| //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities --*- C++ ------*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines several CodeGen-specific LLVM IR analysis utilties. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Module.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| using namespace llvm; |
| |
| /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence |
| /// of insertvalue or extractvalue indices that identify a member, return |
| /// the linearized index of the start of the member. |
| /// |
| unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty, |
| const unsigned *Indices, |
| const unsigned *IndicesEnd, |
| unsigned CurIndex) { |
| // Base case: We're done. |
| if (Indices && Indices == IndicesEnd) |
| return CurIndex; |
| |
| // Given a struct type, recursively traverse the elements. |
| if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| for (StructType::element_iterator EB = STy->element_begin(), |
| EI = EB, |
| EE = STy->element_end(); |
| EI != EE; ++EI) { |
| if (Indices && *Indices == unsigned(EI - EB)) |
| return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex); |
| CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex); |
| } |
| return CurIndex; |
| } |
| // Given an array type, recursively traverse the elements. |
| else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| const Type *EltTy = ATy->getElementType(); |
| for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { |
| if (Indices && *Indices == i) |
| return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex); |
| CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex); |
| } |
| return CurIndex; |
| } |
| // We haven't found the type we're looking for, so keep searching. |
| return CurIndex + 1; |
| } |
| |
| /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of |
| /// EVTs that represent all the individual underlying |
| /// non-aggregate types that comprise it. |
| /// |
| /// If Offsets is non-null, it points to a vector to be filled in |
| /// with the in-memory offsets of each of the individual values. |
| /// |
| void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty, |
| SmallVectorImpl<EVT> &ValueVTs, |
| SmallVectorImpl<uint64_t> *Offsets, |
| uint64_t StartingOffset) { |
| // Given a struct type, recursively traverse the elements. |
| if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); |
| for (StructType::element_iterator EB = STy->element_begin(), |
| EI = EB, |
| EE = STy->element_end(); |
| EI != EE; ++EI) |
| ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, |
| StartingOffset + SL->getElementOffset(EI - EB)); |
| return; |
| } |
| // Given an array type, recursively traverse the elements. |
| if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| const Type *EltTy = ATy->getElementType(); |
| uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy); |
| for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) |
| ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, |
| StartingOffset + i * EltSize); |
| return; |
| } |
| // Interpret void as zero return values. |
| if (Ty->isVoidTy()) |
| return; |
| // Base case: we can get an EVT for this LLVM IR type. |
| ValueVTs.push_back(TLI.getValueType(Ty)); |
| if (Offsets) |
| Offsets->push_back(StartingOffset); |
| } |
| |
| /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. |
| GlobalVariable *llvm::ExtractTypeInfo(Value *V) { |
| V = V->stripPointerCasts(); |
| GlobalVariable *GV = dyn_cast<GlobalVariable>(V); |
| |
| if (GV && GV->getName() == "llvm.eh.catch.all.value") { |
| assert(GV->hasInitializer() && |
| "The EH catch-all value must have an initializer"); |
| Value *Init = GV->getInitializer(); |
| GV = dyn_cast<GlobalVariable>(Init); |
| if (!GV) V = cast<ConstantPointerNull>(Init); |
| } |
| |
| assert((GV || isa<ConstantPointerNull>(V)) && |
| "TypeInfo must be a global variable or NULL"); |
| return GV; |
| } |
| |
| /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being |
| /// processed uses a memory 'm' constraint. |
| bool |
| llvm::hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, |
| const TargetLowering &TLI) { |
| for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { |
| InlineAsm::ConstraintInfo &CI = CInfos[i]; |
| for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { |
| TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); |
| if (CType == TargetLowering::C_Memory) |
| return true; |
| } |
| |
| // Indirect operand accesses access memory. |
| if (CI.isIndirect) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// getFCmpCondCode - Return the ISD condition code corresponding to |
| /// the given LLVM IR floating-point condition code. This includes |
| /// consideration of global floating-point math flags. |
| /// |
| ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { |
| ISD::CondCode FPC, FOC; |
| switch (Pred) { |
| case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; |
| case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; |
| case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; |
| case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; |
| case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; |
| case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; |
| case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; |
| case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; |
| case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; |
| case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; |
| case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; |
| case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; |
| case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; |
| case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; |
| case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; |
| case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; |
| default: |
| llvm_unreachable("Invalid FCmp predicate opcode!"); |
| FOC = FPC = ISD::SETFALSE; |
| break; |
| } |
| if (NoNaNsFPMath) |
| return FOC; |
| else |
| return FPC; |
| } |
| |
| /// getICmpCondCode - Return the ISD condition code corresponding to |
| /// the given LLVM IR integer condition code. |
| /// |
| ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { |
| switch (Pred) { |
| case ICmpInst::ICMP_EQ: return ISD::SETEQ; |
| case ICmpInst::ICMP_NE: return ISD::SETNE; |
| case ICmpInst::ICMP_SLE: return ISD::SETLE; |
| case ICmpInst::ICMP_ULE: return ISD::SETULE; |
| case ICmpInst::ICMP_SGE: return ISD::SETGE; |
| case ICmpInst::ICMP_UGE: return ISD::SETUGE; |
| case ICmpInst::ICMP_SLT: return ISD::SETLT; |
| case ICmpInst::ICMP_ULT: return ISD::SETULT; |
| case ICmpInst::ICMP_SGT: return ISD::SETGT; |
| case ICmpInst::ICMP_UGT: return ISD::SETUGT; |
| default: |
| llvm_unreachable("Invalid ICmp predicate opcode!"); |
| return ISD::SETNE; |
| } |
| } |
| |
| /// Test if the given instruction is in a position to be optimized |
| /// with a tail-call. This roughly means that it's in a block with |
| /// a return and there's nothing that needs to be scheduled |
| /// between it and the return. |
| /// |
| /// This function only tests target-independent requirements. |
| bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr, |
| const TargetLowering &TLI) { |
| const Instruction *I = CS.getInstruction(); |
| const BasicBlock *ExitBB = I->getParent(); |
| const TerminatorInst *Term = ExitBB->getTerminator(); |
| const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); |
| const Function *F = ExitBB->getParent(); |
| |
| // The block must end in a return statement or unreachable. |
| // |
| // FIXME: Decline tailcall if it's not guaranteed and if the block ends in |
| // an unreachable, for now. The way tailcall optimization is currently |
| // implemented means it will add an epilogue followed by a jump. That is |
| // not profitable. Also, if the callee is a special function (e.g. |
| // longjmp on x86), it can end up causing miscompilation that has not |
| // been fully understood. |
| if (!Ret && |
| (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false; |
| |
| // If I will have a chain, make sure no other instruction that will have a |
| // chain interposes between I and the return. |
| if (I->mayHaveSideEffects() || I->mayReadFromMemory() || |
| !I->isSafeToSpeculativelyExecute()) |
| for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; |
| --BBI) { |
| if (&*BBI == I) |
| break; |
| // Debug info intrinsics do not get in the way of tail call optimization. |
| if (isa<DbgInfoIntrinsic>(BBI)) |
| continue; |
| if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || |
| !BBI->isSafeToSpeculativelyExecute()) |
| return false; |
| } |
| |
| // If the block ends with a void return or unreachable, it doesn't matter |
| // what the call's return type is. |
| if (!Ret || Ret->getNumOperands() == 0) return true; |
| |
| // If the return value is undef, it doesn't matter what the call's |
| // return type is. |
| if (isa<UndefValue>(Ret->getOperand(0))) return true; |
| |
| // Conservatively require the attributes of the call to match those of |
| // the return. Ignore noalias because it doesn't affect the call sequence. |
| unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); |
| if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) |
| return false; |
| |
| // It's not safe to eliminate the sign / zero extension of the return value. |
| if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) |
| return false; |
| |
| // Otherwise, make sure the unmodified return value of I is the return value. |
| for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; |
| U = dyn_cast<Instruction>(U->getOperand(0))) { |
| if (!U) |
| return false; |
| if (!U->hasOneUse()) |
| return false; |
| if (U == I) |
| break; |
| // Check for a truly no-op truncate. |
| if (isa<TruncInst>(U) && |
| TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) |
| continue; |
| // Check for a truly no-op bitcast. |
| if (isa<BitCastInst>(U) && |
| (U->getOperand(0)->getType() == U->getType() || |
| (U->getOperand(0)->getType()->isPointerTy() && |
| U->getType()->isPointerTy()))) |
| continue; |
| // Otherwise it's not a true no-op. |
| return false; |
| } |
| |
| return true; |
| } |
| |