| //===-- Writer.cpp - Library for converting LLVM code to C ----------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file was developed by the LLVM research group and is distributed under | 
 | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This library converts LLVM code to C code, compilable by GCC and other C | 
 | // compilers. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "CTargetMachine.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/Module.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/PassManager.h" | 
 | #include "llvm/SymbolTable.h" | 
 | #include "llvm/Intrinsics.h" | 
 | #include "llvm/Analysis/ConstantsScanner.h" | 
 | #include "llvm/Analysis/FindUsedTypes.h" | 
 | #include "llvm/Analysis/LoopInfo.h" | 
 | #include "llvm/CodeGen/IntrinsicLowering.h" | 
 | #include "llvm/Transforms/Scalar.h" | 
 | #include "llvm/Target/TargetMachineRegistry.h" | 
 | #include "llvm/Support/CallSite.h" | 
 | #include "llvm/Support/CFG.h" | 
 | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
 | #include "llvm/Support/InstVisitor.h" | 
 | #include "llvm/Support/Mangler.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Config/config.h" | 
 | #include <algorithm> | 
 | #include <iostream> | 
 | #include <sstream> | 
 | using namespace llvm; | 
 |  | 
 | namespace { | 
 |   // Register the target. | 
 |   RegisterTarget<CTargetMachine> X("c", "  C backend"); | 
 |  | 
 |   /// NameAllUsedStructs - This pass inserts names for any unnamed structure | 
 |   /// types that are used by the program. | 
 |   /// | 
 |   class CBackendNameAllUsedStructs : public ModulePass { | 
 |     void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.addRequired<FindUsedTypes>(); | 
 |     } | 
 |  | 
 |     virtual const char *getPassName() const { | 
 |       return "C backend type canonicalizer"; | 
 |     } | 
 |  | 
 |     virtual bool runOnModule(Module &M); | 
 |   }; | 
 |  | 
 |   /// CWriter - This class is the main chunk of code that converts an LLVM | 
 |   /// module to a C translation unit. | 
 |   class CWriter : public FunctionPass, public InstVisitor<CWriter> { | 
 |     std::ostream &Out; | 
 |     IntrinsicLowering &IL; | 
 |     Mangler *Mang; | 
 |     LoopInfo *LI; | 
 |     const Module *TheModule; | 
 |     std::map<const Type *, std::string> TypeNames; | 
 |  | 
 |     std::map<const ConstantFP *, unsigned> FPConstantMap; | 
 |   public: | 
 |     CWriter(std::ostream &o, IntrinsicLowering &il) : Out(o), IL(il) {} | 
 |  | 
 |     virtual const char *getPassName() const { return "C backend"; } | 
 |  | 
 |     void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.addRequired<LoopInfo>(); | 
 |       AU.setPreservesAll(); | 
 |     } | 
 |  | 
 |     virtual bool doInitialization(Module &M); | 
 |  | 
 |     bool runOnFunction(Function &F) { | 
 |       LI = &getAnalysis<LoopInfo>(); | 
 |  | 
 |       // Get rid of intrinsics we can't handle. | 
 |       lowerIntrinsics(F); | 
 |  | 
 |       // Output all floating point constants that cannot be printed accurately. | 
 |       printFloatingPointConstants(F); | 
 |  | 
 |       // Ensure that no local symbols conflict with global symbols. | 
 |       F.renameLocalSymbols(); | 
 |  | 
 |       printFunction(F); | 
 |       FPConstantMap.clear(); | 
 |       return false; | 
 |     } | 
 |  | 
 |     virtual bool doFinalization(Module &M) { | 
 |       // Free memory... | 
 |       delete Mang; | 
 |       TypeNames.clear(); | 
 |       return false; | 
 |     } | 
 |  | 
 |     std::ostream &printType(std::ostream &Out, const Type *Ty, | 
 |                             const std::string &VariableName = "", | 
 |                             bool IgnoreName = false); | 
 |  | 
 |     void writeOperand(Value *Operand); | 
 |     void writeOperandInternal(Value *Operand); | 
 |  | 
 |   private : | 
 |     void lowerIntrinsics(Function &F); | 
 |  | 
 |     bool nameAllUsedStructureTypes(Module &M); | 
 |     void printModule(Module *M); | 
 |     void printModuleTypes(const SymbolTable &ST); | 
 |     void printContainedStructs(const Type *Ty, std::set<const StructType *> &); | 
 |     void printFloatingPointConstants(Function &F); | 
 |     void printFunctionSignature(const Function *F, bool Prototype); | 
 |  | 
 |     void printFunction(Function &); | 
 |     void printBasicBlock(BasicBlock *BB); | 
 |     void printLoop(Loop *L); | 
 |  | 
 |     void printConstant(Constant *CPV); | 
 |     void printConstantArray(ConstantArray *CPA); | 
 |  | 
 |     // isInlinableInst - Attempt to inline instructions into their uses to build | 
 |     // trees as much as possible.  To do this, we have to consistently decide | 
 |     // what is acceptable to inline, so that variable declarations don't get | 
 |     // printed and an extra copy of the expr is not emitted. | 
 |     // | 
 |     static bool isInlinableInst(const Instruction &I) { | 
 |       // Always inline setcc instructions, even if they are shared by multiple | 
 |       // expressions.  GCC generates horrible code if we don't. | 
 |       if (isa<SetCondInst>(I)) return true; | 
 |  | 
 |       // Must be an expression, must be used exactly once.  If it is dead, we | 
 |       // emit it inline where it would go. | 
 |       if (I.getType() == Type::VoidTy || !I.hasOneUse() || | 
 |           isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) || | 
 |           isa<LoadInst>(I) || isa<VAArgInst>(I)) | 
 |         // Don't inline a load across a store or other bad things! | 
 |         return false; | 
 |  | 
 |       // Only inline instruction it it's use is in the same BB as the inst. | 
 |       return I.getParent() == cast<Instruction>(I.use_back())->getParent(); | 
 |     } | 
 |  | 
 |     // isDirectAlloca - Define fixed sized allocas in the entry block as direct | 
 |     // variables which are accessed with the & operator.  This causes GCC to | 
 |     // generate significantly better code than to emit alloca calls directly. | 
 |     // | 
 |     static const AllocaInst *isDirectAlloca(const Value *V) { | 
 |       const AllocaInst *AI = dyn_cast<AllocaInst>(V); | 
 |       if (!AI) return false; | 
 |       if (AI->isArrayAllocation()) | 
 |         return 0;   // FIXME: we can also inline fixed size array allocas! | 
 |       if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock()) | 
 |         return 0; | 
 |       return AI; | 
 |     } | 
 |  | 
 |     // Instruction visitation functions | 
 |     friend class InstVisitor<CWriter>; | 
 |  | 
 |     void visitReturnInst(ReturnInst &I); | 
 |     void visitBranchInst(BranchInst &I); | 
 |     void visitSwitchInst(SwitchInst &I); | 
 |     void visitInvokeInst(InvokeInst &I) { | 
 |       assert(0 && "Lowerinvoke pass didn't work!"); | 
 |     } | 
 |  | 
 |     void visitUnwindInst(UnwindInst &I) { | 
 |       assert(0 && "Lowerinvoke pass didn't work!"); | 
 |     } | 
 |     void visitUnreachableInst(UnreachableInst &I); | 
 |  | 
 |     void visitPHINode(PHINode &I); | 
 |     void visitBinaryOperator(Instruction &I); | 
 |  | 
 |     void visitCastInst (CastInst &I); | 
 |     void visitSelectInst(SelectInst &I); | 
 |     void visitCallInst (CallInst &I); | 
 |     void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } | 
 |  | 
 |     void visitMallocInst(MallocInst &I); | 
 |     void visitAllocaInst(AllocaInst &I); | 
 |     void visitFreeInst  (FreeInst   &I); | 
 |     void visitLoadInst  (LoadInst   &I); | 
 |     void visitStoreInst (StoreInst  &I); | 
 |     void visitGetElementPtrInst(GetElementPtrInst &I); | 
 |     void visitVAArgInst (VAArgInst &I); | 
 |  | 
 |     void visitInstruction(Instruction &I) { | 
 |       std::cerr << "C Writer does not know about " << I; | 
 |       abort(); | 
 |     } | 
 |  | 
 |     void outputLValue(Instruction *I) { | 
 |       Out << "  " << Mang->getValueName(I) << " = "; | 
 |     } | 
 |  | 
 |     bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To); | 
 |     void printPHICopiesForSuccessor(BasicBlock *CurBlock, | 
 |                                     BasicBlock *Successor, unsigned Indent); | 
 |     void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock, | 
 |                             unsigned Indent); | 
 |     void printIndexingExpression(Value *Ptr, gep_type_iterator I, | 
 |                                  gep_type_iterator E); | 
 |   }; | 
 | } | 
 |  | 
 | /// This method inserts names for any unnamed structure types that are used by | 
 | /// the program, and removes names from structure types that are not used by the | 
 | /// program. | 
 | /// | 
 | bool CBackendNameAllUsedStructs::runOnModule(Module &M) { | 
 |   // Get a set of types that are used by the program... | 
 |   std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes(); | 
 |  | 
 |   // Loop over the module symbol table, removing types from UT that are | 
 |   // already named, and removing names for types that are not used. | 
 |   // | 
 |   SymbolTable &MST = M.getSymbolTable(); | 
 |   for (SymbolTable::type_iterator TI = MST.type_begin(), TE = MST.type_end(); | 
 |        TI != TE; ) { | 
 |     SymbolTable::type_iterator I = TI++; | 
 |  | 
 |     // If this is not used, remove it from the symbol table. | 
 |     std::set<const Type *>::iterator UTI = UT.find(I->second); | 
 |     if (UTI == UT.end()) | 
 |       MST.remove(I); | 
 |     else | 
 |       UT.erase(UTI);    // Only keep one name for this type. | 
 |   } | 
 |  | 
 |   // UT now contains types that are not named.  Loop over it, naming | 
 |   // structure types. | 
 |   // | 
 |   bool Changed = false; | 
 |   unsigned RenameCounter = 0; | 
 |   for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end(); | 
 |        I != E; ++I) | 
 |     if (const StructType *ST = dyn_cast<StructType>(*I)) { | 
 |       while (M.addTypeName("unnamed"+utostr(RenameCounter), ST)) | 
 |         ++RenameCounter; | 
 |       Changed = true; | 
 |     } | 
 |   return Changed; | 
 | } | 
 |  | 
 |  | 
 | // Pass the Type* and the variable name and this prints out the variable | 
 | // declaration. | 
 | // | 
 | std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty, | 
 |                                  const std::string &NameSoFar, | 
 |                                  bool IgnoreName) { | 
 |   if (Ty->isPrimitiveType()) | 
 |     switch (Ty->getTypeID()) { | 
 |     case Type::VoidTyID:   return Out << "void "               << NameSoFar; | 
 |     case Type::BoolTyID:   return Out << "bool "               << NameSoFar; | 
 |     case Type::UByteTyID:  return Out << "unsigned char "      << NameSoFar; | 
 |     case Type::SByteTyID:  return Out << "signed char "        << NameSoFar; | 
 |     case Type::UShortTyID: return Out << "unsigned short "     << NameSoFar; | 
 |     case Type::ShortTyID:  return Out << "short "              << NameSoFar; | 
 |     case Type::UIntTyID:   return Out << "unsigned "           << NameSoFar; | 
 |     case Type::IntTyID:    return Out << "int "                << NameSoFar; | 
 |     case Type::ULongTyID:  return Out << "unsigned long long " << NameSoFar; | 
 |     case Type::LongTyID:   return Out << "signed long long "   << NameSoFar; | 
 |     case Type::FloatTyID:  return Out << "float "              << NameSoFar; | 
 |     case Type::DoubleTyID: return Out << "double "             << NameSoFar; | 
 |     default : | 
 |       std::cerr << "Unknown primitive type: " << *Ty << "\n"; | 
 |       abort(); | 
 |     } | 
 |  | 
 |   // Check to see if the type is named. | 
 |   if (!IgnoreName || isa<OpaqueType>(Ty)) { | 
 |     std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty); | 
 |     if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar; | 
 |   } | 
 |  | 
 |   switch (Ty->getTypeID()) { | 
 |   case Type::FunctionTyID: { | 
 |     const FunctionType *MTy = cast<FunctionType>(Ty); | 
 |     std::stringstream FunctionInnards; | 
 |     FunctionInnards << " (" << NameSoFar << ") ("; | 
 |     for (FunctionType::param_iterator I = MTy->param_begin(), | 
 |            E = MTy->param_end(); I != E; ++I) { | 
 |       if (I != MTy->param_begin()) | 
 |         FunctionInnards << ", "; | 
 |       printType(FunctionInnards, *I, ""); | 
 |     } | 
 |     if (MTy->isVarArg()) { | 
 |       if (MTy->getNumParams()) | 
 |         FunctionInnards << ", ..."; | 
 |     } else if (!MTy->getNumParams()) { | 
 |       FunctionInnards << "void"; | 
 |     } | 
 |     FunctionInnards << ')'; | 
 |     std::string tstr = FunctionInnards.str(); | 
 |     printType(Out, MTy->getReturnType(), tstr); | 
 |     return Out; | 
 |   } | 
 |   case Type::StructTyID: { | 
 |     const StructType *STy = cast<StructType>(Ty); | 
 |     Out << NameSoFar + " {\n"; | 
 |     unsigned Idx = 0; | 
 |     for (StructType::element_iterator I = STy->element_begin(), | 
 |            E = STy->element_end(); I != E; ++I) { | 
 |       Out << "  "; | 
 |       printType(Out, *I, "field" + utostr(Idx++)); | 
 |       Out << ";\n"; | 
 |     } | 
 |     return Out << '}'; | 
 |   } | 
 |  | 
 |   case Type::PointerTyID: { | 
 |     const PointerType *PTy = cast<PointerType>(Ty); | 
 |     std::string ptrName = "*" + NameSoFar; | 
 |  | 
 |     if (isa<ArrayType>(PTy->getElementType())) | 
 |       ptrName = "(" + ptrName + ")"; | 
 |  | 
 |     return printType(Out, PTy->getElementType(), ptrName); | 
 |   } | 
 |  | 
 |   case Type::ArrayTyID: { | 
 |     const ArrayType *ATy = cast<ArrayType>(Ty); | 
 |     unsigned NumElements = ATy->getNumElements(); | 
 |     if (NumElements == 0) NumElements = 1; | 
 |     return printType(Out, ATy->getElementType(), | 
 |                      NameSoFar + "[" + utostr(NumElements) + "]"); | 
 |   } | 
 |  | 
 |   case Type::OpaqueTyID: { | 
 |     static int Count = 0; | 
 |     std::string TyName = "struct opaque_" + itostr(Count++); | 
 |     assert(TypeNames.find(Ty) == TypeNames.end()); | 
 |     TypeNames[Ty] = TyName; | 
 |     return Out << TyName << ' ' << NameSoFar; | 
 |   } | 
 |   default: | 
 |     assert(0 && "Unhandled case in getTypeProps!"); | 
 |     abort(); | 
 |   } | 
 |  | 
 |   return Out; | 
 | } | 
 |  | 
 | void CWriter::printConstantArray(ConstantArray *CPA) { | 
 |  | 
 |   // As a special case, print the array as a string if it is an array of | 
 |   // ubytes or an array of sbytes with positive values. | 
 |   // | 
 |   const Type *ETy = CPA->getType()->getElementType(); | 
 |   bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy); | 
 |  | 
 |   // Make sure the last character is a null char, as automatically added by C | 
 |   if (isString && (CPA->getNumOperands() == 0 || | 
 |                    !cast<Constant>(*(CPA->op_end()-1))->isNullValue())) | 
 |     isString = false; | 
 |  | 
 |   if (isString) { | 
 |     Out << '\"'; | 
 |     // Keep track of whether the last number was a hexadecimal escape | 
 |     bool LastWasHex = false; | 
 |  | 
 |     // Do not include the last character, which we know is null | 
 |     for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) { | 
 |       unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getRawValue(); | 
 |  | 
 |       // Print it out literally if it is a printable character.  The only thing | 
 |       // to be careful about is when the last letter output was a hex escape | 
 |       // code, in which case we have to be careful not to print out hex digits | 
 |       // explicitly (the C compiler thinks it is a continuation of the previous | 
 |       // character, sheesh...) | 
 |       // | 
 |       if (isprint(C) && (!LastWasHex || !isxdigit(C))) { | 
 |         LastWasHex = false; | 
 |         if (C == '"' || C == '\\') | 
 |           Out << "\\" << C; | 
 |         else | 
 |           Out << C; | 
 |       } else { | 
 |         LastWasHex = false; | 
 |         switch (C) { | 
 |         case '\n': Out << "\\n"; break; | 
 |         case '\t': Out << "\\t"; break; | 
 |         case '\r': Out << "\\r"; break; | 
 |         case '\v': Out << "\\v"; break; | 
 |         case '\a': Out << "\\a"; break; | 
 |         case '\"': Out << "\\\""; break; | 
 |         case '\'': Out << "\\\'"; break; | 
 |         default: | 
 |           Out << "\\x"; | 
 |           Out << (char)(( C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A')); | 
 |           Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); | 
 |           LastWasHex = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |     Out << '\"'; | 
 |   } else { | 
 |     Out << '{'; | 
 |     if (CPA->getNumOperands()) { | 
 |       Out << ' '; | 
 |       printConstant(cast<Constant>(CPA->getOperand(0))); | 
 |       for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) { | 
 |         Out << ", "; | 
 |         printConstant(cast<Constant>(CPA->getOperand(i))); | 
 |       } | 
 |     } | 
 |     Out << " }"; | 
 |   } | 
 | } | 
 |  | 
 | // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out | 
 | // textually as a double (rather than as a reference to a stack-allocated | 
 | // variable). We decide this by converting CFP to a string and back into a | 
 | // double, and then checking whether the conversion results in a bit-equal | 
 | // double to the original value of CFP. This depends on us and the target C | 
 | // compiler agreeing on the conversion process (which is pretty likely since we | 
 | // only deal in IEEE FP). | 
 | // | 
 | static bool isFPCSafeToPrint(const ConstantFP *CFP) { | 
 | #if HAVE_PRINTF_A | 
 |   char Buffer[100]; | 
 |   sprintf(Buffer, "%a", CFP->getValue()); | 
 |  | 
 |   if (!strncmp(Buffer, "0x", 2) || | 
 |       !strncmp(Buffer, "-0x", 3) || | 
 |       !strncmp(Buffer, "+0x", 3)) | 
 |     return atof(Buffer) == CFP->getValue(); | 
 |   return false; | 
 | #else | 
 |   std::string StrVal = ftostr(CFP->getValue()); | 
 |  | 
 |   while (StrVal[0] == ' ') | 
 |     StrVal.erase(StrVal.begin()); | 
 |  | 
 |   // Check to make sure that the stringized number is not some string like "Inf" | 
 |   // or NaN.  Check that the string matches the "[-+]?[0-9]" regex. | 
 |   if ((StrVal[0] >= '0' && StrVal[0] <= '9') || | 
 |       ((StrVal[0] == '-' || StrVal[0] == '+') && | 
 |        (StrVal[1] >= '0' && StrVal[1] <= '9'))) | 
 |     // Reparse stringized version! | 
 |     return atof(StrVal.c_str()) == CFP->getValue(); | 
 |   return false; | 
 | #endif | 
 | } | 
 |  | 
 | // printConstant - The LLVM Constant to C Constant converter. | 
 | void CWriter::printConstant(Constant *CPV) { | 
 |   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { | 
 |     switch (CE->getOpcode()) { | 
 |     case Instruction::Cast: | 
 |       Out << "(("; | 
 |       printType(Out, CPV->getType()); | 
 |       Out << ')'; | 
 |       printConstant(CE->getOperand(0)); | 
 |       Out << ')'; | 
 |       return; | 
 |  | 
 |     case Instruction::GetElementPtr: | 
 |       Out << "(&("; | 
 |       printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV), | 
 |                               gep_type_end(CPV)); | 
 |       Out << "))"; | 
 |       return; | 
 |     case Instruction::Select: | 
 |       Out << '('; | 
 |       printConstant(CE->getOperand(0)); | 
 |       Out << '?'; | 
 |       printConstant(CE->getOperand(1)); | 
 |       Out << ':'; | 
 |       printConstant(CE->getOperand(2)); | 
 |       Out << ')'; | 
 |       return; | 
 |     case Instruction::Add: | 
 |     case Instruction::Sub: | 
 |     case Instruction::Mul: | 
 |     case Instruction::Div: | 
 |     case Instruction::Rem: | 
 |     case Instruction::And: | 
 |     case Instruction::Or: | 
 |     case Instruction::Xor: | 
 |     case Instruction::SetEQ: | 
 |     case Instruction::SetNE: | 
 |     case Instruction::SetLT: | 
 |     case Instruction::SetLE: | 
 |     case Instruction::SetGT: | 
 |     case Instruction::SetGE: | 
 |     case Instruction::Shl: | 
 |     case Instruction::Shr: | 
 |       Out << '('; | 
 |       printConstant(CE->getOperand(0)); | 
 |       switch (CE->getOpcode()) { | 
 |       case Instruction::Add: Out << " + "; break; | 
 |       case Instruction::Sub: Out << " - "; break; | 
 |       case Instruction::Mul: Out << " * "; break; | 
 |       case Instruction::Div: Out << " / "; break; | 
 |       case Instruction::Rem: Out << " % "; break; | 
 |       case Instruction::And: Out << " & "; break; | 
 |       case Instruction::Or:  Out << " | "; break; | 
 |       case Instruction::Xor: Out << " ^ "; break; | 
 |       case Instruction::SetEQ: Out << " == "; break; | 
 |       case Instruction::SetNE: Out << " != "; break; | 
 |       case Instruction::SetLT: Out << " < "; break; | 
 |       case Instruction::SetLE: Out << " <= "; break; | 
 |       case Instruction::SetGT: Out << " > "; break; | 
 |       case Instruction::SetGE: Out << " >= "; break; | 
 |       case Instruction::Shl: Out << " << "; break; | 
 |       case Instruction::Shr: Out << " >> "; break; | 
 |       default: assert(0 && "Illegal opcode here!"); | 
 |       } | 
 |       printConstant(CE->getOperand(1)); | 
 |       Out << ')'; | 
 |       return; | 
 |  | 
 |     default: | 
 |       std::cerr << "CWriter Error: Unhandled constant expression: " | 
 |                 << *CE << "\n"; | 
 |       abort(); | 
 |     } | 
 |   } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) { | 
 |     Out << "(("; | 
 |     printType(Out, CPV->getType()); | 
 |     Out << ")/*UNDEF*/0)"; | 
 |     return; | 
 |   } | 
 |  | 
 |   switch (CPV->getType()->getTypeID()) { | 
 |   case Type::BoolTyID: | 
 |     Out << (CPV == ConstantBool::False ? '0' : '1'); break; | 
 |   case Type::SByteTyID: | 
 |   case Type::ShortTyID: | 
 |     Out << cast<ConstantSInt>(CPV)->getValue(); break; | 
 |   case Type::IntTyID: | 
 |     if ((int)cast<ConstantSInt>(CPV)->getValue() == (int)0x80000000) | 
 |       Out << "((int)0x80000000U)";   // Handle MININT specially to avoid warning | 
 |     else | 
 |       Out << cast<ConstantSInt>(CPV)->getValue(); | 
 |     break; | 
 |  | 
 |   case Type::LongTyID: | 
 |     if (cast<ConstantSInt>(CPV)->isMinValue()) | 
 |       Out << "(/*INT64_MIN*/(-9223372036854775807LL)-1)"; | 
 |     else | 
 |       Out << cast<ConstantSInt>(CPV)->getValue() << "ll"; break; | 
 |  | 
 |   case Type::UByteTyID: | 
 |   case Type::UShortTyID: | 
 |     Out << cast<ConstantUInt>(CPV)->getValue(); break; | 
 |   case Type::UIntTyID: | 
 |     Out << cast<ConstantUInt>(CPV)->getValue() << 'u'; break; | 
 |   case Type::ULongTyID: | 
 |     Out << cast<ConstantUInt>(CPV)->getValue() << "ull"; break; | 
 |  | 
 |   case Type::FloatTyID: | 
 |   case Type::DoubleTyID: { | 
 |     ConstantFP *FPC = cast<ConstantFP>(CPV); | 
 |     std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC); | 
 |     if (I != FPConstantMap.end()) { | 
 |       // Because of FP precision problems we must load from a stack allocated | 
 |       // value that holds the value in hex. | 
 |       Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double") | 
 |           << "*)&FPConstant" << I->second << ')'; | 
 |     } else { | 
 |       if (IsNAN(FPC->getValue())) { | 
 |         // The value is NaN | 
 |  | 
 |         // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN, | 
 |         // it's 0x7ff4. | 
 |         const unsigned long QuietNaN = 0x7ff8UL; | 
 |         const unsigned long SignalNaN = 0x7ff4UL; | 
 |  | 
 |         // We need to grab the first part of the FP # | 
 |         char Buffer[100]; | 
 |  | 
 |         uint64_t ll = DoubleToBits(FPC->getValue()); | 
 |         sprintf(Buffer, "0x%llx", (unsigned long long)ll); | 
 |  | 
 |         std::string Num(&Buffer[0], &Buffer[6]); | 
 |         unsigned long Val = strtoul(Num.c_str(), 0, 16); | 
 |  | 
 |         if (FPC->getType() == Type::FloatTy) | 
 |           Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\"" | 
 |               << Buffer << "\") /*nan*/ "; | 
 |         else | 
 |           Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\"" | 
 |               << Buffer << "\") /*nan*/ "; | 
 |       } else if (IsInf(FPC->getValue())) { | 
 |         // The value is Inf | 
 |         if (FPC->getValue() < 0) Out << '-'; | 
 |         Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "") | 
 |             << " /*inf*/ "; | 
 |       } else { | 
 |         std::string Num; | 
 | #if HAVE_PRINTF_A | 
 |         // Print out the constant as a floating point number. | 
 |         char Buffer[100]; | 
 |         sprintf(Buffer, "%a", FPC->getValue()); | 
 |         Num = Buffer; | 
 | #else | 
 |         Num = ftostr(FPC->getValue()); | 
 | #endif | 
 |         Out << Num; | 
 |       } | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::ArrayTyID: | 
 |     if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) { | 
 |       const ArrayType *AT = cast<ArrayType>(CPV->getType()); | 
 |       Out << '{'; | 
 |       if (AT->getNumElements()) { | 
 |         Out << ' '; | 
 |         Constant *CZ = Constant::getNullValue(AT->getElementType()); | 
 |         printConstant(CZ); | 
 |         for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) { | 
 |           Out << ", "; | 
 |           printConstant(CZ); | 
 |         } | 
 |       } | 
 |       Out << " }"; | 
 |     } else { | 
 |       printConstantArray(cast<ConstantArray>(CPV)); | 
 |     } | 
 |     break; | 
 |  | 
 |   case Type::StructTyID: | 
 |     if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) { | 
 |       const StructType *ST = cast<StructType>(CPV->getType()); | 
 |       Out << '{'; | 
 |       if (ST->getNumElements()) { | 
 |         Out << ' '; | 
 |         printConstant(Constant::getNullValue(ST->getElementType(0))); | 
 |         for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) { | 
 |           Out << ", "; | 
 |           printConstant(Constant::getNullValue(ST->getElementType(i))); | 
 |         } | 
 |       } | 
 |       Out << " }"; | 
 |     } else { | 
 |       Out << '{'; | 
 |       if (CPV->getNumOperands()) { | 
 |         Out << ' '; | 
 |         printConstant(cast<Constant>(CPV->getOperand(0))); | 
 |         for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) { | 
 |           Out << ", "; | 
 |           printConstant(cast<Constant>(CPV->getOperand(i))); | 
 |         } | 
 |       } | 
 |       Out << " }"; | 
 |     } | 
 |     break; | 
 |  | 
 |   case Type::PointerTyID: | 
 |     if (isa<ConstantPointerNull>(CPV)) { | 
 |       Out << "(("; | 
 |       printType(Out, CPV->getType()); | 
 |       Out << ")/*NULL*/0)"; | 
 |       break; | 
 |     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) { | 
 |       writeOperand(GV); | 
 |       break; | 
 |     } | 
 |     // FALL THROUGH | 
 |   default: | 
 |     std::cerr << "Unknown constant type: " << *CPV << "\n"; | 
 |     abort(); | 
 |   } | 
 | } | 
 |  | 
 | void CWriter::writeOperandInternal(Value *Operand) { | 
 |   if (Instruction *I = dyn_cast<Instruction>(Operand)) | 
 |     if (isInlinableInst(*I) && !isDirectAlloca(I)) { | 
 |       // Should we inline this instruction to build a tree? | 
 |       Out << '('; | 
 |       visit(*I); | 
 |       Out << ')'; | 
 |       return; | 
 |     } | 
 |  | 
 |   Constant* CPV = dyn_cast<Constant>(Operand); | 
 |   if (CPV && !isa<GlobalValue>(CPV)) { | 
 |     printConstant(CPV); | 
 |   } else { | 
 |     Out << Mang->getValueName(Operand); | 
 |   } | 
 | } | 
 |  | 
 | void CWriter::writeOperand(Value *Operand) { | 
 |   if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand)) | 
 |     Out << "(&";  // Global variables are references as their addresses by llvm | 
 |  | 
 |   writeOperandInternal(Operand); | 
 |  | 
 |   if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand)) | 
 |     Out << ')'; | 
 | } | 
 |  | 
 | // generateCompilerSpecificCode - This is where we add conditional compilation | 
 | // directives to cater to specific compilers as need be. | 
 | // | 
 | static void generateCompilerSpecificCode(std::ostream& Out) { | 
 |   // Alloca is hard to get, and we don't want to include stdlib.h here... | 
 |   Out << "/* get a declaration for alloca */\n" | 
 |       << "#if defined(__CYGWIN__)\n" | 
 |       << "extern void *_alloca(unsigned long);\n" | 
 |       << "#define alloca(x) _alloca(x)\n" | 
 |       << "#elif defined(__APPLE__)\n" | 
 |       << "extern void *__builtin_alloca(unsigned long);\n" | 
 |       << "#define alloca(x) __builtin_alloca(x)\n" | 
 |       << "#elif defined(__sun__)\n" | 
 |       << "#if defined(__sparcv9)\n" | 
 |       << "extern void *__builtin_alloca(unsigned long);\n" | 
 |       << "#else\n" | 
 |       << "extern void *__builtin_alloca(unsigned int);\n" | 
 |       << "#endif\n" | 
 |       << "#define alloca(x) __builtin_alloca(x)\n" | 
 |       << "#elif defined(__FreeBSD__)\n" | 
 |       << "#define alloca(x) __builtin_alloca(x)\n" | 
 |       << "#elif !defined(_MSC_VER)\n" | 
 |       << "#include <alloca.h>\n" | 
 |       << "#endif\n\n"; | 
 |  | 
 |   // We output GCC specific attributes to preserve 'linkonce'ness on globals. | 
 |   // If we aren't being compiled with GCC, just drop these attributes. | 
 |   Out << "#ifndef __GNUC__  /* Can only support \"linkonce\" vars with GCC */\n" | 
 |       << "#define __attribute__(X)\n" | 
 |       << "#endif\n\n"; | 
 |  | 
 | #if 0 | 
 |   // At some point, we should support "external weak" vs. "weak" linkages. | 
 |   // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))". | 
 |   Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" | 
 |       << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n" | 
 |       << "#elif defined(__GNUC__)\n" | 
 |       << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n" | 
 |       << "#else\n" | 
 |       << "#define __EXTERNAL_WEAK__\n" | 
 |       << "#endif\n\n"; | 
 | #endif | 
 |  | 
 |   // For now, turn off the weak linkage attribute on Mac OS X. (See above.) | 
 |   Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" | 
 |       << "#define __ATTRIBUTE_WEAK__\n" | 
 |       << "#elif defined(__GNUC__)\n" | 
 |       << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n" | 
 |       << "#else\n" | 
 |       << "#define __ATTRIBUTE_WEAK__\n" | 
 |       << "#endif\n\n"; | 
 |  | 
 |   // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise | 
 |   // From the GCC documentation: | 
 |   // | 
 |   //   double __builtin_nan (const char *str) | 
 |   // | 
 |   // This is an implementation of the ISO C99 function nan. | 
 |   // | 
 |   // Since ISO C99 defines this function in terms of strtod, which we do | 
 |   // not implement, a description of the parsing is in order. The string is | 
 |   // parsed as by strtol; that is, the base is recognized by leading 0 or | 
 |   // 0x prefixes. The number parsed is placed in the significand such that | 
 |   // the least significant bit of the number is at the least significant | 
 |   // bit of the significand. The number is truncated to fit the significand | 
 |   // field provided. The significand is forced to be a quiet NaN. | 
 |   // | 
 |   // This function, if given a string literal, is evaluated early enough | 
 |   // that it is considered a compile-time constant. | 
 |   // | 
 |   //   float __builtin_nanf (const char *str) | 
 |   // | 
 |   // Similar to __builtin_nan, except the return type is float. | 
 |   // | 
 |   //   double __builtin_inf (void) | 
 |   // | 
 |   // Similar to __builtin_huge_val, except a warning is generated if the | 
 |   // target floating-point format does not support infinities. This | 
 |   // function is suitable for implementing the ISO C99 macro INFINITY. | 
 |   // | 
 |   //   float __builtin_inff (void) | 
 |   // | 
 |   // Similar to __builtin_inf, except the return type is float. | 
 |   Out << "#ifdef __GNUC__\n" | 
 |       << "#define LLVM_NAN(NanStr)   __builtin_nan(NanStr)   /* Double */\n" | 
 |       << "#define LLVM_NANF(NanStr)  __builtin_nanf(NanStr)  /* Float */\n" | 
 |       << "#define LLVM_NANS(NanStr)  __builtin_nans(NanStr)  /* Double */\n" | 
 |       << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n" | 
 |       << "#define LLVM_INF           __builtin_inf()         /* Double */\n" | 
 |       << "#define LLVM_INFF          __builtin_inff()        /* Float */\n" | 
 |       << "#define LLVM_PREFETCH(addr,rw,locality)          __builtin_prefetch(addr,rw,locality)\n" | 
 |       << "#else\n" | 
 |       << "#define LLVM_NAN(NanStr)   ((double)0.0)           /* Double */\n" | 
 |       << "#define LLVM_NANF(NanStr)  0.0F                    /* Float */\n" | 
 |       << "#define LLVM_NANS(NanStr)  ((double)0.0)           /* Double */\n" | 
 |       << "#define LLVM_NANSF(NanStr) 0.0F                    /* Float */\n" | 
 |       << "#define LLVM_INF           ((double)0.0)           /* Double */\n" | 
 |       << "#define LLVM_INFF          0.0F                    /* Float */\n" | 
 |       << "#define LLVM_PREFETCH(addr,rw,locality)            /* PREFETCH */\n" | 
 |       << "#endif\n\n"; | 
 |  | 
 |   // Output target-specific code that should be inserted into main. | 
 |   Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n"; | 
 |   // On X86, set the FP control word to 64-bits of precision instead of 80 bits. | 
 |   Out << "#if defined(__GNUC__) && !defined(__llvm__)\n" | 
 |       << "#if defined(i386) || defined(__i386__) || defined(__i386)\n" | 
 |       << "#undef CODE_FOR_MAIN\n" | 
 |       << "#define CODE_FOR_MAIN() \\\n" | 
 |       << "  {short F;__asm__ (\"fnstcw %0\" : \"=m\" (*&F)); \\\n" | 
 |       << "  F=(F&~0x300)|0x200;__asm__(\"fldcw %0\"::\"m\"(*&F));}\n" | 
 |       << "#endif\n#endif\n"; | 
 |  | 
 | } | 
 |  | 
 | bool CWriter::doInitialization(Module &M) { | 
 |   // Initialize | 
 |   TheModule = &M; | 
 |  | 
 |   IL.AddPrototypes(M); | 
 |  | 
 |   // Ensure that all structure types have names... | 
 |   Mang = new Mangler(M); | 
 |  | 
 |   // get declaration for alloca | 
 |   Out << "/* Provide Declarations */\n"; | 
 |   Out << "#include <stdarg.h>\n";      // Varargs support | 
 |   Out << "#include <setjmp.h>\n";      // Unwind support | 
 |   generateCompilerSpecificCode(Out); | 
 |  | 
 |   // Provide a definition for `bool' if not compiling with a C++ compiler. | 
 |   Out << "\n" | 
 |       << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n" | 
 |  | 
 |       << "\n\n/* Support for floating point constants */\n" | 
 |       << "typedef unsigned long long ConstantDoubleTy;\n" | 
 |       << "typedef unsigned int        ConstantFloatTy;\n" | 
 |  | 
 |       << "\n\n/* Global Declarations */\n"; | 
 |  | 
 |   // First output all the declarations for the program, because C requires | 
 |   // Functions & globals to be declared before they are used. | 
 |   // | 
 |  | 
 |   // Loop over the symbol table, emitting all named constants... | 
 |   printModuleTypes(M.getSymbolTable()); | 
 |  | 
 |   // Global variable declarations... | 
 |   if (!M.global_empty()) { | 
 |     Out << "\n/* External Global Variable Declarations */\n"; | 
 |     for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { | 
 |       if (I->hasExternalLinkage()) { | 
 |         Out << "extern "; | 
 |         printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); | 
 |         Out << ";\n"; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Function declarations | 
 |   Out << "double fmod(double, double);\n";   // Support for FP rem | 
 |   Out << "float fmodf(float, float);\n"; | 
 |    | 
 |   if (!M.empty()) { | 
 |     Out << "\n/* Function Declarations */\n"; | 
 |     for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { | 
 |       // Don't print declarations for intrinsic functions. | 
 |       if (!I->getIntrinsicID() && | 
 |           I->getName() != "setjmp" && I->getName() != "longjmp") { | 
 |         printFunctionSignature(I, true); | 
 |         if (I->hasWeakLinkage()) Out << " __ATTRIBUTE_WEAK__"; | 
 |         if (I->hasLinkOnceLinkage()) Out << " __ATTRIBUTE_WEAK__"; | 
 |         Out << ";\n"; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Output the global variable declarations | 
 |   if (!M.global_empty()) { | 
 |     Out << "\n\n/* Global Variable Declarations */\n"; | 
 |     for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) | 
 |       if (!I->isExternal()) { | 
 |         if (I->hasInternalLinkage()) | 
 |           Out << "static "; | 
 |         else | 
 |           Out << "extern "; | 
 |         printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); | 
 |  | 
 |         if (I->hasLinkOnceLinkage()) | 
 |           Out << " __attribute__((common))"; | 
 |         else if (I->hasWeakLinkage()) | 
 |           Out << " __ATTRIBUTE_WEAK__"; | 
 |         Out << ";\n"; | 
 |       } | 
 |   } | 
 |  | 
 |   // Output the global variable definitions and contents... | 
 |   if (!M.global_empty()) { | 
 |     Out << "\n\n/* Global Variable Definitions and Initialization */\n"; | 
 |     for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) | 
 |       if (!I->isExternal()) { | 
 |         if (I->hasInternalLinkage()) | 
 |           Out << "static "; | 
 |         printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); | 
 |         if (I->hasLinkOnceLinkage()) | 
 |           Out << " __attribute__((common))"; | 
 |         else if (I->hasWeakLinkage()) | 
 |           Out << " __ATTRIBUTE_WEAK__"; | 
 |  | 
 |         // If the initializer is not null, emit the initializer.  If it is null, | 
 |         // we try to avoid emitting large amounts of zeros.  The problem with | 
 |         // this, however, occurs when the variable has weak linkage.  In this | 
 |         // case, the assembler will complain about the variable being both weak | 
 |         // and common, so we disable this optimization. | 
 |         if (!I->getInitializer()->isNullValue()) { | 
 |           Out << " = " ; | 
 |           writeOperand(I->getInitializer()); | 
 |         } else if (I->hasWeakLinkage()) { | 
 |           // We have to specify an initializer, but it doesn't have to be | 
 |           // complete.  If the value is an aggregate, print out { 0 }, and let | 
 |           // the compiler figure out the rest of the zeros. | 
 |           Out << " = " ; | 
 |           if (isa<StructType>(I->getInitializer()->getType()) || | 
 |               isa<ArrayType>(I->getInitializer()->getType())) { | 
 |             Out << "{ 0 }"; | 
 |           } else { | 
 |             // Just print it out normally. | 
 |             writeOperand(I->getInitializer()); | 
 |           } | 
 |         } | 
 |         Out << ";\n"; | 
 |       } | 
 |   } | 
 |  | 
 |   if (!M.empty()) | 
 |     Out << "\n\n/* Function Bodies */\n"; | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | /// Output all floating point constants that cannot be printed accurately... | 
 | void CWriter::printFloatingPointConstants(Function &F) { | 
 |   // Scan the module for floating point constants.  If any FP constant is used | 
 |   // in the function, we want to redirect it here so that we do not depend on | 
 |   // the precision of the printed form, unless the printed form preserves | 
 |   // precision. | 
 |   // | 
 |   static unsigned FPCounter = 0; | 
 |   for (constant_iterator I = constant_begin(&F), E = constant_end(&F); | 
 |        I != E; ++I) | 
 |     if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I)) | 
 |       if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe. | 
 |           !FPConstantMap.count(FPC)) { | 
 |         double Val = FPC->getValue(); | 
 |  | 
 |         FPConstantMap[FPC] = FPCounter;  // Number the FP constants | 
 |  | 
 |         if (FPC->getType() == Type::DoubleTy) { | 
 |           Out << "static const ConstantDoubleTy FPConstant" << FPCounter++ | 
 |               << " = 0x" << std::hex << DoubleToBits(Val) << std::dec | 
 |               << "ULL;    /* " << Val << " */\n"; | 
 |         } else if (FPC->getType() == Type::FloatTy) { | 
 |           Out << "static const ConstantFloatTy FPConstant" << FPCounter++ | 
 |               << " = 0x" << std::hex << FloatToBits(Val) << std::dec | 
 |               << "U;    /* " << Val << " */\n"; | 
 |         } else | 
 |           assert(0 && "Unknown float type!"); | 
 |       } | 
 |  | 
 |   Out << '\n'; | 
 | } | 
 |  | 
 |  | 
 | /// printSymbolTable - Run through symbol table looking for type names.  If a | 
 | /// type name is found, emit it's declaration... | 
 | /// | 
 | void CWriter::printModuleTypes(const SymbolTable &ST) { | 
 |   // We are only interested in the type plane of the symbol table. | 
 |   SymbolTable::type_const_iterator I   = ST.type_begin(); | 
 |   SymbolTable::type_const_iterator End = ST.type_end(); | 
 |  | 
 |   // If there are no type names, exit early. | 
 |   if (I == End) return; | 
 |  | 
 |   // Print out forward declarations for structure types before anything else! | 
 |   Out << "/* Structure forward decls */\n"; | 
 |   for (; I != End; ++I) | 
 |     if (const Type *STy = dyn_cast<StructType>(I->second)) { | 
 |       std::string Name = "struct l_" + Mangler::makeNameProper(I->first); | 
 |       Out << Name << ";\n"; | 
 |       TypeNames.insert(std::make_pair(STy, Name)); | 
 |     } | 
 |  | 
 |   Out << '\n'; | 
 |  | 
 |   // Now we can print out typedefs... | 
 |   Out << "/* Typedefs */\n"; | 
 |   for (I = ST.type_begin(); I != End; ++I) { | 
 |     const Type *Ty = cast<Type>(I->second); | 
 |     std::string Name = "l_" + Mangler::makeNameProper(I->first); | 
 |     Out << "typedef "; | 
 |     printType(Out, Ty, Name); | 
 |     Out << ";\n"; | 
 |   } | 
 |  | 
 |   Out << '\n'; | 
 |  | 
 |   // Keep track of which structures have been printed so far... | 
 |   std::set<const StructType *> StructPrinted; | 
 |  | 
 |   // Loop over all structures then push them into the stack so they are | 
 |   // printed in the correct order. | 
 |   // | 
 |   Out << "/* Structure contents */\n"; | 
 |   for (I = ST.type_begin(); I != End; ++I) | 
 |     if (const StructType *STy = dyn_cast<StructType>(I->second)) | 
 |       // Only print out used types! | 
 |       printContainedStructs(STy, StructPrinted); | 
 | } | 
 |  | 
 | // Push the struct onto the stack and recursively push all structs | 
 | // this one depends on. | 
 | void CWriter::printContainedStructs(const Type *Ty, | 
 |                                     std::set<const StructType*> &StructPrinted){ | 
 |   if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
 |     //Check to see if we have already printed this struct | 
 |     if (StructPrinted.count(STy) == 0) { | 
 |       // Print all contained types first... | 
 |       for (StructType::element_iterator I = STy->element_begin(), | 
 |              E = STy->element_end(); I != E; ++I) { | 
 |         const Type *Ty1 = I->get(); | 
 |         if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1)) | 
 |           printContainedStructs(*I, StructPrinted); | 
 |       } | 
 |  | 
 |       //Print structure type out.. | 
 |       StructPrinted.insert(STy); | 
 |       std::string Name = TypeNames[STy]; | 
 |       printType(Out, STy, Name, true); | 
 |       Out << ";\n\n"; | 
 |     } | 
 |  | 
 |     // If it is an array, check contained types and continue | 
 |   } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)){ | 
 |     const Type *Ty1 = ATy->getElementType(); | 
 |     if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1)) | 
 |       printContainedStructs(Ty1, StructPrinted); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void CWriter::printFunctionSignature(const Function *F, bool Prototype) { | 
 |   if (F->hasInternalLinkage()) Out << "static "; | 
 |  | 
 |   // Loop over the arguments, printing them... | 
 |   const FunctionType *FT = cast<FunctionType>(F->getFunctionType()); | 
 |  | 
 |   std::stringstream FunctionInnards; | 
 |  | 
 |   // Print out the name... | 
 |   FunctionInnards << Mang->getValueName(F) << '('; | 
 |  | 
 |   if (!F->isExternal()) { | 
 |     if (!F->arg_empty()) { | 
 |       std::string ArgName; | 
 |       if (F->arg_begin()->hasName() || !Prototype) | 
 |         ArgName = Mang->getValueName(F->arg_begin()); | 
 |       printType(FunctionInnards, F->arg_begin()->getType(), ArgName); | 
 |       for (Function::const_arg_iterator I = ++F->arg_begin(), E = F->arg_end(); | 
 |            I != E; ++I) { | 
 |         FunctionInnards << ", "; | 
 |         if (I->hasName() || !Prototype) | 
 |           ArgName = Mang->getValueName(I); | 
 |         else | 
 |           ArgName = ""; | 
 |         printType(FunctionInnards, I->getType(), ArgName); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     // Loop over the arguments, printing them... | 
 |     for (FunctionType::param_iterator I = FT->param_begin(), | 
 |            E = FT->param_end(); I != E; ++I) { | 
 |       if (I != FT->param_begin()) FunctionInnards << ", "; | 
 |       printType(FunctionInnards, *I); | 
 |     } | 
 |   } | 
 |  | 
 |   // Finish printing arguments... if this is a vararg function, print the ..., | 
 |   // unless there are no known types, in which case, we just emit (). | 
 |   // | 
 |   if (FT->isVarArg() && FT->getNumParams()) { | 
 |     if (FT->getNumParams()) FunctionInnards << ", "; | 
 |     FunctionInnards << "...";  // Output varargs portion of signature! | 
 |   } else if (!FT->isVarArg() && FT->getNumParams() == 0) { | 
 |     FunctionInnards << "void"; // ret() -> ret(void) in C. | 
 |   } | 
 |   FunctionInnards << ')'; | 
 |   // Print out the return type and the entire signature for that matter | 
 |   printType(Out, F->getReturnType(), FunctionInnards.str()); | 
 | } | 
 |  | 
 | void CWriter::printFunction(Function &F) { | 
 |   printFunctionSignature(&F, false); | 
 |   Out << " {\n"; | 
 |  | 
 |   // print local variable information for the function | 
 |   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) | 
 |     if (const AllocaInst *AI = isDirectAlloca(&*I)) { | 
 |       Out << "  "; | 
 |       printType(Out, AI->getAllocatedType(), Mang->getValueName(AI)); | 
 |       Out << ";    /* Address-exposed local */\n"; | 
 |     } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) { | 
 |       Out << "  "; | 
 |       printType(Out, I->getType(), Mang->getValueName(&*I)); | 
 |       Out << ";\n"; | 
 |  | 
 |       if (isa<PHINode>(*I)) {  // Print out PHI node temporaries as well... | 
 |         Out << "  "; | 
 |         printType(Out, I->getType(), | 
 |                   Mang->getValueName(&*I)+"__PHI_TEMPORARY"); | 
 |         Out << ";\n"; | 
 |       } | 
 |     } | 
 |  | 
 |   Out << '\n'; | 
 |  | 
 |   if (F.hasExternalLinkage() && F.getName() == "main") | 
 |     Out << "  CODE_FOR_MAIN();\n"; | 
 |  | 
 |   // print the basic blocks | 
 |   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { | 
 |     if (Loop *L = LI->getLoopFor(BB)) { | 
 |       if (L->getHeader() == BB && L->getParentLoop() == 0) | 
 |         printLoop(L); | 
 |     } else { | 
 |       printBasicBlock(BB); | 
 |     } | 
 |   } | 
 |  | 
 |   Out << "}\n\n"; | 
 | } | 
 |  | 
 | void CWriter::printLoop(Loop *L) { | 
 |   Out << "  do {     /* Syntactic loop '" << L->getHeader()->getName() | 
 |       << "' to make GCC happy */\n"; | 
 |   for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) { | 
 |     BasicBlock *BB = L->getBlocks()[i]; | 
 |     Loop *BBLoop = LI->getLoopFor(BB); | 
 |     if (BBLoop == L) | 
 |       printBasicBlock(BB); | 
 |     else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L) | 
 |       printLoop(BBLoop); | 
 |   } | 
 |   Out << "  } while (1); /* end of syntactic loop '" | 
 |       << L->getHeader()->getName() << "' */\n"; | 
 | } | 
 |  | 
 | void CWriter::printBasicBlock(BasicBlock *BB) { | 
 |  | 
 |   // Don't print the label for the basic block if there are no uses, or if | 
 |   // the only terminator use is the predecessor basic block's terminator. | 
 |   // We have to scan the use list because PHI nodes use basic blocks too but | 
 |   // do not require a label to be generated. | 
 |   // | 
 |   bool NeedsLabel = false; | 
 |   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) | 
 |     if (isGotoCodeNecessary(*PI, BB)) { | 
 |       NeedsLabel = true; | 
 |       break; | 
 |     } | 
 |  | 
 |   if (NeedsLabel) Out << Mang->getValueName(BB) << ":\n"; | 
 |  | 
 |   // Output all of the instructions in the basic block... | 
 |   for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; | 
 |        ++II) { | 
 |     if (!isInlinableInst(*II) && !isDirectAlloca(II)) { | 
 |       if (II->getType() != Type::VoidTy) | 
 |         outputLValue(II); | 
 |       else | 
 |         Out << "  "; | 
 |       visit(*II); | 
 |       Out << ";\n"; | 
 |     } | 
 |   } | 
 |  | 
 |   // Don't emit prefix or suffix for the terminator... | 
 |   visit(*BB->getTerminator()); | 
 | } | 
 |  | 
 |  | 
 | // Specific Instruction type classes... note that all of the casts are | 
 | // necessary because we use the instruction classes as opaque types... | 
 | // | 
 | void CWriter::visitReturnInst(ReturnInst &I) { | 
 |   // Don't output a void return if this is the last basic block in the function | 
 |   if (I.getNumOperands() == 0 && | 
 |       &*--I.getParent()->getParent()->end() == I.getParent() && | 
 |       !I.getParent()->size() == 1) { | 
 |     return; | 
 |   } | 
 |  | 
 |   Out << "  return"; | 
 |   if (I.getNumOperands()) { | 
 |     Out << ' '; | 
 |     writeOperand(I.getOperand(0)); | 
 |   } | 
 |   Out << ";\n"; | 
 | } | 
 |  | 
 | void CWriter::visitSwitchInst(SwitchInst &SI) { | 
 |  | 
 |   Out << "  switch ("; | 
 |   writeOperand(SI.getOperand(0)); | 
 |   Out << ") {\n  default:\n"; | 
 |   printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2); | 
 |   printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2); | 
 |   Out << ";\n"; | 
 |   for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) { | 
 |     Out << "  case "; | 
 |     writeOperand(SI.getOperand(i)); | 
 |     Out << ":\n"; | 
 |     BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1)); | 
 |     printPHICopiesForSuccessor (SI.getParent(), Succ, 2); | 
 |     printBranchToBlock(SI.getParent(), Succ, 2); | 
 |     if (Function::iterator(Succ) == next(Function::iterator(SI.getParent()))) | 
 |       Out << "    break;\n"; | 
 |   } | 
 |   Out << "  }\n"; | 
 | } | 
 |  | 
 | void CWriter::visitUnreachableInst(UnreachableInst &I) { | 
 |   Out << "  /*UNREACHABLE*/;\n"; | 
 | } | 
 |  | 
 | bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) { | 
 |   /// FIXME: This should be reenabled, but loop reordering safe!! | 
 |   return true; | 
 |  | 
 |   if (next(Function::iterator(From)) != Function::iterator(To)) | 
 |     return true;  // Not the direct successor, we need a goto. | 
 |  | 
 |   //isa<SwitchInst>(From->getTerminator()) | 
 |  | 
 |   if (LI->getLoopFor(From) != LI->getLoopFor(To)) | 
 |     return true; | 
 |   return false; | 
 | } | 
 |  | 
 | void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock, | 
 |                                           BasicBlock *Successor, | 
 |                                           unsigned Indent) { | 
 |   for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) { | 
 |     PHINode *PN = cast<PHINode>(I); | 
 |     // Now we have to do the printing. | 
 |     Value *IV = PN->getIncomingValueForBlock(CurBlock); | 
 |     if (!isa<UndefValue>(IV)) { | 
 |       Out << std::string(Indent, ' '); | 
 |       Out << "  " << Mang->getValueName(I) << "__PHI_TEMPORARY = "; | 
 |       writeOperand(IV); | 
 |       Out << ";   /* for PHI node */\n"; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ, | 
 |                                  unsigned Indent) { | 
 |   if (isGotoCodeNecessary(CurBB, Succ)) { | 
 |     Out << std::string(Indent, ' ') << "  goto "; | 
 |     writeOperand(Succ); | 
 |     Out << ";\n"; | 
 |   } | 
 | } | 
 |  | 
 | // Branch instruction printing - Avoid printing out a branch to a basic block | 
 | // that immediately succeeds the current one. | 
 | // | 
 | void CWriter::visitBranchInst(BranchInst &I) { | 
 |  | 
 |   if (I.isConditional()) { | 
 |     if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) { | 
 |       Out << "  if ("; | 
 |       writeOperand(I.getCondition()); | 
 |       Out << ") {\n"; | 
 |  | 
 |       printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2); | 
 |       printBranchToBlock(I.getParent(), I.getSuccessor(0), 2); | 
 |  | 
 |       if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) { | 
 |         Out << "  } else {\n"; | 
 |         printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); | 
 |         printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); | 
 |       } | 
 |     } else { | 
 |       // First goto not necessary, assume second one is... | 
 |       Out << "  if (!"; | 
 |       writeOperand(I.getCondition()); | 
 |       Out << ") {\n"; | 
 |  | 
 |       printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); | 
 |       printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); | 
 |     } | 
 |  | 
 |     Out << "  }\n"; | 
 |   } else { | 
 |     printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0); | 
 |     printBranchToBlock(I.getParent(), I.getSuccessor(0), 0); | 
 |   } | 
 |   Out << "\n"; | 
 | } | 
 |  | 
 | // PHI nodes get copied into temporary values at the end of predecessor basic | 
 | // blocks.  We now need to copy these temporary values into the REAL value for | 
 | // the PHI. | 
 | void CWriter::visitPHINode(PHINode &I) { | 
 |   writeOperand(&I); | 
 |   Out << "__PHI_TEMPORARY"; | 
 | } | 
 |  | 
 |  | 
 | void CWriter::visitBinaryOperator(Instruction &I) { | 
 |   // binary instructions, shift instructions, setCond instructions. | 
 |   assert(!isa<PointerType>(I.getType())); | 
 |  | 
 |   // We must cast the results of binary operations which might be promoted. | 
 |   bool needsCast = false; | 
 |   if ((I.getType() == Type::UByteTy) || (I.getType() == Type::SByteTy) | 
 |       || (I.getType() == Type::UShortTy) || (I.getType() == Type::ShortTy) | 
 |       || (I.getType() == Type::FloatTy)) { | 
 |     needsCast = true; | 
 |     Out << "(("; | 
 |     printType(Out, I.getType()); | 
 |     Out << ")("; | 
 |   } | 
 |  | 
 |   // If this is a negation operation, print it out as such.  For FP, we don't | 
 |   // want to print "-0.0 - X". | 
 |   if (BinaryOperator::isNeg(&I)) { | 
 |     Out << "-("; | 
 |     writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I))); | 
 |     Out << ")"; | 
 |   } else if (I.getOpcode() == Instruction::Rem &&  | 
 |              I.getType()->isFloatingPoint()) { | 
 |     // Output a call to fmod/fmodf instead of emitting a%b | 
 |     if (I.getType() == Type::FloatTy) | 
 |       Out << "fmodf("; | 
 |     else | 
 |       Out << "fmod("; | 
 |     writeOperand(I.getOperand(0)); | 
 |     Out << ", "; | 
 |     writeOperand(I.getOperand(1)); | 
 |     Out << ")"; | 
 |   } else { | 
 |     writeOperand(I.getOperand(0)); | 
 |  | 
 |     switch (I.getOpcode()) { | 
 |     case Instruction::Add: Out << " + "; break; | 
 |     case Instruction::Sub: Out << " - "; break; | 
 |     case Instruction::Mul: Out << '*'; break; | 
 |     case Instruction::Div: Out << '/'; break; | 
 |     case Instruction::Rem: Out << '%'; break; | 
 |     case Instruction::And: Out << " & "; break; | 
 |     case Instruction::Or: Out << " | "; break; | 
 |     case Instruction::Xor: Out << " ^ "; break; | 
 |     case Instruction::SetEQ: Out << " == "; break; | 
 |     case Instruction::SetNE: Out << " != "; break; | 
 |     case Instruction::SetLE: Out << " <= "; break; | 
 |     case Instruction::SetGE: Out << " >= "; break; | 
 |     case Instruction::SetLT: Out << " < "; break; | 
 |     case Instruction::SetGT: Out << " > "; break; | 
 |     case Instruction::Shl : Out << " << "; break; | 
 |     case Instruction::Shr : Out << " >> "; break; | 
 |     default: std::cerr << "Invalid operator type!" << I; abort(); | 
 |     } | 
 |  | 
 |     writeOperand(I.getOperand(1)); | 
 |   } | 
 |  | 
 |   if (needsCast) { | 
 |     Out << "))"; | 
 |   } | 
 | } | 
 |  | 
 | void CWriter::visitCastInst(CastInst &I) { | 
 |   if (I.getType() == Type::BoolTy) { | 
 |     Out << '('; | 
 |     writeOperand(I.getOperand(0)); | 
 |     Out << " != 0)"; | 
 |     return; | 
 |   } | 
 |   Out << '('; | 
 |   printType(Out, I.getType()); | 
 |   Out << ')'; | 
 |   if (isa<PointerType>(I.getType())&&I.getOperand(0)->getType()->isIntegral() || | 
 |       isa<PointerType>(I.getOperand(0)->getType())&&I.getType()->isIntegral()) { | 
 |     // Avoid "cast to pointer from integer of different size" warnings | 
 |     Out << "(long)"; | 
 |   } | 
 |  | 
 |   writeOperand(I.getOperand(0)); | 
 | } | 
 |  | 
 | void CWriter::visitSelectInst(SelectInst &I) { | 
 |   Out << "(("; | 
 |   writeOperand(I.getCondition()); | 
 |   Out << ") ? ("; | 
 |   writeOperand(I.getTrueValue()); | 
 |   Out << ") : ("; | 
 |   writeOperand(I.getFalseValue()); | 
 |   Out << "))"; | 
 | } | 
 |  | 
 |  | 
 | void CWriter::lowerIntrinsics(Function &F) { | 
 |   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) | 
 |     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) | 
 |       if (CallInst *CI = dyn_cast<CallInst>(I++)) | 
 |         if (Function *F = CI->getCalledFunction()) | 
 |           switch (F->getIntrinsicID()) { | 
 |           case Intrinsic::not_intrinsic: | 
 |           case Intrinsic::vastart: | 
 |           case Intrinsic::vacopy: | 
 |           case Intrinsic::vaend: | 
 |           case Intrinsic::returnaddress: | 
 |           case Intrinsic::frameaddress: | 
 |           case Intrinsic::setjmp: | 
 |           case Intrinsic::longjmp: | 
 |           case Intrinsic::prefetch: | 
 |             // We directly implement these intrinsics | 
 |             break; | 
 |           default: | 
 |             // All other intrinsic calls we must lower. | 
 |             Instruction *Before = 0; | 
 |             if (CI != &BB->front()) | 
 |               Before = prior(BasicBlock::iterator(CI)); | 
 |  | 
 |             IL.LowerIntrinsicCall(CI); | 
 |             if (Before) {        // Move iterator to instruction after call | 
 |               I = Before; ++I; | 
 |             } else { | 
 |               I = BB->begin(); | 
 |             } | 
 |           } | 
 | } | 
 |  | 
 |  | 
 |  | 
 | void CWriter::visitCallInst(CallInst &I) { | 
 |   // Handle intrinsic function calls first... | 
 |   if (Function *F = I.getCalledFunction()) | 
 |     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { | 
 |       switch (ID) { | 
 |       default: assert(0 && "Unknown LLVM intrinsic!"); | 
 |       case Intrinsic::vastart: | 
 |         Out << "0; "; | 
 |  | 
 |         //        Out << "va_start(*(va_list*)&" << Mang->getValueName(&I) << ", "; | 
 |         Out << "va_start(*(va_list*)"; | 
 |         writeOperand(I.getOperand(1)); | 
 |         Out << ", "; | 
 |         // Output the last argument to the enclosing function... | 
 |         if (I.getParent()->getParent()->arg_empty()) { | 
 |           std::cerr << "The C backend does not currently support zero " | 
 |                     << "argument varargs functions, such as '" | 
 |                     << I.getParent()->getParent()->getName() << "'!\n"; | 
 |           abort(); | 
 |         } | 
 |         writeOperand(--I.getParent()->getParent()->arg_end()); | 
 |         Out << ')'; | 
 |         return; | 
 |       case Intrinsic::vaend: | 
 |         if (!isa<ConstantPointerNull>(I.getOperand(1))) { | 
 |           Out << "0; va_end(*(va_list*)"; | 
 |           writeOperand(I.getOperand(1)); | 
 |           Out << ')'; | 
 |         } else { | 
 |           Out << "va_end(*(va_list*)0)"; | 
 |         } | 
 |         return; | 
 |       case Intrinsic::vacopy: | 
 |         Out << "0; "; | 
 |         Out << "va_copy(*(va_list*)"; | 
 |         writeOperand(I.getOperand(1)); | 
 |         Out << ", *(va_list*)"; | 
 |         writeOperand(I.getOperand(2)); | 
 |         Out << ')'; | 
 |         return; | 
 |       case Intrinsic::returnaddress: | 
 |         Out << "__builtin_return_address("; | 
 |         writeOperand(I.getOperand(1)); | 
 |         Out << ')'; | 
 |         return; | 
 |       case Intrinsic::frameaddress: | 
 |         Out << "__builtin_frame_address("; | 
 |         writeOperand(I.getOperand(1)); | 
 |         Out << ')'; | 
 |         return; | 
 |       case Intrinsic::setjmp: | 
 |         Out << "setjmp(*(jmp_buf*)"; | 
 |         writeOperand(I.getOperand(1)); | 
 |         Out << ')'; | 
 |         return; | 
 |       case Intrinsic::longjmp: | 
 |         Out << "longjmp(*(jmp_buf*)"; | 
 |         writeOperand(I.getOperand(1)); | 
 |         Out << ", "; | 
 |         writeOperand(I.getOperand(2)); | 
 |         Out << ')'; | 
 |         return; | 
 |       case Intrinsic::prefetch: | 
 |         Out << "LLVM_PREFETCH((const void *)"; | 
 |         writeOperand(I.getOperand(1)); | 
 |         Out << ", "; | 
 |         writeOperand(I.getOperand(2)); | 
 |         Out << ", "; | 
 |         writeOperand(I.getOperand(3)); | 
 |         Out << ")"; | 
 |         return; | 
 |       } | 
 |     } | 
 |  | 
 |   Value *Callee = I.getCalledValue(); | 
 |  | 
 |   // GCC is really a PITA.  It does not permit codegening casts of functions to | 
 |   // function pointers if they are in a call (it generates a trap instruction | 
 |   // instead!).  We work around this by inserting a cast to void* in between the | 
 |   // function and the function pointer cast.  Unfortunately, we can't just form | 
 |   // the constant expression here, because the folder will immediately nuke it. | 
 |   // | 
 |   // Note finally, that this is completely unsafe.  ANSI C does not guarantee | 
 |   // that void* and function pointers have the same size. :( To deal with this | 
 |   // in the common case, we handle casts where the number of arguments passed | 
 |   // match exactly. | 
 |   // | 
 |   bool WroteCallee = false; | 
 |   if (I.isTailCall()) Out << " /*tail*/ "; | 
 |   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee)) | 
 |     if (CE->getOpcode() == Instruction::Cast) | 
 |       if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) { | 
 |         const FunctionType *RFTy = RF->getFunctionType(); | 
 |         if (RFTy->getNumParams() == I.getNumOperands()-1) { | 
 |           // If the call site expects a value, and the actual callee doesn't | 
 |           // provide one, return 0. | 
 |           if (I.getType() != Type::VoidTy && | 
 |               RFTy->getReturnType() == Type::VoidTy) | 
 |             Out << "0 /*actual callee doesn't return value*/; "; | 
 |           Callee = RF; | 
 |         } else { | 
 |           // Ok, just cast the pointer type. | 
 |           Out << "(("; | 
 |           printType(Out, CE->getType()); | 
 |           Out << ")(void*)"; | 
 |           printConstant(RF); | 
 |           Out << ')'; | 
 |           WroteCallee = true; | 
 |         } | 
 |       } | 
 |  | 
 |   const PointerType  *PTy   = cast<PointerType>(Callee->getType()); | 
 |   const FunctionType *FTy   = cast<FunctionType>(PTy->getElementType()); | 
 |   const Type         *RetTy = FTy->getReturnType(); | 
 |  | 
 |   if (!WroteCallee) writeOperand(Callee); | 
 |   Out << '('; | 
 |  | 
 |   unsigned NumDeclaredParams = FTy->getNumParams(); | 
 |  | 
 |   if (I.getNumOperands() != 1) { | 
 |     CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end(); | 
 |     if (NumDeclaredParams && (*AI)->getType() != FTy->getParamType(0)) { | 
 |       Out << '('; | 
 |       printType(Out, FTy->getParamType(0)); | 
 |       Out << ')'; | 
 |     } | 
 |  | 
 |     writeOperand(*AI); | 
 |  | 
 |     unsigned ArgNo; | 
 |     for (ArgNo = 1, ++AI; AI != AE; ++AI, ++ArgNo) { | 
 |       Out << ", "; | 
 |       if (ArgNo < NumDeclaredParams && | 
 |           (*AI)->getType() != FTy->getParamType(ArgNo)) { | 
 |         Out << '('; | 
 |         printType(Out, FTy->getParamType(ArgNo)); | 
 |         Out << ')'; | 
 |       } | 
 |       writeOperand(*AI); | 
 |     } | 
 |   } | 
 |   Out << ')'; | 
 | } | 
 |  | 
 | void CWriter::visitMallocInst(MallocInst &I) { | 
 |   assert(0 && "lowerallocations pass didn't work!"); | 
 | } | 
 |  | 
 | void CWriter::visitAllocaInst(AllocaInst &I) { | 
 |   Out << '('; | 
 |   printType(Out, I.getType()); | 
 |   Out << ") alloca(sizeof("; | 
 |   printType(Out, I.getType()->getElementType()); | 
 |   Out << ')'; | 
 |   if (I.isArrayAllocation()) { | 
 |     Out << " * " ; | 
 |     writeOperand(I.getOperand(0)); | 
 |   } | 
 |   Out << ')'; | 
 | } | 
 |  | 
 | void CWriter::visitFreeInst(FreeInst &I) { | 
 |   assert(0 && "lowerallocations pass didn't work!"); | 
 | } | 
 |  | 
 | void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I, | 
 |                                       gep_type_iterator E) { | 
 |   bool HasImplicitAddress = false; | 
 |   // If accessing a global value with no indexing, avoid *(&GV) syndrome | 
 |   if (GlobalValue *V = dyn_cast<GlobalValue>(Ptr)) { | 
 |     HasImplicitAddress = true; | 
 |   } else if (isDirectAlloca(Ptr)) { | 
 |     HasImplicitAddress = true; | 
 |   } | 
 |  | 
 |   if (I == E) { | 
 |     if (!HasImplicitAddress) | 
 |       Out << '*';  // Implicit zero first argument: '*x' is equivalent to 'x[0]' | 
 |  | 
 |     writeOperandInternal(Ptr); | 
 |     return; | 
 |   } | 
 |  | 
 |   const Constant *CI = dyn_cast<Constant>(I.getOperand()); | 
 |   if (HasImplicitAddress && (!CI || !CI->isNullValue())) | 
 |     Out << "(&"; | 
 |  | 
 |   writeOperandInternal(Ptr); | 
 |  | 
 |   if (HasImplicitAddress && (!CI || !CI->isNullValue())) { | 
 |     Out << ')'; | 
 |     HasImplicitAddress = false;  // HIA is only true if we haven't addressed yet | 
 |   } | 
 |  | 
 |   assert(!HasImplicitAddress || (CI && CI->isNullValue()) && | 
 |          "Can only have implicit address with direct accessing"); | 
 |  | 
 |   if (HasImplicitAddress) { | 
 |     ++I; | 
 |   } else if (CI && CI->isNullValue()) { | 
 |     gep_type_iterator TmpI = I; ++TmpI; | 
 |  | 
 |     // Print out the -> operator if possible... | 
 |     if (TmpI != E && isa<StructType>(*TmpI)) { | 
 |       Out << (HasImplicitAddress ? "." : "->"); | 
 |       Out << "field" << cast<ConstantUInt>(TmpI.getOperand())->getValue(); | 
 |       I = ++TmpI; | 
 |     } | 
 |   } | 
 |  | 
 |   for (; I != E; ++I) | 
 |     if (isa<StructType>(*I)) { | 
 |       Out << ".field" << cast<ConstantUInt>(I.getOperand())->getValue(); | 
 |     } else { | 
 |       Out << '['; | 
 |       writeOperand(I.getOperand()); | 
 |       Out << ']'; | 
 |     } | 
 | } | 
 |  | 
 | void CWriter::visitLoadInst(LoadInst &I) { | 
 |   Out << '*'; | 
 |   if (I.isVolatile()) { | 
 |     Out << "(("; | 
 |     printType(Out, I.getType(), "volatile*"); | 
 |     Out << ")"; | 
 |   } | 
 |  | 
 |   writeOperand(I.getOperand(0)); | 
 |  | 
 |   if (I.isVolatile()) | 
 |     Out << ')'; | 
 | } | 
 |  | 
 | void CWriter::visitStoreInst(StoreInst &I) { | 
 |   Out << '*'; | 
 |   if (I.isVolatile()) { | 
 |     Out << "(("; | 
 |     printType(Out, I.getOperand(0)->getType(), " volatile*"); | 
 |     Out << ")"; | 
 |   } | 
 |   writeOperand(I.getPointerOperand()); | 
 |   if (I.isVolatile()) Out << ')'; | 
 |   Out << " = "; | 
 |   writeOperand(I.getOperand(0)); | 
 | } | 
 |  | 
 | void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) { | 
 |   Out << '&'; | 
 |   printIndexingExpression(I.getPointerOperand(), gep_type_begin(I), | 
 |                           gep_type_end(I)); | 
 | } | 
 |  | 
 | void CWriter::visitVAArgInst(VAArgInst &I) { | 
 |   Out << "va_arg(*(va_list*)"; | 
 |   writeOperand(I.getOperand(0)); | 
 |   Out << ", "; | 
 |   printType(Out, I.getType()); | 
 |   Out << ");\n "; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                       External Interface declaration | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | bool CTargetMachine::addPassesToEmitFile(PassManager &PM, std::ostream &o, | 
 |                                          CodeGenFileType FileType) { | 
 |   if (FileType != TargetMachine::AssemblyFile) return true; | 
 |  | 
 |   PM.add(createLowerGCPass()); | 
 |   PM.add(createLowerAllocationsPass(true)); | 
 |   PM.add(createLowerInvokePass()); | 
 |   PM.add(new CBackendNameAllUsedStructs()); | 
 |   PM.add(new CWriter(o, getIntrinsicLowering())); | 
 |   return false; | 
 | } |