Types { |
| const Type* ArgTy = $2.V->getType(); |
| const Type* DstTy = $4.PAT->get(); |
| ObsoleteVarArgs = true; |
| Function* NF = cast<Function>(CurModule.CurrentModule-> |
| getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0)); |
| |
| //b = vanext a, t -> |
| //foo = alloca 1 of t |
| //bar = vacopy a |
| //store bar -> foo |
| //tmp = vaarg foo, t |
| //b = load foo |
| AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix"); |
| CurBB->getInstList().push_back(foo); |
| CallInst* bar = new CallInst(NF, $2.V); |
| CurBB->getInstList().push_back(bar); |
| CurBB->getInstList().push_back(new StoreInst(bar, foo)); |
| Instruction* tmp = new VAArgInst(foo, DstTy); |
| CurBB->getInstList().push_back(tmp); |
| $$.I = new LoadInst(foo); |
| $$.S.copy($4.S); |
| delete $4.PAT; |
| } |
| | EXTRACTELEMENT ResolvedVal ',' ResolvedVal { |
| if (!ExtractElementInst::isValidOperands($2.V, $4.V)) |
| error("Invalid extractelement operands"); |
| $$.I = new ExtractElementInst($2.V, $4.V); |
| $$.S.copy($2.S.get(0)); |
| } |
| | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal { |
| if (!InsertElementInst::isValidOperands($2.V, $4.V, $6.V)) |
| error("Invalid insertelement operands"); |
| $$.I = new InsertElementInst($2.V, $4.V, $6.V); |
| $$.S.copy($2.S); |
| } |
| | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal { |
| if (!ShuffleVectorInst::isValidOperands($2.V, $4.V, $6.V)) |
| error("Invalid shufflevector operands"); |
| $$.I = new ShuffleVectorInst($2.V, $4.V, $6.V); |
| $$.S.copy($2.S); |
| } |
| | PHI_TOK PHIList { |
| const Type *Ty = $2.P->front().first->getType(); |
| if (!Ty->isFirstClassType()) |
| error("PHI node operands must be of first class type"); |
| PHINode *PHI = new PHINode(Ty); |
| PHI->reserveOperandSpace($2.P->size()); |
| while ($2.P->begin() != $2.P->end()) { |
| if ($2.P->front().first->getType() != Ty) |
| error("All elements of a PHI node must be of the same type"); |
| PHI->addIncoming($2.P->front().first, $2.P->front().second); |
| $2.P->pop_front(); |
| } |
| $$.I = PHI; |
| $$.S.copy($2.S); |
| delete $2.P; // Free the list... |
| } |
| | OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')' { |
| // Handle the short call syntax |
| const PointerType *PFTy; |
| const FunctionType *FTy; |
| Signedness FTySign; |
| if (!(PFTy = dyn_cast<PointerType>($3.PAT->get())) || |
| !(FTy = dyn_cast<FunctionType>(PFTy->getElementType()))) { |
| // Pull out the types of all of the arguments... |
| std::vector<const Type*> ParamTypes; |
| FTySign.makeComposite($3.S); |
| if ($6) { |
| for (std::vector<ValueInfo>::iterator I = $6->begin(), E = $6->end(); |
| I != E; ++I) { |
| ParamTypes.push_back((*I).V->getType()); |
| FTySign.add(I->S); |
| } |
| } |
| |
| bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy; |
| if (isVarArg) ParamTypes.pop_back(); |
| |
| const Type *RetTy = $3.PAT->get(); |
| if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy) |
| error("Functions cannot return aggregate types"); |
| |
| FTy = FunctionType::get(RetTy, ParamTypes, isVarArg); |
| PFTy = PointerType::getUnqual(FTy); |
| $$.S.copy($3.S); |
| } else { |
| FTySign = $3.S; |
| // Get the signedness of the result type. $3 is the pointer to the |
| // function type so we get the 0th element to extract the function type, |
| // and then the 0th element again to get the result type. |
| $$.S.copy($3.S.get(0).get(0)); |
| } |
| $4.S.makeComposite(FTySign); |
| |
| // First upgrade any intrinsic calls. |
| std::vector<Value*> Args; |
| if ($6) |
| for (unsigned i = 0, e = $6->size(); i < e; ++i) |
| Args.push_back((*$6)[i].V); |
| Instruction *Inst = upgradeIntrinsicCall(FTy->getReturnType(), $4, Args); |
| |
| // If we got an upgraded intrinsic |
| if (Inst) { |
| $$.I = Inst; |
| } else { |
| // Get the function we're calling |
| Value *V = getVal(PFTy, $4); |
| |
| // Check the argument values match |
| if (!$6) { // Has no arguments? |
| // Make sure no arguments is a good thing! |
| if (FTy->getNumParams() != 0) |
| error("No arguments passed to a function that expects arguments"); |
| } else { // Has arguments? |
| // Loop through FunctionType's arguments and ensure they are specified |
| // correctly! |
| // |
| FunctionType::param_iterator I = FTy->param_begin(); |
| FunctionType::param_iterator E = FTy->param_end(); |
| std::vector<ValueInfo>::iterator ArgI = $6->begin(), ArgE = $6->end(); |
| |
| for (; ArgI != ArgE && I != E; ++ArgI, ++I) |
| if ((*ArgI).V->getType() != *I) |
| error("Parameter " +(*ArgI).V->getName()+ " is not of type '" + |
| (*I)->getDescription() + "'"); |
| |
| if (I != E || (ArgI != ArgE && !FTy->isVarArg())) |
| error("Invalid number of parameters detected"); |
| } |
| |
| // Create the call instruction |
| CallInst *CI = new CallInst(V, Args.begin(), Args.end()); |
| CI->setTailCall($1); |
| CI->setCallingConv(upgradeCallingConv($2)); |
| |
| $$.I = CI; |
| } |
| // Deal with CSRetCC |
| if ($2 == OldCallingConv::CSRet) { |
| ParamAttrsVector Attrs; |
| ParamAttrsWithIndex PAWI; |
| PAWI.index = 1; PAWI.attrs = ParamAttr::StructRet; // first arg |
| Attrs.push_back(PAWI); |
| cast<CallInst>($$.I)->setParamAttrs(ParamAttrsList::get(Attrs)); |
| } |
| delete $3.PAT; |
| delete $6; |
| lastCallingConv = OldCallingConv::C; |
| } |
| | MemoryInst { |
| $$ = $1; |
| } |
| ; |
| |
| |
| // IndexList - List of indices for GEP based instructions... |
| IndexList |
| : ',' ValueRefList { $$ = $2; } |
| | /* empty */ { $$ = new std::vector<ValueInfo>(); } |
| ; |
| |
| OptVolatile |
| : VOLATILE { $$ = true; } |
| | /* empty */ { $$ = false; } |
| ; |
| |
| MemoryInst |
| : MALLOC Types OptCAlign { |
| const Type *Ty = $2.PAT->get(); |
| $$.S.makeComposite($2.S); |
| $$.I = new MallocInst(Ty, 0, $3); |
| delete $2.PAT; |
| } |
| | MALLOC Types ',' UINT ValueRef OptCAlign { |
| const Type *Ty = $2.PAT->get(); |
| $5.S.makeUnsigned(); |
| $$.S.makeComposite($2.S); |
| $$.I = new MallocInst(Ty, getVal($4.T, $5), $6); |
| delete $2.PAT; |
| } |
| | ALLOCA Types OptCAlign { |
| const Type *Ty = $2.PAT->get(); |
| $$.S.makeComposite($2.S); |
| $$.I = new AllocaInst(Ty, 0, $3); |
| delete $2.PAT; |
| } |
| | ALLOCA Types ',' UINT ValueRef OptCAlign { |
| const Type *Ty = $2.PAT->get(); |
| $5.S.makeUnsigned(); |
| $$.S.makeComposite($4.S); |
| $$.I = new AllocaInst(Ty, getVal($4.T, $5), $6); |
| delete $2.PAT; |
| } |
| | FREE ResolvedVal { |
| const Type *PTy = $2.V->getType(); |
| if (!isa<PointerType>(PTy)) |
| error("Trying to free nonpointer type '" + PTy->getDescription() + "'"); |
| $$.I = new FreeInst($2.V); |
| $$.S.makeSignless(); |
| } |
| | OptVolatile LOAD Types ValueRef { |
| const Type* Ty = $3.PAT->get(); |
| $4.S.copy($3.S); |
| if (!isa<PointerType>(Ty)) |
| error("Can't load from nonpointer type: " + Ty->getDescription()); |
| if (!cast<PointerType>(Ty)->getElementType()->isFirstClassType()) |
| error("Can't load from pointer of non-first-class type: " + |
| Ty->getDescription()); |
| Value* tmpVal = getVal(Ty, $4); |
| $$.I = new LoadInst(tmpVal, "", $1); |
| $$.S.copy($3.S.get(0)); |
| delete $3.PAT; |
| } |
| | OptVolatile STORE ResolvedVal ',' Types ValueRef { |
| $6.S.copy($5.S); |
| const PointerType *PTy = dyn_cast<PointerType>($5.PAT->get()); |
| if (!PTy) |
| error("Can't store to a nonpointer type: " + |
| $5.PAT->get()->getDescription()); |
| const Type *ElTy = PTy->getElementType(); |
| Value *StoreVal = $3.V; |
| Value* tmpVal = getVal(PTy, $6); |
| if (ElTy != $3.V->getType()) { |
| PTy = PointerType::getUnqual(StoreVal->getType()); |
| if (Constant *C = dyn_cast<Constant>(tmpVal)) |
| tmpVal = ConstantExpr::getBitCast(C, PTy); |
| else |
| tmpVal = new BitCastInst(tmpVal, PTy, "upgrd.cast", CurBB); |
| } |
| $$.I = new StoreInst(StoreVal, tmpVal, $1); |
| $$.S.makeSignless(); |
| delete $5.PAT; |
| } |
| | GETELEMENTPTR Types ValueRef IndexList { |
| $3.S.copy($2.S); |
| const Type* Ty = $2.PAT->get(); |
| if (!isa<PointerType>(Ty)) |
| error("getelementptr insn requires pointer operand"); |
| |
| std::vector<Value*> VIndices; |
| upgradeGEPInstIndices(Ty, $4, VIndices); |
| |
| Value* tmpVal = getVal(Ty, $3); |
| $$.I = new GetElementPtrInst(tmpVal, VIndices.begin(), VIndices.end()); |
| ValueInfo VI; VI.V = tmpVal; VI.S.copy($2.S); |
| $$.S.copy(getElementSign(VI, VIndices)); |
| delete $2.PAT; |
| delete $4; |
| }; |
| |
| |
| %% |
| |
| int yyerror(const char *ErrorMsg) { |
| std::string where |
| = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename) |
| + ":" + llvm::utostr((unsigned) Upgradelineno) + ": "; |
| std::string errMsg = where + "error: " + std::string(ErrorMsg); |
| if (yychar != YYEMPTY && yychar != 0) |
| errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) + |
| "'."; |
| std::cerr << "llvm-upgrade: " << errMsg << '\n'; |
| std::cout << "llvm-upgrade: parse failed.\n"; |
| exit(1); |
| } |
| |
| void warning(const std::string& ErrorMsg) { |
| std::string where |
| = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename) |
| + ":" + llvm::utostr((unsigned) Upgradelineno) + ": "; |
| std::string errMsg = where + "warning: " + std::string(ErrorMsg); |
| if (yychar != YYEMPTY && yychar != 0) |
| errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) + |
| "'."; |
| std::cerr << "llvm-upgrade: " << errMsg << '\n'; |
| } |
| |
| void error(const std::string& ErrorMsg, int LineNo) { |
| if (LineNo == -1) LineNo = Upgradelineno; |
| Upgradelineno = LineNo; |
| yyerror(ErrorMsg.c_str()); |
| } |
| |