| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> | 
 | <html> | 
 | <head> | 
 |   <title>LLVM Assembly Language Reference Manual</title> | 
 |   <link rel="stylesheet" href="llvm.css" type="text/css"> | 
 | </head> | 
 | <body> | 
 | <div class="doc_title"> LLVM Language Reference Manual </div> | 
 | <ol> | 
 |   <li><a href="#abstract">Abstract</a></li> | 
 |   <li><a href="#introduction">Introduction</a></li> | 
 |   <li><a href="#identifiers">Identifiers</a></li> | 
 |   <li><a href="#typesystem">Type System</a> | 
 |     <ol> | 
 |       <li><a href="#t_primitive">Primitive Types</a> 	 | 
 |         <ol> | 
 |           <li><a href="#t_classifications">Type Classifications</a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#t_derived">Derived Types</a> | 
 |         <ol> | 
 |           <li><a href="#t_array">Array Type</a></li> | 
 |           <li><a href="#t_function">Function Type</a></li> | 
 |           <li><a href="#t_pointer">Pointer Type</a></li> | 
 |           <li><a href="#t_struct">Structure Type</a></li> | 
 | <!-- <li><a href="#t_packed" >Packed Type</a> --> | 
 |         </ol> | 
 |       </li> | 
 |     </ol> | 
 |   </li> | 
 |   <li><a href="#highlevel">High Level Structure</a> | 
 |     <ol> | 
 |       <li><a href="#modulestructure">Module Structure</a></li> | 
 |       <li><a href="#globalvars">Global Variables</a></li> | 
 |       <li><a href="#functionstructure">Function Structure</a></li> | 
 |     </ol> | 
 |   </li> | 
 |   <li><a href="#instref">Instruction Reference</a> | 
 |     <ol> | 
 |       <li><a href="#terminators">Terminator Instructions</a> | 
 |         <ol> | 
 |           <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li> | 
 |           <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li> | 
 |           <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li> | 
 |           <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li> | 
 |           <li><a href="#i_unwind">'<tt>unwind</tt>'  Instruction</a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#binaryops">Binary Operations</a> | 
 |         <ol> | 
 |           <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li> | 
 |           <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li> | 
 |           <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li> | 
 |           <li><a href="#i_div">'<tt>div</tt>' Instruction</a></li> | 
 |           <li><a href="#i_rem">'<tt>rem</tt>' Instruction</a></li> | 
 |           <li><a href="#i_setcc">'<tt>set<i>cc</i></tt>' Instructions</a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#bitwiseops">Bitwise Binary Operations</a> | 
 |         <ol> | 
 |           <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li> | 
 |           <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li> | 
 |           <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li> | 
 |           <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li> | 
 |           <li><a href="#i_shr">'<tt>shr</tt>' Instruction</a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#memoryops">Memory Access Operations</a> | 
 |         <ol> | 
 |           <li><a href="#i_malloc">'<tt>malloc</tt>'   Instruction</a></li> | 
 |           <li><a href="#i_free">'<tt>free</tt>'     Instruction</a></li> | 
 |           <li><a href="#i_alloca">'<tt>alloca</tt>'   Instruction</a></li> | 
 | 	 <li><a href="#i_load">'<tt>load</tt>'     Instruction</a></li> | 
 | 	 <li><a href="#i_store">'<tt>store</tt>'    Instruction</a></li> | 
 | 	 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#otherops">Other Operations</a> | 
 |         <ol> | 
 |           <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li> | 
 |           <li><a href="#i_cast">'<tt>cast .. to</tt>' Instruction</a></li> | 
 |           <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li> | 
 |           <li><a href="#i_vanext">'<tt>vanext</tt>' Instruction</a></li> | 
 |           <li><a href="#i_vaarg">'<tt>vaarg</tt>'  Instruction</a></li> | 
 |         </ol> | 
 |       </li> | 
 |     </ol> | 
 |   </li> | 
 |   <li><a href="#intrinsics">Intrinsic Functions</a> | 
 |     <ol> | 
 |       <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a> | 
 |         <ol> | 
 |           <li><a href="#i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li> | 
 |           <li><a href="#i_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li> | 
 |           <li><a href="#i_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#int_libc">Standard C Library Intrinsics</a> | 
 |         <ol> | 
 |           <li><a href="#i_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a></li> | 
 |           <li><a href="#i_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#int_debugger">Debugger intrinsics</a> | 
 |     </ol> | 
 |   </li> | 
 | </ol> | 
 | <div class="doc_text"> | 
 | <p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> | 
 | and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></b></p> | 
 | <p> </p> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> <a name="abstract">Abstract </a></div> | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_text"> | 
 | <p>This document is a reference manual for the LLVM assembly language.  | 
 | LLVM is an SSA based representation that provides type safety, | 
 | low-level operations, flexibility, and the capability of representing | 
 | 'all' high-level languages cleanly.  It is the common code | 
 | representation used throughout all phases of the LLVM compilation | 
 | strategy.</p> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> <a name="introduction">Introduction</a> </div> | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_text"> | 
 | <p>The LLVM code representation is designed to be used in three | 
 | different forms: as an in-memory compiler IR, as an on-disk bytecode | 
 | representation (suitable for fast loading by a Just-In-Time compiler), | 
 | and as a human readable assembly language representation.  This allows | 
 | LLVM to provide a powerful intermediate representation for efficient | 
 | compiler transformations and analysis, while providing a natural means | 
 | to debug and visualize the transformations.  The three different forms | 
 | of LLVM are all equivalent.  This document describes the human readable | 
 | representation and notation.</p> | 
 | <p>The LLVM representation aims to be a light-weight and low-level | 
 | while being expressive, typed, and extensible at the same time.  It | 
 | aims to be a "universal IR" of sorts, by being at a low enough level | 
 | that high-level ideas may be cleanly mapped to it (similar to how | 
 | microprocessors are "universal IR's", allowing many source languages to | 
 | be mapped to them).  By providing type information, LLVM can be used as | 
 | the target of optimizations: for example, through pointer analysis, it | 
 | can be proven that a C automatic variable is never accessed outside of | 
 | the current function... allowing it to be promoted to a simple SSA | 
 | value instead of a memory location.</p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div> | 
 | <div class="doc_text"> | 
 | <p>It is important to note that this document describes 'well formed' | 
 | LLVM assembly language.  There is a difference between what the parser | 
 | accepts and what is considered 'well formed'.  For example, the | 
 | following instruction is syntactically okay, but not well formed:</p> | 
 | <pre>  %x = <a href="#i_add">add</a> int 1, %x<br></pre> | 
 | <p>...because the definition of <tt>%x</tt> does not dominate all of | 
 | its uses. The LLVM infrastructure provides a verification pass that may | 
 | be used to verify that an LLVM module is well formed.  This pass is | 
 | automatically run by the parser after parsing input assembly, and by | 
 | the optimizer before it outputs bytecode.  The violations pointed out | 
 | by the verifier pass indicate bugs in transformation passes or input to | 
 | the parser.</p> | 
 | <!-- Describe the typesetting conventions here. --> </div> | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> <a name="identifiers">Identifiers</a> </div> | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_text"> | 
 | <p>LLVM uses three different forms of identifiers, for different | 
 | purposes:</p> | 
 | <ol> | 
 |   <li>Numeric constants are represented as you would expect: 12, -3 | 
 | 123.421,   etc.  Floating point constants have an optional hexidecimal | 
 | notation.</li> | 
 |   <li>Named values are represented as a string of characters with a '%' | 
 | prefix.   For example, %foo, %DivisionByZero, | 
 | %a.really.long.identifier.  The actual   regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. | 
 | Identifiers which require other characters in their names can be | 
 | surrounded   with quotes.  In this way, anything except a <tt>"</tt> | 
 | character can be used   in a name.</li> | 
 |   <li>Unnamed values are represented as an unsigned numeric value with | 
 | a '%'   prefix.  For example, %12, %2, %44.</li> | 
 | </ol> | 
 | <p>LLVM requires the values start with a '%' sign for two reasons: | 
 | Compilers don't need to worry about name clashes with reserved words, | 
 | and the set of reserved words may be expanded in the future without | 
 | penalty.  Additionally, unnamed identifiers allow a compiler to quickly | 
 | come up with a temporary variable without having to avoid symbol table | 
 | conflicts.</p> | 
 | <p>Reserved words in LLVM are very similar to reserved words in other | 
 | languages. There are keywords for different opcodes ('<tt><a | 
 |  href="#i_add">add</a></tt>', '<tt><a href="#i_cast">cast</a></tt>', '<tt><a | 
 |  href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a | 
 |  href="#t_void">void</a></tt>', '<tt><a href="#t_uint">uint</a></tt>', | 
 | etc...), and others.  These reserved words cannot conflict with | 
 | variable names, because none of them start with a '%' character.</p> | 
 | <p>Here is an example of LLVM code to multiply the integer variable '<tt>%X</tt>' | 
 | by 8:</p> | 
 | <p>The easy way:</p> | 
 | <pre>  %result = <a href="#i_mul">mul</a> uint %X, 8<br></pre> | 
 | <p>After strength reduction:</p> | 
 | <pre>  %result = <a href="#i_shl">shl</a> uint %X, ubyte 3<br></pre> | 
 | <p>And the hard way:</p> | 
 | <pre>  <a href="#i_add">add</a> uint %X, %X           <i>; yields {uint}:%0</i> | 
 |   <a | 
 |  href="#i_add">add</a> uint %0, %0           <i>; yields {uint}:%1</i> | 
 |   %result = <a | 
 |  href="#i_add">add</a> uint %1, %1<br></pre> | 
 | <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several | 
 | important lexical features of LLVM:</p> | 
 | <ol> | 
 |   <li>Comments are delimited with a '<tt>;</tt>' and go until the end | 
 | of   line.</li> | 
 |   <li>Unnamed temporaries are created when the result of a computation | 
 | is not   assigned to a named value.</li> | 
 |   <li>Unnamed temporaries are numbered sequentially</li> | 
 | </ol> | 
 | <p>...and it also show a convention that we follow in this document.  | 
 | When demonstrating instructions, we will follow an instruction with a | 
 | comment that defines the type and name of value produced.  Comments are | 
 | shown in italic text.</p> | 
 | <p>The one non-intuitive notation for constants is the optional | 
 | hexidecimal form of floating point constants.  For example, the form '<tt>double | 
 | 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double | 
 | 4.5e+15</tt>' which is also supported by the parser.  The only time | 
 | hexadecimal floating point constants are useful (and the only time that | 
 | they are generated by the disassembler) is when an FP constant has to | 
 | be emitted that is not representable as a decimal floating point number | 
 | exactly.  For example, NaN's, infinities, and other special cases are | 
 | represented in their IEEE hexadecimal format so that assembly and | 
 | disassembly do not cause any bits to change in the constants.</p> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> <a name="typesystem">Type System</a> </div> | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_text"> | 
 | <p>The LLVM type system is one of the most important features of the | 
 | intermediate representation.  Being typed enables a number of | 
 | optimizations to be performed on the IR directly, without having to do | 
 | extra analyses on the side before the transformation.  A strong type | 
 | system makes it easier to read the generated code and enables novel | 
 | analyses and transformations that are not feasible to perform on normal | 
 | three address code representations.</p> | 
 | <!-- The written form for the type system was heavily influenced by the | 
 | syntactic problems with types in the C language<sup><a | 
 | href="#rw_stroustrup">1</a></sup>.<p> --> </div> | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div> | 
 | <div class="doc_text"> | 
 | <p>The primitive types are the fundemental building blocks of the LLVM | 
 | system. The current set of primitive types are as follows:</p> | 
 | <p> | 
 | <table border="0" align="center"> | 
 |   <tbody> | 
 |     <tr> | 
 |       <td> | 
 |       <table border="1" cellspacing="0" cellpadding="4" align="center"> | 
 |         <tbody> | 
 |           <tr> | 
 |             <td><tt>void</tt></td> | 
 |             <td>No value</td> | 
 |           </tr> | 
 |           <tr> | 
 |             <td><tt>ubyte</tt></td> | 
 |             <td>Unsigned 8 bit value</td> | 
 |           </tr> | 
 |           <tr> | 
 |             <td><tt>ushort</tt></td> | 
 |             <td>Unsigned 16 bit value</td> | 
 |           </tr> | 
 |           <tr> | 
 |             <td><tt>uint</tt></td> | 
 |             <td>Unsigned 32 bit value</td> | 
 |           </tr> | 
 |           <tr> | 
 |             <td><tt>ulong</tt></td> | 
 |             <td>Unsigned 64 bit value</td> | 
 |           </tr> | 
 |           <tr> | 
 |             <td><tt>float</tt></td> | 
 |             <td>32 bit floating point value</td> | 
 |           </tr> | 
 |           <tr> | 
 |             <td><tt>label</tt></td> | 
 |             <td>Branch destination</td> | 
 |           </tr> | 
 |         </tbody> | 
 |       </table> | 
 |       </td> | 
 |       <td valign="top"> | 
 |       <table border="1" cellspacing="0" cellpadding="4" align="center""> | 
 |         <tbody> | 
 |           <tr> | 
 |             <td><tt>bool</tt></td> | 
 |             <td>True or False value</td> | 
 |           </tr> | 
 |           <tr> | 
 |             <td><tt>sbyte</tt></td> | 
 |             <td>Signed 8 bit value</td> | 
 |           </tr> | 
 |           <tr> | 
 |             <td><tt>short</tt></td> | 
 |             <td>Signed 16 bit value</td> | 
 |           </tr> | 
 |           <tr> | 
 |             <td><tt>int</tt></td> | 
 |             <td>Signed 32 bit value</td> | 
 |           </tr> | 
 |           <tr> | 
 |             <td><tt>long</tt></td> | 
 |             <td>Signed 64 bit value</td> | 
 |           </tr> | 
 |           <tr> | 
 |             <td><tt>double</tt></td> | 
 |             <td>64 bit floating point value</td> | 
 |           </tr> | 
 |         </tbody> | 
 |       </table> | 
 |       </td> | 
 |     </tr> | 
 |   </tbody> | 
 | </table> | 
 | </p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="t_classifications">Type | 
 | Classifications</a> </div> | 
 | <div class="doc_text"> | 
 | <p>These different primitive types fall into a few useful | 
 | classifications:</p> | 
 | <p> | 
 | <table border="1" cellspacing="0" cellpadding="4" align="center"> | 
 |   <tbody> | 
 |     <tr> | 
 |       <td><a name="t_signed">signed</a></td> | 
 |       <td><tt>sbyte, short, int, long, float, double</tt></td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td><a name="t_unsigned">unsigned</a></td> | 
 |       <td><tt>ubyte, ushort, uint, ulong</tt></td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td><a name="t_integer">integer</a></td> | 
 |       <td><tt>ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td><a name="t_integral">integral</a></td> | 
 |       <td><tt>bool, ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td><a name="t_floating">floating point</a></td> | 
 |       <td><tt>float, double</tt></td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td><a name="t_firstclass">first class</a></td> | 
 |       <td><tt>bool, ubyte, sbyte, ushort, short,<br> | 
 | uint, int, ulong, long, float, double, <a href="#t_pointer">pointer</a></tt></td> | 
 |     </tr> | 
 |   </tbody> | 
 | </table> | 
 | </p> | 
 | <p>The <a href="#t_firstclass">first class</a> types are perhaps the | 
 | most important.  Values of these types are the only ones which can be | 
 | produced by instructions, passed as arguments, or used as operands to | 
 | instructions.  This means that all structures and arrays must be | 
 | manipulated either by pointer or by component.</p> | 
 | </div> | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div> | 
 | <div class="doc_text"> | 
 | <p>The real power in LLVM comes from the derived types in the system.  | 
 | This is what allows a programmer to represent arrays, functions, | 
 | pointers, and other useful types.  Note that these derived types may be | 
 | recursive: For example, it is possible to have a two dimensional array.</p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Overview:</h5> | 
 | <p>The array type is a very simple derived type that arranges elements | 
 | sequentially in memory.  The array type requires a size (number of | 
 | elements) and an underlying data type.</p> | 
 | <h5>Syntax:</h5> | 
 | <pre>  [<# elements> x <elementtype>]<br></pre> | 
 | <p>The number of elements is a constant integer value, elementtype may | 
 | be any type with a size.</p> | 
 | <h5>Examples:</h5> | 
 | <p> <tt>[40 x int ]</tt>: Array of 40 integer values.<br> | 
 | <tt>[41 x int ]</tt>: Array of 41 integer values.<br> | 
 | <tt>[40 x uint]</tt>: Array of 40 unsigned integer values.</p> | 
 | <p> </p> | 
 | <p>Here are some examples of multidimensional arrays:</p> | 
 | <p> | 
 | <table border="0" cellpadding="0" cellspacing="0"> | 
 |   <tbody> | 
 |     <tr> | 
 |       <td><tt>[3 x [4 x int]]</tt></td> | 
 |       <td>: 3x4 array integer values.</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td><tt>[12 x [10 x float]]</tt></td> | 
 |       <td>: 12x10 array of single precision floating point values.</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td><tt>[2 x [3 x [4 x uint]]]</tt></td> | 
 |       <td>: 2x3x4 array of unsigned integer values.</td> | 
 |     </tr> | 
 |   </tbody> | 
 | </table> | 
 | </p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Overview:</h5> | 
 | <p>The function type can be thought of as a function signature.  It | 
 | consists of a return type and a list of formal parameter types.  | 
 | Function types are usually used to build virtual function tables | 
 | (which are structures of pointers to functions), for indirect function | 
 | calls, and when defining a function.</p> | 
 | <p> | 
 | The return type of a function type cannot be an aggregate type. | 
 | </p> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <returntype> (<parameter list>)<br></pre> | 
 | <p>Where '<tt><parameter list></tt>' is a comma-separated list of | 
 | type specifiers.  Optionally, the parameter list may include a type <tt>...</tt>, | 
 | which indicates that the function takes a variable number of arguments. | 
 | Variable argument functions can access their arguments with the <a | 
 |  href="#int_varargs">variable argument handling intrinsic</a> functions.</p> | 
 | <h5>Examples:</h5> | 
 | <p> | 
 | <table border="0" cellpadding="0" cellspacing="0"> | 
 |   <tbody> | 
 |     <tr> | 
 |       <td><tt>int (int)</tt></td> | 
 |       <td>: function taking an <tt>int</tt>, returning an <tt>int</tt></td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td><tt>float (int, int *) *</tt></td> | 
 |       <td>: <a href="#t_pointer">Pointer</a> to a function that takes | 
 | an <tt>int</tt> and a <a href="#t_pointer">pointer</a> to <tt>int</tt>, | 
 | returning <tt>float</tt>.</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td><tt>int (sbyte *, ...)</tt></td> | 
 |       <td>: A vararg function that takes at least one <a | 
 |  href="#t_pointer">pointer</a> to <tt>sbyte</tt> (signed char in C), | 
 | which       returns an integer.  This is the signature for <tt>printf</tt> | 
 | in LLVM.</td> | 
 |     </tr> | 
 |   </tbody> | 
 | </table> | 
 | </p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Overview:</h5> | 
 | <p>The structure type is used to represent a collection of data members | 
 | together in memory.  The packing of the field types is defined to match | 
 | the ABI of the underlying processor.  The elements of a structure may | 
 | be any type that has a size.</p> | 
 | <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> | 
 | and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a | 
 | field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' | 
 | instruction.</p> | 
 | <h5>Syntax:</h5> | 
 | <pre>  { <type list> }<br></pre> | 
 | <h5>Examples:</h5> | 
 | <p> | 
 | <table border="0" cellpadding="0" cellspacing="0"> | 
 |   <tbody> | 
 |     <tr> | 
 |       <td><tt>{ int, int, int }</tt></td> | 
 |       <td>: a triple of three <tt>int</tt> values</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td><tt>{ float, int (int) * }</tt></td> | 
 |       <td>: A pair, where the first element is a <tt>float</tt> and the | 
 | second       element is a <a href="#t_pointer">pointer</a> to a <a | 
 |  href="t_function">function</a> that takes an <tt>int</tt>, returning | 
 | an <tt>int</tt>.</td> | 
 |     </tr> | 
 |   </tbody> | 
 | </table> | 
 | </p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Overview:</h5> | 
 | <p>As in many languages, the pointer type represents a pointer or | 
 | reference to another object, which must live in memory.</p> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <type> *<br></pre> | 
 | <h5>Examples:</h5> | 
 | <p> | 
 | <table border="0" cellpadding="0" cellspacing="0"> | 
 |   <tbody> | 
 |     <tr> | 
 |       <td><tt>[4x int]*</tt></td> | 
 |       <td>: <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> | 
 | of four <tt>int</tt> values</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td><tt>int (int *) *</tt></td> | 
 |       <td>: A <a href="#t_pointer">pointer</a> to a <a | 
 |  href="t_function">function</a> that takes an <tt>int</tt>, returning | 
 | an <tt>int</tt>.</td> | 
 |     </tr> | 
 |   </tbody> | 
 | </table> | 
 | </p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --><!-- | 
 | <div class="doc_subsubsection"> | 
 |   <a name="t_packed">Packed Type</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | Mention/decide that packed types work with saturation or not. Maybe have a packed+saturated type in addition to just a packed type.<p> | 
 |  | 
 | Packed types should be 'nonsaturated' because standard data types are not saturated.  Maybe have a saturated packed type?<p> | 
 |  | 
 | </div> | 
 |  | 
 | --><!-- *********************************************************************** --> | 
 | <div class="doc_section"> <a name="highlevel">High Level Structure</a> </div> | 
 | <!-- *********************************************************************** --><!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="modulestructure">Module Structure</a> </div> | 
 | <div class="doc_text"> | 
 | <p>LLVM programs are composed of "Module"s, each of which is a | 
 | translation unit of the input programs.  Each module consists of | 
 | functions, global variables, and symbol table entries.  Modules may be | 
 | combined together with the LLVM linker, which merges function (and | 
 | global variable) definitions, resolves forward declarations, and merges | 
 | symbol table entries. Here is an example of the "hello world" module:</p> | 
 | <pre><i>; Declare the string constant as a global constant...</i> | 
 | <a href="#identifiers">%.LC0</a> = <a href="#linkage_internal">internal</a> <a | 
 |  href="#globalvars">constant</a> <a href="#t_array">[13 x sbyte]</a> c"hello world\0A\00"          <i>; [13 x sbyte]*</i> | 
 |  | 
 | <i>; External declaration of the puts function</i> | 
 | <a href="#functionstructure">declare</a> int %puts(sbyte*)                                            <i>; int(sbyte*)* </i> | 
 |  | 
 | <i>; Definition of main function</i> | 
 | int %main() {                                                        <i>; int()* </i> | 
 |         <i>; Convert [13x sbyte]* to sbyte *...</i> | 
 |         %cast210 = <a | 
 |  href="#i_getelementptr">getelementptr</a> [13 x sbyte]* %.LC0, long 0, long 0 <i>; sbyte*</i> | 
 |  | 
 |         <i>; Call puts function to write out the string to stdout...</i> | 
 |         <a | 
 |  href="#i_call">call</a> int %puts(sbyte* %cast210)                              <i>; int</i> | 
 |         <a | 
 |  href="#i_ret">ret</a> int 0<br>}<br></pre> | 
 | <p>This example is made up of a <a href="#globalvars">global variable</a> | 
 | named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" | 
 | function, and a <a href="#functionstructure">function definition</a> | 
 | for "<tt>main</tt>".</p> | 
 | <a name="linkage"> In general, a module is made up of a list of global | 
 | values, where both functions and global variables are global values.  | 
 | Global values are represented by a pointer to a memory location (in | 
 | this case, a pointer to an array of char, and a pointer to a function), | 
 | and have one of the following linkage types:</a> | 
 | <p> </p> | 
 | <dl> | 
 |   <a name="linkage_internal"> <dt><tt><b>internal</b></tt> </dt> | 
 |   <dd>Global values with internal linkage are only directly accessible | 
 | by objects in the current module.  In particular, linking code into a | 
 | module with an internal global value may cause the internal to be | 
 | renamed as necessary to avoid collisions.  Because the symbol is | 
 | internal to the module, all references can be updated.  This | 
 | corresponds to the notion of the '<tt>static</tt>' keyword in C, or the | 
 | idea of "anonymous namespaces" in C++. | 
 |     <p> </p> | 
 |   </dd> | 
 |   </a><a name="linkage_linkonce"> <dt><tt><b>linkonce</b></tt>: </dt> | 
 |   <dd>"<tt>linkonce</tt>" linkage is similar to <tt>internal</tt> | 
 | linkage, with the twist that linking together two modules defining the | 
 | same <tt>linkonce</tt> globals will cause one of the globals to be | 
 | discarded.  This is typically used to implement inline functions.  | 
 | Unreferenced <tt>linkonce</tt> globals are allowed to be discarded. | 
 |     <p> </p> | 
 |   </dd> | 
 |   </a><a name="linkage_weak"> <dt><tt><b>weak</b></tt>: </dt> | 
 |   <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> | 
 | linkage, except that unreferenced <tt>weak</tt> globals may not be | 
 | discarded.  This is used to implement constructs in C such as "<tt>int | 
 | X;</tt>" at global scope. | 
 |     <p> </p> | 
 |   </dd> | 
 |   </a><a name="linkage_appending"> <dt><tt><b>appending</b></tt>: </dt> | 
 |   <dd>"<tt>appending</tt>" linkage may only be applied to global | 
 | variables of pointer to array type.  When two global variables with | 
 | appending linkage are linked together, the two global arrays are | 
 | appended together.  This is the LLVM, typesafe, equivalent of having | 
 | the system linker append together "sections" with identical names when | 
 | .o files are linked. | 
 |     <p> </p> | 
 |   </dd> | 
 |   </a><a name="linkage_external"> <dt><tt><b>externally visible</b></tt>:</dt> | 
 |   <dd>If none of the above identifiers are used, the global is | 
 | externally visible, meaning that it participates in linkage and can be | 
 | used to resolve external symbol references. | 
 |     <p> </p> | 
 |   </dd> | 
 |   </a> | 
 | </dl> | 
 | <p> </p> | 
 | <p><a name="linkage_external">For example, since the "<tt>.LC0</tt>" | 
 | variable is defined to be internal, if another module defined a "<tt>.LC0</tt>" | 
 | variable and was linked with this one, one of the two would be renamed, | 
 | preventing a collision.  Since "<tt>main</tt>" and "<tt>puts</tt>" are | 
 | external (i.e., lacking any linkage declarations), they are accessible | 
 | outside of the current module.  It is illegal for a function <i>declaration</i> | 
 | to have any linkage type other than "externally visible".</a></p> | 
 | </div> | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="globalvars">Global Variables</a> </div> | 
 | <div class="doc_text"> | 
 | <p>Global variables define regions of memory allocated at compilation | 
 | time instead of run-time.  Global variables may optionally be | 
 | initialized.  A variable may be defined as a global "constant", which | 
 | indicates that the contents of the variable will never be modified | 
 | (opening options for optimization).  Constants must always have an | 
 | initial value.</p> | 
 | <p>As SSA values, global variables define pointer values that are in | 
 | scope (i.e. they dominate) for all basic blocks in the program.  Global | 
 | variables always define a pointer to their "content" type because they | 
 | describe a region of memory, and all memory objects in LLVM are | 
 | accessed through pointers.</p> | 
 | </div> | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="functionstructure">Functions</a> </div> | 
 | <div class="doc_text"> | 
 | <p>LLVM function definitions are composed of a (possibly empty) | 
 | argument list, an opening curly brace, a list of basic blocks, and a | 
 | closing curly brace.  LLVM function declarations are defined with the "<tt>declare</tt>" | 
 | keyword, a function name, and a function signature.</p> | 
 | <p>A function definition contains a list of basic blocks, forming the | 
 | CFG for the function.  Each basic block may optionally start with a | 
 | label (giving the basic block a symbol table entry), contains a list of | 
 | instructions, and ends with a <a href="#terminators">terminator</a> | 
 | instruction (such as a branch or function return).</p> | 
 | <p>The first basic block in program is special in two ways: it is | 
 | immediately executed on entrance to the function, and it is not allowed | 
 | to have predecessor basic blocks (i.e. there can not be any branches to | 
 | the entry block of a function).  Because the block can have no | 
 | predecessors, it also cannot have any <a href="#i_phi">PHI nodes</a>.</p> | 
 | <p> | 
 | LLVM functions are identified by their name and type signature.  Hence, two | 
 | functions with the same name but different parameter lists or return values | 
 | are considered different functions, and LLVM will resolves references to each | 
 | appropriately. | 
 | </p> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> <a name="instref">Instruction Reference</a> </div> | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_text"> | 
 | <p>The LLVM instruction set consists of several different | 
 | classifications of instructions: <a href="#terminators">terminator | 
 | instructions</a>, <a href="#binaryops">binary instructions</a>, <a | 
 |  href="#memoryops">memory instructions</a>, and <a href="#otherops">other | 
 | instructions</a>.</p> | 
 | </div> | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="terminators">Terminator | 
 | Instructions</a> </div> | 
 | <div class="doc_text"> | 
 | <p>As mentioned <a href="#functionstructure">previously</a>, every | 
 | basic block in a program ends with a "Terminator" instruction, which | 
 | indicates which block should be executed after the current block is | 
 | finished. These terminator instructions typically yield a '<tt>void</tt>' | 
 | value: they produce control flow, not values (the one exception being | 
 | the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p> | 
 | <p>There are five different terminator instructions: the '<a | 
 |  href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>' | 
 | instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction, | 
 | the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, and the '<a | 
 |  href="#i_unwind"><tt>unwind</tt></a>' instruction.</p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  ret <type> <value>       <i>; Return a value from a non-void function</i> | 
 |   ret void                 <i>; Return from void function</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>ret</tt>' instruction is used to return control flow (and a | 
 | value) from a function, back to the caller.</p> | 
 | <p>There are two forms of the '<tt>ret</tt>' instructruction: one that | 
 | returns a value and then causes control flow, and one that just causes | 
 | control flow to occur.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The '<tt>ret</tt>' instruction may return any '<a | 
 |  href="#t_firstclass">first class</a>' type.  Notice that a function is | 
 | not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>' | 
 | instruction inside of the function that returns a value that does not | 
 | match the return type of the function.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>When the '<tt>ret</tt>' instruction is executed, control flow | 
 | returns back to the calling function's context.  If the caller is a "<a | 
 |  href="#i_call"><tt>call</tt></a> instruction, execution continues at | 
 | the instruction after the call.  If the caller was an "<a | 
 |  href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues | 
 | at the beginning "normal" of the destination block.  If the instruction | 
 | returns a value, that value shall set the call or invoke instruction's | 
 | return value.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  ret int 5                       <i>; Return an integer value of 5</i> | 
 |   ret void                        <i>; Return from a void function</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  br bool <cond>, label <iftrue>, label <iffalse><br>  br label <dest>          <i>; Unconditional branch</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>br</tt>' instruction is used to cause control flow to | 
 | transfer to a different basic block in the current function.  There are | 
 | two forms of this instruction, corresponding to a conditional branch | 
 | and an unconditional branch.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The conditional branch form of the '<tt>br</tt>' instruction takes a | 
 | single '<tt>bool</tt>' value and two '<tt>label</tt>' values.  The | 
 | unconditional form of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' | 
 | value as a target.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>bool</tt>' | 
 | argument is evaluated.  If the value is <tt>true</tt>, control flows | 
 | to the '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>, | 
 | control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p> | 
 | <h5>Example:</h5> | 
 | <pre>Test:<br>  %cond = <a href="#i_setcc">seteq</a> int %a, %b<br>  br bool %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br>  <a | 
 |  href="#i_ret">ret</a> int 1<br>IfUnequal:<br>  <a href="#i_ret">ret</a> int 0<br></pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_switch">'<tt>switch</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  switch uint <value>, label <defaultdest> [ int <val>, label &dest>, ... ]<br></pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>switch</tt>' instruction is used to transfer control flow | 
 | to one of several different places.  It is a generalization of the '<tt>br</tt>' | 
 | instruction, allowing a branch to occur to one of many possible | 
 | destinations.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The '<tt>switch</tt>' instruction uses three parameters: a '<tt>uint</tt>' | 
 | comparison value '<tt>value</tt>', a default '<tt>label</tt>' | 
 | destination, and an array of pairs of comparison value constants and '<tt>label</tt>'s.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The <tt>switch</tt> instruction specifies a table of values and | 
 | destinations. When the '<tt>switch</tt>' instruction is executed, this | 
 | table is searched for the given value.  If the value is found, the | 
 | corresponding destination is branched to, otherwise the default value | 
 | it transfered to.</p> | 
 | <h5>Implementation:</h5> | 
 | <p>Depending on properties of the target machine and the particular <tt>switch</tt> | 
 | instruction, this instruction may be code generated as a series of | 
 | chained conditional branches, or with a lookup table.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <i>; Emulate a conditional br instruction</i> | 
 |   %Val = <a | 
 |  href="#i_cast">cast</a> bool %value to uint<br>  switch uint %Val, label %truedest [int 0, label %falsedest ]<br><br>  <i>; Emulate an unconditional br instruction</i> | 
 |   switch uint 0, label %dest [ ] | 
 |  | 
 |   <i>; Implement a jump table:</i> | 
 |   switch uint %val, label %otherwise [ int 0, label %onzero,  | 
 |                                        int 1, label %onone,  | 
 |                                        int 2, label %ontwo ] | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_invoke">'<tt>invoke</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = invoke <ptr to function ty> %<function ptr val>(<function args>)<br>                 to label <normal label> except label <exception label><br></pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>invoke</tt>' instruction causes control to transfer to a | 
 | specified function, with the possibility of control flow transfer to | 
 | either the '<tt>normal</tt>' <tt>label</tt> label or the '<tt>exception</tt>'<tt>label</tt>. | 
 | If the callee function returns with the "<tt><a href="#i_ret">ret</a></tt>" | 
 | instruction, control flow will return to the "normal" label.  If the | 
 | callee (or any indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>" | 
 | instruction, control is interrupted, and continued at the dynamically | 
 | nearest "except" label.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>This instruction requires several arguments:</p> | 
 | <ol> | 
 |   <li>'<tt>ptr to function ty</tt>': shall be the signature of the | 
 | pointer to function value being invoked.  In most cases, this is a | 
 | direct function invocation, but indirect <tt>invoke</tt>s are just as | 
 | possible, branching off an arbitrary pointer to function value. </li> | 
 |   <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer | 
 | to a function to be invoked. </li> | 
 |   <li>'<tt>function args</tt>': argument list whose types match the | 
 | function signature argument types.  If the function signature indicates | 
 | the function accepts a variable number of arguments, the extra | 
 | arguments can be specified. </li> | 
 |   <li>'<tt>normal label</tt>': the label reached when the called | 
 | function executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li> | 
 |   <li>'<tt>exception label</tt>': the label reached when a callee | 
 | returns with the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li> | 
 | </ol> | 
 | <h5>Semantics:</h5> | 
 | <p>This instruction is designed to operate as a standard '<tt><a | 
 |  href="#i_call">call</a></tt>' instruction in most regards.  The | 
 | primary difference is that it establishes an association with a label, | 
 | which is used by the runtime library to unwind the stack.</p> | 
 | <p>This instruction is used in languages with destructors to ensure | 
 | that proper cleanup is performed in the case of either a <tt>longjmp</tt> | 
 | or a thrown exception.  Additionally, this is important for | 
 | implementation of '<tt>catch</tt>' clauses in high-level languages that | 
 | support them.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  %retval = invoke int %Test(int 15)<br>              to label %Continue<br>              except label %TestCleanup     <i>; {int}:retval set</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  unwind<br></pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing | 
 | control flow at the first callee in the dynamic call stack which used | 
 | an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the | 
 | call.  This is primarily used to implement exception handling.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The '<tt>unwind</tt>' intrinsic causes execution of the current | 
 | function to immediately halt.  The dynamic call stack is then searched | 
 | for the first <a href="#i_invoke"><tt>invoke</tt></a> instruction on | 
 | the call stack.  Once found, execution continues at the "exceptional" | 
 | destination block specified by the <tt>invoke</tt> instruction.  If | 
 | there is no <tt>invoke</tt> instruction in the dynamic call chain, | 
 | undefined behavior results.</p> | 
 | </div> | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div> | 
 | <div class="doc_text"> | 
 | <p>Binary operators are used to do most of the computation in a | 
 | program.  They require two operands, execute an operation on them, and | 
 | produce a single value. The result value of a binary operator is not | 
 | necessarily the same type as its operands.</p> | 
 | <p>There are several different binary operators:</p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = add <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>add</tt>' instruction must be either <a | 
 |  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> | 
 | values. Both arguments must have identical types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The value produced is the integer or floating point sum of the two | 
 | operands.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = add int 4, %var          <i>; yields {int}:result = 4 + %var</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = sub <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>sub</tt>' instruction returns the difference of its two | 
 | operands.</p> | 
 | <p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>' | 
 | instruction present in most other intermediate representations.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>sub</tt>' instruction must be either <a | 
 |  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> | 
 | values. Both arguments must have identical types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The value produced is the integer or floating point difference of | 
 | the two operands.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = sub int 4, %var          <i>; yields {int}:result = 4 - %var</i> | 
 |   <result> = sub int 0, %val          <i>; yields {int}:result = -%var</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = mul <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The  '<tt>mul</tt>' instruction returns the product of its two | 
 | operands.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>mul</tt>' instruction must be either <a | 
 |  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> | 
 | values. Both arguments must have identical types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The value produced is the integer or floating point product of the | 
 | two operands.</p> | 
 | <p>There is no signed vs unsigned multiplication.  The appropriate | 
 | action is taken based on the type of the operand.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = mul int 4, %var          <i>; yields {int}:result = 4 * %var</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_div">'<tt>div</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = div <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>div</tt>' instruction returns the quotient of its two | 
 | operands.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>div</tt>' instruction must be either <a | 
 |  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> | 
 | values. Both arguments must have identical types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The value produced is the integer or floating point quotient of the | 
 | two operands.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = div int 4, %var          <i>; yields {int}:result = 4 / %var</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_rem">'<tt>rem</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = rem <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>rem</tt>' instruction returns the remainder from the | 
 | division of its two operands.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>rem</tt>' instruction must be either <a | 
 |  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> | 
 | values. Both arguments must have identical types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>This returns the <i>remainder</i> of a division (where the result | 
 | has the same sign as the divisor), not the <i>modulus</i> (where the | 
 | result has the same sign as the dividend) of a value.  For more | 
 | information about the difference, see: <a | 
 |  href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The | 
 | Math Forum</a>.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = rem int 4, %var          <i>; yields {int}:result = 4 % %var</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_setcc">'<tt>set<i>cc</i></tt>' | 
 | Instructions</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = seteq <ty> <var1>, <var2>   <i>; yields {bool}:result</i> | 
 |   <result> = setne <ty> <var1>, <var2>   <i>; yields {bool}:result</i> | 
 |   <result> = setlt <ty> <var1>, <var2>   <i>; yields {bool}:result</i> | 
 |   <result> = setgt <ty> <var1>, <var2>   <i>; yields {bool}:result</i> | 
 |   <result> = setle <ty> <var1>, <var2>   <i>; yields {bool}:result</i> | 
 |   <result> = setge <ty> <var1>, <var2>   <i>; yields {bool}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>set<i>cc</i></tt>' family of instructions returns a boolean | 
 | value based on a comparison of their two operands.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>set<i>cc</i></tt>' instructions must | 
 | be of <a href="#t_firstclass">first class</a> type (it is not possible | 
 | to compare '<tt>label</tt>'s, '<tt>array</tt>'s, '<tt>structure</tt>' | 
 | or '<tt>void</tt>' values, etc...).  Both arguments must have identical | 
 | types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The '<tt>seteq</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' | 
 | value if both operands are equal.<br> | 
 | The '<tt>setne</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' | 
 | value if both operands are unequal.<br> | 
 | The '<tt>setlt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' | 
 | value if the first operand is less than the second operand.<br> | 
 | The '<tt>setgt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' | 
 | value if the first operand is greater than the second operand.<br> | 
 | The '<tt>setle</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' | 
 | value if the first operand is less than or equal to the second operand.<br> | 
 | The '<tt>setge</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' | 
 | value if the first operand is greater than or equal to the second | 
 | operand.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = seteq int   4, 5        <i>; yields {bool}:result = false</i> | 
 |   <result> = setne float 4, 5        <i>; yields {bool}:result = true</i> | 
 |   <result> = setlt uint  4, 5        <i>; yields {bool}:result = true</i> | 
 |   <result> = setgt sbyte 4, 5        <i>; yields {bool}:result = false</i> | 
 |   <result> = setle sbyte 4, 5        <i>; yields {bool}:result = true</i> | 
 |   <result> = setge sbyte 4, 5        <i>; yields {bool}:result = false</i> | 
 | </pre> | 
 | </div> | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary | 
 | Operations</a> </div> | 
 | <div class="doc_text"> | 
 | <p>Bitwise binary operators are used to do various forms of | 
 | bit-twiddling in a program.  They are generally very efficient | 
 | instructions, and can commonly be strength reduced from other | 
 | instructions.  They require two operands, execute an operation on them, | 
 | and produce a single value.  The resulting value of the bitwise binary | 
 | operators is always the same type as its first operand.</p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = and <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>and</tt>' instruction returns the bitwise logical and of | 
 | its two operands.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>and</tt>' instruction must be <a | 
 |  href="#t_integral">integral</a> values.  Both arguments must have | 
 | identical types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The truth table used for the '<tt>and</tt>' instruction is:</p> | 
 | <p> </p> | 
 | <center> | 
 | <table border="1" cellspacing="0" cellpadding="4"> | 
 |   <tbody> | 
 |     <tr> | 
 |       <td>In0</td> | 
 |       <td>In1</td> | 
 |       <td>Out</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>0</td> | 
 |       <td>0</td> | 
 |       <td>0</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>0</td> | 
 |       <td>1</td> | 
 |       <td>0</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>1</td> | 
 |       <td>0</td> | 
 |       <td>0</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>1</td> | 
 |       <td>1</td> | 
 |       <td>1</td> | 
 |     </tr> | 
 |   </tbody> | 
 | </table> | 
 | </center> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = and int 4, %var         <i>; yields {int}:result = 4 & %var</i> | 
 |   <result> = and int 15, 40          <i>; yields {int}:result = 8</i> | 
 |   <result> = and int 4, 8            <i>; yields {int}:result = 0</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = or <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive | 
 | or of its two operands.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>or</tt>' instruction must be <a | 
 |  href="#t_integral">integral</a> values.  Both arguments must have | 
 | identical types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The truth table used for the '<tt>or</tt>' instruction is:</p> | 
 | <p> </p> | 
 | <center> | 
 | <table border="1" cellspacing="0" cellpadding="4"> | 
 |   <tbody> | 
 |     <tr> | 
 |       <td>In0</td> | 
 |       <td>In1</td> | 
 |       <td>Out</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>0</td> | 
 |       <td>0</td> | 
 |       <td>0</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>0</td> | 
 |       <td>1</td> | 
 |       <td>1</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>1</td> | 
 |       <td>0</td> | 
 |       <td>1</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>1</td> | 
 |       <td>1</td> | 
 |       <td>1</td> | 
 |     </tr> | 
 |   </tbody> | 
 | </table> | 
 | </center> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = or int 4, %var         <i>; yields {int}:result = 4 | %var</i> | 
 |   <result> = or int 15, 40          <i>; yields {int}:result = 47</i> | 
 |   <result> = or int 4, 8            <i>; yields {int}:result = 12</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = xor <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive | 
 | or of its two operands.  The <tt>xor</tt> is used to implement the | 
 | "one's complement" operation, which is the "~" operator in C.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>xor</tt>' instruction must be <a | 
 |  href="#t_integral">integral</a> values.  Both arguments must have | 
 | identical types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The truth table used for the '<tt>xor</tt>' instruction is:</p> | 
 | <p> </p> | 
 | <center> | 
 | <table border="1" cellspacing="0" cellpadding="4"> | 
 |   <tbody> | 
 |     <tr> | 
 |       <td>In0</td> | 
 |       <td>In1</td> | 
 |       <td>Out</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>0</td> | 
 |       <td>0</td> | 
 |       <td>0</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>0</td> | 
 |       <td>1</td> | 
 |       <td>1</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>1</td> | 
 |       <td>0</td> | 
 |       <td>1</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>1</td> | 
 |       <td>1</td> | 
 |       <td>0</td> | 
 |     </tr> | 
 |   </tbody> | 
 | </table> | 
 | </center> | 
 | <p> </p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = xor int 4, %var         <i>; yields {int}:result = 4 ^ %var</i> | 
 |   <result> = xor int 15, 40          <i>; yields {int}:result = 39</i> | 
 |   <result> = xor int 4, 8            <i>; yields {int}:result = 12</i> | 
 |   <result> = xor int %V, -1          <i>; yields {int}:result = ~%V</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = shl <ty> <var1>, ubyte <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>shl</tt>' instruction returns the first operand shifted to | 
 | the left a specified number of bits.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The first argument to the '<tt>shl</tt>' instruction must be an <a | 
 |  href="#t_integer">integer</a> type.  The second argument must be an '<tt>ubyte</tt>' | 
 | type.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = shl int 4, ubyte %var   <i>; yields {int}:result = 4 << %var</i> | 
 |   <result> = shl int 4, ubyte 2      <i>; yields {int}:result = 16</i> | 
 |   <result> = shl int 1, ubyte 10     <i>; yields {int}:result = 1024</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_shr">'<tt>shr</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = shr <ty> <var1>, ubyte <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>shr</tt>' instruction returns the first operand shifted to | 
 | the right a specified number of bits.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The first argument to the '<tt>shr</tt>' instruction must be an <a | 
 |  href="#t_integer">integer</a> type.  The second argument must be an '<tt>ubyte</tt>' | 
 | type.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>If the first argument is a <a href="#t_signed">signed</a> type, the | 
 | most significant bit is duplicated in the newly free'd bit positions.  | 
 | If the first argument is unsigned, zero bits shall fill the empty | 
 | positions.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = shr int 4, ubyte %var   <i>; yields {int}:result = 4 >> %var</i> | 
 |   <result> = shr uint 4, ubyte 1     <i>; yields {uint}:result = 2</i> | 
 |   <result> = shr int 4, ubyte 2      <i>; yields {int}:result = 1</i> | 
 |   <result> = shr sbyte 4, ubyte 3    <i>; yields {sbyte}:result = 0</i> | 
 |   <result> = shr sbyte -2, ubyte 1   <i>; yields {sbyte}:result = -1</i> | 
 | </pre> | 
 | </div> | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="memoryops">Memory Access | 
 | Operations</a></div> | 
 | <div class="doc_text"> | 
 | <p>A key design point of an SSA-based representation is how it | 
 | represents memory.  In LLVM, no memory locations are in SSA form, which | 
 | makes things very simple.  This section describes how to read, write, | 
 | allocate and free memory in LLVM.</p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_malloc">'<tt>malloc</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = malloc <type>, uint <NumElements>     <i>; yields {type*}:result</i> | 
 |   <result> = malloc <type>                         <i>; yields {type*}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>malloc</tt>' instruction allocates memory from the system | 
 | heap and returns a pointer to it.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The the '<tt>malloc</tt>' instruction allocates <tt>sizeof(<type>)*NumElements</tt> | 
 | bytes of memory from the operating system, and returns a pointer of the | 
 | appropriate type to the program.  The second form of the instruction is | 
 | a shorter version of the first instruction that defaults to allocating | 
 | one element.</p> | 
 | <p>'<tt>type</tt>' must be a sized type.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>Memory is allocated using the system "<tt>malloc</tt>" function, and | 
 | a pointer is returned.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  %array  = malloc [4 x ubyte ]                    <i>; yields {[%4 x ubyte]*}:array</i> | 
 |  | 
 |   %size   = <a | 
 |  href="#i_add">add</a> uint 2, 2                          <i>; yields {uint}:size = uint 4</i> | 
 |   %array1 = malloc ubyte, uint 4                   <i>; yields {ubyte*}:array1</i> | 
 |   %array2 = malloc [12 x ubyte], uint %size        <i>; yields {[12 x ubyte]*}:array2</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_free">'<tt>free</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  free <type> <value>                              <i>; yields {void}</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>free</tt>' instruction returns memory back to the unused | 
 | memory heap, to be reallocated in the future.</p> | 
 | <p> </p> | 
 | <h5>Arguments:</h5> | 
 | <p>'<tt>value</tt>' shall be a pointer value that points to a value | 
 | that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' | 
 | instruction.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>Access to the memory pointed to by the pointer is not longer defined | 
 | after this instruction executes.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  %array  = <a href="#i_malloc">malloc</a> [4 x ubyte]                    <i>; yields {[4 x ubyte]*}:array</i> | 
 |             free   [4 x ubyte]* %array | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_alloca">'<tt>alloca</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = alloca <type>, uint <NumElements>  <i>; yields {type*}:result</i> | 
 |   <result> = alloca <type>                      <i>; yields {type*}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>alloca</tt>' instruction allocates memory on the current | 
 | stack frame of the procedure that is live until the current function | 
 | returns to its caller.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The the '<tt>alloca</tt>' instruction allocates <tt>sizeof(<type>)*NumElements</tt> | 
 | bytes of memory on the runtime stack, returning a pointer of the | 
 | appropriate type to the program.  The second form of the instruction is | 
 | a shorter version of the first that defaults to allocating one element.</p> | 
 | <p>'<tt>type</tt>' may be any sized type.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>Memory is allocated, a pointer is returned.  '<tt>alloca</tt>'d | 
 | memory is automatically released when the function returns.  The '<tt>alloca</tt>' | 
 | instruction is commonly used to represent automatic variables that must | 
 | have an address available.  When the function returns (either with the <tt><a | 
 |  href="#i_ret">ret</a></tt> or <tt><a href="#i_invoke">invoke</a></tt> | 
 | instructions), the memory is reclaimed.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  %ptr = alloca int                              <i>; yields {int*}:ptr</i> | 
 |   %ptr = alloca int, uint 4                      <i>; yields {int*}:ptr</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = load <ty>* <pointer><br>  <result> = volatile load <ty>* <pointer><br></pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>load</tt>' instruction is used to read from memory.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The argument to the '<tt>load</tt>' instruction specifies the memory | 
 | address to load from.  The pointer must point to a <a | 
 |  href="t_firstclass">first class</a> type.  If the <tt>load</tt> is | 
 | marked as <tt>volatile</tt> then the optimizer is not allowed to modify | 
 | the number or order of execution of this <tt>load</tt> with other | 
 | volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt> | 
 | instructions. </p> | 
 | <h5>Semantics:</h5> | 
 | <p>The location of memory pointed to is loaded.</p> | 
 | <h5>Examples:</h5> | 
 | <pre>  %ptr = <a href="#i_alloca">alloca</a> int                               <i>; yields {int*}:ptr</i> | 
 |   <a | 
 |  href="#i_store">store</a> int 3, int* %ptr                          <i>; yields {void}</i> | 
 |   %val = load int* %ptr                           <i>; yields {int}:val = int 3</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>' | 
 | Instruction</a> </div> | 
 | <h5>Syntax:</h5> | 
 | <pre>  store <ty> <value>, <ty>* <pointer>                   <i>; yields {void}</i> | 
 |   volatile store <ty> <value>, <ty>* <pointer>                   <i>; yields {void}</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>store</tt>' instruction is used to write to memory.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>There are two arguments to the '<tt>store</tt>' instruction: a value | 
 | to store and an address to store it into.  The type of the '<tt><pointer></tt>' | 
 | operand must be a pointer to the type of the '<tt><value></tt>' | 
 | operand. If the <tt>store</tt> is marked as <tt>volatile</tt> then the | 
 | optimizer is not allowed to modify the number or order of execution of | 
 | this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a | 
 |  href="#i_store">store</a></tt> instructions.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The contents of memory are updated to contain '<tt><value></tt>' | 
 | at the location specified by the '<tt><pointer></tt>' operand.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  %ptr = <a href="#i_alloca">alloca</a> int                               <i>; yields {int*}:ptr</i> | 
 |   <a | 
 |  href="#i_store">store</a> int 3, int* %ptr                          <i>; yields {void}</i> | 
 |   %val = load int* %ptr                           <i>; yields {int}:val = int 3</i> | 
 | </pre> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_getelementptr">'<tt>getelementptr</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = getelementptr <ty>* <ptrval>{, long <aidx>|, ubyte <sidx>}*<br></pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>getelementptr</tt>' instruction is used to get the address | 
 | of a subelement of an aggregate data structure.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>This instruction takes a list of <tt>long</tt> values and <tt>ubyte</tt> | 
 | constants that indicate what form of addressing to perform.  The actual | 
 | types of the arguments provided depend on the type of the first pointer | 
 | argument.  The '<tt>getelementptr</tt>' instruction is used to index | 
 | down through the type levels of a structure.</p> | 
 | <p>For example, let's consider a C code fragment and how it gets | 
 | compiled to LLVM:</p> | 
 | <pre>struct RT {<br>  char A;<br>  int B[10][20];<br>  char C;<br>};<br>struct ST {<br>  int X;<br>  double Y;<br>  struct RT Z;<br>};<br><br>int *foo(struct ST *s) {<br>  return &s[1].Z.B[5][13];<br>}<br></pre> | 
 | <p>The LLVM code generated by the GCC frontend is:</p> | 
 | <pre>%RT = type { sbyte, [10 x [20 x int]], sbyte }<br>%ST = type { int, double, %RT }<br><br>int* "foo"(%ST* %s) {<br>  %reg = getelementptr %ST* %s, long 1, ubyte 2, ubyte 1, long 5, long 13<br>  ret int* %reg<br>}<br></pre> | 
 | <h5>Semantics:</h5> | 
 | <p>The index types specified for the '<tt>getelementptr</tt>' | 
 | instruction depend on the pointer type that is being index into. <a | 
 |  href="t_pointer">Pointer</a> and <a href="t_array">array</a> types | 
 | require '<tt>long</tt>' values, and <a href="t_struct">structure</a> | 
 | types require '<tt>ubyte</tt>' <b>constants</b>.</p> | 
 | <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>' | 
 | type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ int, | 
 | double, %RT }</tt>' type, a structure.  The second index indexes into | 
 | the third element of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ | 
 | sbyte, [10 x [20 x int]], sbyte }</tt>' type, another structure.  The | 
 | third index indexes into the second element of the structure, yielding | 
 | a '<tt>[10 x [20 x int]]</tt>' type, an array.  The two dimensions of | 
 | the array are subscripted into, yielding an '<tt>int</tt>' type.  The '<tt>getelementptr</tt>' | 
 | instruction return a pointer to this element, thus yielding a '<tt>int*</tt>' | 
 | type.</p> | 
 | <p>Note that it is perfectly legal to index partially through a | 
 | structure, returning a pointer to an inner element.  Because of this, | 
 | the LLVM code for the given testcase is equivalent to:</p> | 
 | <pre>int* "foo"(%ST* %s) {<br>  %t1 = getelementptr %ST* %s , long 1                        <i>; yields %ST*:%t1</i> | 
 |   %t2 = getelementptr %ST* %t1, long 0, ubyte 2               <i>; yields %RT*:%t2</i> | 
 |   %t3 = getelementptr %RT* %t2, long 0, ubyte 1               <i>; yields [10 x [20 x int]]*:%t3</i> | 
 |   %t4 = getelementptr [10 x [20 x int]]* %t3, long 0, long 5  <i>; yields [20 x int]*:%t4</i> | 
 |   %t5 = getelementptr [20 x int]* %t4, long 0, long 13        <i>; yields int*:%t5</i> | 
 |   ret int* %t5 | 
 | } | 
 | </pre> | 
 | <h5>Example:</h5> | 
 | <pre>  <i>; yields [12 x ubyte]*:aptr</i> | 
 |   %aptr = getelementptr {int, [12 x ubyte]}* %sptr, long 0, ubyte 1<br></pre> | 
 | <h5> Note To The Novice:</h5> | 
 | When using indexing into global arrays with the  '<tt>getelementptr</tt>' | 
 | instruction, you must remember that the  </div> | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div> | 
 | <div class="doc_text"> | 
 | <p>The instructions in this catagory are the "miscellaneous" | 
 | instructions, which defy better classification.</p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = phi <ty> [ <val0>, <label0>], ...<br></pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>phi</tt>' instruction is used to implement the φ node in | 
 | the SSA graph representing the function.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The type of the incoming values are specified with the first type | 
 | field. After this, the '<tt>phi</tt>' instruction takes a list of pairs | 
 | as arguments, with one pair for each predecessor basic block of the | 
 | current block.  Only values of <a href="#t_firstclass">first class</a> | 
 | type may be used as the value arguments to the PHI node.  Only labels | 
 | may be used as the label arguments.</p> | 
 | <p>There must be no non-phi instructions between the start of a basic | 
 | block and the PHI instructions: i.e. PHI instructions must be first in | 
 | a basic block.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the | 
 | value specified by the parameter, depending on which basic block we | 
 | came from in the last <a href="#terminators">terminator</a> instruction.</p> | 
 | <h5>Example:</h5> | 
 | <pre>Loop:       ; Infinite loop that counts from 0 on up...<br>  %indvar = phi uint [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br>  %nextindvar = add uint %indvar, 1<br>  br label %Loop<br></pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_cast">'<tt>cast .. to</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = cast <ty> <value> to <ty2>             <i>; yields ty2</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>cast</tt>' instruction is used as the primitive means to | 
 | convert integers to floating point, change data type sizes, and break | 
 | type safety (by casting pointers).</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The '<tt>cast</tt>' instruction takes a value to cast, which must be | 
 | a first class value, and a type to cast it to, which must also be a <a | 
 |  href="#t_firstclass">first class</a> type.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>This instruction follows the C rules for explicit casts when | 
 | determining how the data being cast must change to fit in its new | 
 | container.</p> | 
 | <p>When casting to bool, any value that would be considered true in the | 
 | context of a C '<tt>if</tt>' condition is converted to the boolean '<tt>true</tt>' | 
 | values, all else are '<tt>false</tt>'.</p> | 
 | <p>When extending an integral value from a type of one signness to | 
 | another (for example '<tt>sbyte</tt>' to '<tt>ulong</tt>'), the value | 
 | is sign-extended if the <b>source</b> value is signed, and | 
 | zero-extended if the source value is unsigned. <tt>bool</tt> values | 
 | are always zero extended into either zero or one.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  %X = cast int 257 to ubyte              <i>; yields ubyte:1</i> | 
 |   %Y = cast int 123 to bool               <i>; yields bool:true</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_call">'<tt>call</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = call <ty>* <fnptrval>(<param list>)<br></pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>call</tt>' instruction represents a simple function call.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>This instruction requires several arguments:</p> | 
 | <ol> | 
 |   <li> | 
 |     <p>'<tt>ty</tt>': shall be the signature of the pointer to function | 
 | value   being invoked.  The argument types must match the types implied | 
 | by this   signature.</p> | 
 |   </li> | 
 |   <li> | 
 |     <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a | 
 | function   to be invoked. In most cases, this is a direct function | 
 | invocation, but   indirect <tt>call</tt>s are just as possible, | 
 | calling an arbitrary pointer to   function values.</p> | 
 |   </li> | 
 |   <li> | 
 |     <p>'<tt>function args</tt>': argument list whose types match the | 
 | function   signature argument types.  If the function signature | 
 | indicates the function   accepts a variable number of arguments, the | 
 | extra arguments can be   specified.</p> | 
 |   </li> | 
 | </ol> | 
 | <h5>Semantics:</h5> | 
 | <p>The '<tt>call</tt>' instruction is used to cause control flow to | 
 | transfer to a specified function, with its incoming arguments bound to | 
 | the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>' | 
 | instruction in the called function, control flow continues with the | 
 | instruction after the function call, and the return value of the | 
 | function is bound to the result argument.  This is a simpler case of | 
 | the <a href="#i_invoke">invoke</a> instruction.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  %retval = call int %test(int %argc)<br>  call int(sbyte*, ...) *%printf(sbyte* %msg, int 12, sbyte 42);<br></pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_vanext">'<tt>vanext</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <resultarglist> = vanext <va_list> <arglist>, <argty><br></pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>vanext</tt>' instruction is used to access arguments passed | 
 | through the "variable argument" area of a function call.  It is used to | 
 | implement the <tt>va_arg</tt> macro in C.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>This instruction takes a <tt>valist</tt> value and the type of the | 
 | argument. It returns another <tt>valist</tt>.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The '<tt>vanext</tt>' instruction advances the specified <tt>valist</tt> | 
 | past an argument of the specified type.  In conjunction with the <a | 
 |  href="#i_vaarg"><tt>vaarg</tt></a> instruction, it is used to implement | 
 | the <tt>va_arg</tt> macro available in C.  For more information, see | 
 | the variable argument handling <a href="#int_varargs">Intrinsic | 
 | Functions</a>.</p> | 
 | <p>It is legal for this instruction to be called in a function which | 
 | does not take a variable number of arguments, for example, the <tt>vfprintf</tt> | 
 | function.</p> | 
 | <p><tt>vanext</tt> is an LLVM instruction instead of an <a | 
 |  href="#intrinsics">intrinsic function</a> because it takes an type as | 
 | an argument.</p> | 
 | <h5>Example:</h5> | 
 | <p>See the <a href="#int_varargs">variable argument processing</a> | 
 | section.</p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_vaarg">'<tt>vaarg</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <resultval> = vaarg <va_list> <arglist>, <argty><br></pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>vaarg</tt>' instruction is used to access arguments passed | 
 | through the "variable argument" area of a function call.  It is used to | 
 | implement the <tt>va_arg</tt> macro in C.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>This instruction takes a <tt>valist</tt> value and the type of the | 
 | argument. It returns a value of the specified argument type.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The '<tt>vaarg</tt>' instruction loads an argument of the specified | 
 | type from the specified <tt>va_list</tt>.  In conjunction with the <a | 
 |  href="#i_vanext"><tt>vanext</tt></a> instruction, it is used to | 
 | implement the <tt>va_arg</tt> macro available in C.  For more | 
 | information, see the variable argument handling <a href="#int_varargs">Intrinsic | 
 | Functions</a>.</p> | 
 | <p>It is legal for this instruction to be called in a function which | 
 | does not take a variable number of arguments, for example, the <tt>vfprintf</tt> | 
 | function.</p> | 
 | <p><tt>vaarg</tt> is an LLVM instruction instead of an <a | 
 |  href="#intrinsics">intrinsic function</a> because it takes an type as | 
 | an argument.</p> | 
 | <h5>Example:</h5> | 
 | <p>See the <a href="#int_varargs">variable argument processing</a> | 
 | section.</p> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>LLVM supports the notion of an "intrinsic function".  These functions have | 
 | well known names and semantics, and are required to follow certain | 
 | restrictions. Overall, these instructions represent an extension mechanism for | 
 | the LLVM language that does not require changing all of the transformations in | 
 | LLVM to add to the language (or the bytecode reader/writer, the parser, | 
 | etc...).</p> | 
 |  | 
 | <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix, this | 
 | prefix is reserved in LLVM for intrinsic names, thus functions may not be named | 
 | this.  Intrinsic functions must always be external functions: you cannot define | 
 | the body of intrinsic functions.  Intrinsic functions may only be used in call | 
 | or invoke instructions: it is illegal to take the address of an intrinsic | 
 | function.  Additionally, because intrinsic functions are part of the LLVM | 
 | language, it is required that they all be documented here if any are added.</p> | 
 |  | 
 |  | 
 | <p> | 
 | Adding an intrinsic to LLVM is straight-forward if it is possible to express the | 
 | concept in LLVM directly (ie, code generator support is not _required_).  To do | 
 | this, extend the default implementation of the IntrinsicLowering class to handle | 
 | the intrinsic.  Code generators use this class to lower intrinsics they do not | 
 | understand to raw LLVM instructions that they do. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="int_varargs">Variable Argument Handling Intrinsics</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 | <p>Variable argument support is defined in LLVM with the <a | 
 |  href="#i_vanext"><tt>vanext</tt></a> instruction and these three | 
 | intrinsic functions.  These functions are related to the similarly | 
 | named macros defined in the <tt><stdarg.h></tt> header file.</p> | 
 | <p>All of these functions operate on arguments that use a | 
 | target-specific value type "<tt>va_list</tt>".  The LLVM assembly | 
 | language reference manual does not define what this type is, so all | 
 | transformations should be prepared to handle intrinsics with any type | 
 | used.</p> | 
 | <p>This example shows how the <a href="#i_vanext"><tt>vanext</tt></a> | 
 | instruction and the variable argument handling intrinsic functions are | 
 | used.</p> | 
 | <pre> | 
 | int %test(int %X, ...) { | 
 |   ; Initialize variable argument processing | 
 |   %ap = call sbyte* %<a href="#i_va_start">llvm.va_start</a>() | 
 |  | 
 |   ; Read a single integer argument | 
 |   %tmp = vaarg sbyte* %ap, int | 
 |  | 
 |   ; Advance to the next argument | 
 |   %ap2 = vanext sbyte* %ap, int | 
 |  | 
 |   ; Demonstrate usage of llvm.va_copy and llvm.va_end | 
 |   %aq = call sbyte* %<a href="#i_va_copy">llvm.va_copy</a>(sbyte* %ap2) | 
 |   call void %<a href="#i_va_end">llvm.va_end</a>(sbyte* %aq) | 
 |  | 
 |   ; Stop processing of arguments. | 
 |   call void %<a href="#i_va_end">llvm.va_end</a>(sbyte* %ap2) | 
 |   ret int %tmp | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 |  | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  call va_list ()* %llvm.va_start()<br></pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>llvm.va_start</tt>' intrinsic returns a new <tt><arglist></tt> | 
 | for subsequent use by the variable argument intrinsics.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt> | 
 | macro available in C.  In a target-dependent way, it initializes and | 
 | returns a <tt>va_list</tt> element, so that the next <tt>vaarg</tt> | 
 | will produce the first variable argument passed to the function.  Unlike | 
 | the C <tt>va_start</tt> macro, this intrinsic does not need to know the | 
 | last argument of the function, the compiler can figure that out.</p> | 
 | <p>Note that this intrinsic function is only legal to be called from | 
 | within the body of a variable argument function.</p> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |  <a name="i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  call void (va_list)* %llvm.va_end(va_list <arglist>)<br></pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt><arglist></tt> | 
 | which has been initialized previously with <tt><a href="#i_va_start">llvm.va_start</a></tt> | 
 | or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The argument is a <tt>va_list</tt> to destroy.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt> | 
 | macro available in C.  In a target-dependent way, it destroys the <tt>va_list</tt>. | 
 | Calls to <a href="#i_va_start"><tt>llvm.va_start</tt></a> and <a | 
 |  href="#i_va_copy"><tt>llvm.va_copy</tt></a> must be matched exactly | 
 | with calls to <tt>llvm.va_end</tt>.</p> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  call va_list (va_list)* %llvm.va_copy(va_list <destarglist>)<br></pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument | 
 | position from the source argument list to the destination argument list.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The argument is the <tt>va_list</tt> to copy.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> | 
 | macro available in C.  In a target-dependent way, it copies the source <tt>va_list</tt> | 
 | element into the returned list.  This intrinsic is necessary because the <tt><a | 
 |  href="i_va_start">llvm.va_start</a></tt> intrinsic may be arbitrarily | 
 | complex and require memory allocation, for example.</p> | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="int_libc">Standard C Library Intrinsics</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 | <p> | 
 |  | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   call void (sbyte*, sbyte*, uint, uint)* %llvm.memcpy(sbyte* <dest>, sbyte* <src>, | 
 |                                                        uint <len>, uint <align>) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.memcpy</tt>' intrinsic copies a block of memory from the source | 
 | location to the destination location. | 
 | </p> | 
 |  | 
 | <p> | 
 | Note that, unlike the standard libc function, the <tt>llvm.memcpy</tt> intrinsic | 
 | does not return a value, and takes an extra alignment argument. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The first argument is a pointer to the destination, the second is a pointer to | 
 | the source.  The third argument is an (arbitrarily sized) integer argument | 
 | specifying the number of bytes to copy, and the fourth argument is the alignment | 
 | of the source and destination locations. | 
 | </p> | 
 |  | 
 | <p> | 
 | If the call to this intrinisic has an alignment value that is not 0 or 1, then | 
 | the caller guarantees that the size of the copy is a multiple of the alignment | 
 | and that both the source and destination pointers are aligned to that boundary. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.memcpy</tt>' intrinsic copies a block of memory from the source | 
 | location to the destination location, which are not allowed to overlap.  It | 
 | copies "len" bytes of memory over.  If the argument is known to be aligned to | 
 | some boundary, this can be specified as the fourth argument, otherwise it should | 
 | be set to 0 or 1. | 
 | </p> | 
 | </div> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   call void (sbyte*, sbyte*, uint, uint)* %llvm.memmove(sbyte* <dest>, sbyte* <src>, | 
 |                                                        uint <len>, uint <align>) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.memmove</tt>' intrinsic moves a block of memory from the source | 
 | location to the destination location. It is similar to the '<tt>llvm.memcpy</tt>'  | 
 | intrinsic but allows the two memory locations to overlap. | 
 | </p> | 
 |  | 
 | <p> | 
 | Note that, unlike the standard libc function, the <tt>llvm.memmove</tt> intrinsic | 
 | does not return a value, and takes an extra alignment argument. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The first argument is a pointer to the destination, the second is a pointer to | 
 | the source.  The third argument is an (arbitrarily sized) integer argument | 
 | specifying the number of bytes to copy, and the fourth argument is the alignment | 
 | of the source and destination locations. | 
 | </p> | 
 |  | 
 | <p> | 
 | If the call to this intrinisic has an alignment value that is not 0 or 1, then | 
 | the caller guarantees that the size of the copy is a multiple of the alignment | 
 | and that both the source and destination pointers are aligned to that boundary. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.memmove</tt>' intrinsic copies a block of memory from the source | 
 | location to the destination location, which may overlap.  It | 
 | copies "len" bytes of memory over.  If the argument is known to be aligned to | 
 | some boundary, this can be specified as the fourth argument, otherwise it should | 
 | be set to 0 or 1. | 
 | </p> | 
 | </div> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="int_debugger">Debugger Intrinsics</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 | <p> | 
 | The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix), | 
 | are described in the <a | 
 | href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level | 
 | Debugging</a> document. | 
 | </p> | 
 | </div> | 
 |  | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <hr> | 
 | <div class="doc_footer"> | 
 | <address><a href="mailto:sabre@nondot.org">Chris Lattner</a></address> | 
 | <a href="http://llvm.cs.uiuc.edu">The LLVM Compiler Infrastructure</a> <br> | 
 | Last modified: $Date$ </div> | 
 | </body> | 
 | </html> |