| //===-- JITEmitter.cpp - Write machine code to executable memory ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a MachineCodeEmitter object that is used by the JIT to |
| // write machine code to memory and remember where relocatable values are. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "jit" |
| #include "JIT.h" |
| #include "llvm/Constant.h" |
| #include "llvm/Module.h" |
| #include "llvm/CodeGen/MachineCodeEmitter.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineRelocation.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetJITInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/System/Memory.h" |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> NumBytes("jit", "Number of bytes of machine code compiled"); |
| JIT *TheJIT = 0; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // JITMemoryManager code. |
| // |
| namespace { |
| /// JITMemoryManager - Manage memory for the JIT code generation in a logical, |
| /// sane way. This splits a large block of MAP_NORESERVE'd memory into two |
| /// sections, one for function stubs, one for the functions themselves. We |
| /// have to do this because we may need to emit a function stub while in the |
| /// middle of emitting a function, and we don't know how large the function we |
| /// are emitting is. This never bothers to release the memory, because when |
| /// we are ready to destroy the JIT, the program exits. |
| class JITMemoryManager { |
| sys::MemoryBlock MemBlock; // Virtual memory block allocated RWX |
| unsigned char *MemBase; // Base of block of memory, start of stub mem |
| unsigned char *FunctionBase; // Start of the function body area |
| unsigned char *ConstantPool; // Memory allocated for constant pools |
| unsigned char *CurStubPtr, *CurFunctionPtr, *CurConstantPtr; |
| public: |
| JITMemoryManager(); |
| ~JITMemoryManager(); |
| |
| inline unsigned char *allocateStub(unsigned StubSize); |
| inline unsigned char *allocateConstant(unsigned ConstantSize, |
| unsigned Alignment); |
| inline unsigned char *startFunctionBody(); |
| inline void endFunctionBody(unsigned char *FunctionEnd); |
| }; |
| } |
| |
| JITMemoryManager::JITMemoryManager() { |
| // Allocate a 16M block of memory... |
| MemBlock = sys::Memory::AllocateRWX((16 << 20)); |
| MemBase = reinterpret_cast<unsigned char*>(MemBlock.base()); |
| FunctionBase = MemBase + 512*1024; // Use 512k for stubs |
| |
| // Allocate stubs backwards from the function base, allocate functions forward |
| // from the function base. |
| CurStubPtr = CurFunctionPtr = FunctionBase; |
| |
| ConstantPool = new unsigned char [512*1024]; // Use 512k for constant pools |
| CurConstantPtr = ConstantPool + 512*1024; |
| } |
| |
| JITMemoryManager::~JITMemoryManager() { |
| sys::Memory::ReleaseRWX(MemBlock); |
| delete[] ConstantPool; |
| } |
| |
| unsigned char *JITMemoryManager::allocateStub(unsigned StubSize) { |
| CurStubPtr -= StubSize; |
| if (CurStubPtr < MemBase) { |
| std::cerr << "JIT ran out of memory for function stubs!\n"; |
| abort(); |
| } |
| return CurStubPtr; |
| } |
| |
| unsigned char *JITMemoryManager::allocateConstant(unsigned ConstantSize, |
| unsigned Alignment) { |
| // Reserve space and align pointer. |
| CurConstantPtr -= ConstantSize; |
| CurConstantPtr = |
| (unsigned char *)((intptr_t)CurConstantPtr & ~((intptr_t)Alignment - 1)); |
| |
| if (CurConstantPtr < ConstantPool) { |
| std::cerr << "JIT ran out of memory for constant pools!\n"; |
| abort(); |
| } |
| return CurConstantPtr; |
| } |
| |
| unsigned char *JITMemoryManager::startFunctionBody() { |
| // Round up to an even multiple of 8 bytes, this should eventually be target |
| // specific. |
| return (unsigned char*)(((intptr_t)CurFunctionPtr + 7) & ~7); |
| } |
| |
| void JITMemoryManager::endFunctionBody(unsigned char *FunctionEnd) { |
| assert(FunctionEnd > CurFunctionPtr); |
| CurFunctionPtr = FunctionEnd; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // JIT lazy compilation code. |
| // |
| namespace { |
| /// JITResolver - Keep track of, and resolve, call sites for functions that |
| /// have not yet been compiled. |
| class JITResolver { |
| /// MCE - The MachineCodeEmitter to use to emit stubs with. |
| MachineCodeEmitter &MCE; |
| |
| /// LazyResolverFn - The target lazy resolver function that we actually |
| /// rewrite instructions to use. |
| TargetJITInfo::LazyResolverFn LazyResolverFn; |
| |
| // FunctionToStubMap - Keep track of the stub created for a particular |
| // function so that we can reuse them if necessary. |
| std::map<Function*, void*> FunctionToStubMap; |
| |
| // StubToFunctionMap - Keep track of the function that each stub corresponds |
| // to. |
| std::map<void*, Function*> StubToFunctionMap; |
| |
| public: |
| JITResolver(MachineCodeEmitter &mce) : MCE(mce) { |
| LazyResolverFn = |
| TheJIT->getJITInfo().getLazyResolverFunction(JITCompilerFn); |
| } |
| |
| /// getFunctionStub - This returns a pointer to a function stub, creating |
| /// one on demand as needed. |
| void *getFunctionStub(Function *F); |
| |
| /// AddCallbackAtLocation - If the target is capable of rewriting an |
| /// instruction without the use of a stub, record the location of the use so |
| /// we know which function is being used at the location. |
| void *AddCallbackAtLocation(Function *F, void *Location) { |
| /// Get the target-specific JIT resolver function. |
| StubToFunctionMap[Location] = F; |
| return (void*)LazyResolverFn; |
| } |
| |
| /// JITCompilerFn - This function is called to resolve a stub to a compiled |
| /// address. If the LLVM Function corresponding to the stub has not yet |
| /// been compiled, this function compiles it first. |
| static void *JITCompilerFn(void *Stub); |
| }; |
| } |
| |
| /// getJITResolver - This function returns the one instance of the JIT resolver. |
| /// |
| static JITResolver &getJITResolver(MachineCodeEmitter *MCE = 0) { |
| static JITResolver TheJITResolver(*MCE); |
| return TheJITResolver; |
| } |
| |
| /// getFunctionStub - This returns a pointer to a function stub, creating |
| /// one on demand as needed. |
| void *JITResolver::getFunctionStub(Function *F) { |
| // If we already have a stub for this function, recycle it. |
| void *&Stub = FunctionToStubMap[F]; |
| if (Stub) return Stub; |
| |
| // Call the lazy resolver function unless we already KNOW it is an external |
| // function, in which case we just skip the lazy resolution step. |
| void *Actual = (void*)LazyResolverFn; |
| if (F->hasExternalLinkage()) |
| Actual = TheJIT->getPointerToFunction(F); |
| |
| // Otherwise, codegen a new stub. For now, the stub will call the lazy |
| // resolver function. |
| Stub = TheJIT->getJITInfo().emitFunctionStub(Actual, MCE); |
| |
| if (F->hasExternalLinkage()) { |
| // If we are getting the stub for an external function, we really want the |
| // address of the stub in the GlobalAddressMap for the JIT, not the address |
| // of the external function. |
| TheJIT->updateGlobalMapping(F, Stub); |
| } |
| |
| DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub << "] for function '" |
| << F->getName() << "'\n"); |
| |
| // Finally, keep track of the stub-to-Function mapping so that the |
| // JITCompilerFn knows which function to compile! |
| StubToFunctionMap[Stub] = F; |
| return Stub; |
| } |
| |
| /// JITCompilerFn - This function is called when a lazy compilation stub has |
| /// been entered. It looks up which function this stub corresponds to, compiles |
| /// it if necessary, then returns the resultant function pointer. |
| void *JITResolver::JITCompilerFn(void *Stub) { |
| JITResolver &JR = getJITResolver(); |
| |
| // The address given to us for the stub may not be exactly right, it might be |
| // a little bit after the stub. As such, use upper_bound to find it. |
| std::map<void*, Function*>::iterator I = |
| JR.StubToFunctionMap.upper_bound(Stub); |
| assert(I != JR.StubToFunctionMap.begin() && "This is not a known stub!"); |
| Function *F = (--I)->second; |
| |
| // The target function will rewrite the stub so that the compilation callback |
| // function is no longer called from this stub. |
| JR.StubToFunctionMap.erase(I); |
| |
| DEBUG(std::cerr << "JIT: Lazily resolving function '" << F->getName() |
| << "' In stub ptr = " << Stub << " actual ptr = " |
| << I->first << "\n"); |
| |
| void *Result = TheJIT->getPointerToFunction(F); |
| |
| // We don't need to reuse this stub in the future, as F is now compiled. |
| JR.FunctionToStubMap.erase(F); |
| |
| // FIXME: We could rewrite all references to this stub if we knew them. |
| return Result; |
| } |
| |
| |
| // getPointerToFunctionOrStub - If the specified function has been |
| // code-gen'd, return a pointer to the function. If not, compile it, or use |
| // a stub to implement lazy compilation if available. |
| // |
| void *JIT::getPointerToFunctionOrStub(Function *F) { |
| // If we have already code generated the function, just return the address. |
| if (void *Addr = getPointerToGlobalIfAvailable(F)) |
| return Addr; |
| |
| // Get a stub if the target supports it |
| return getJITResolver(MCE).getFunctionStub(F); |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // JITEmitter code. |
| // |
| namespace { |
| /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is |
| /// used to output functions to memory for execution. |
| class JITEmitter : public MachineCodeEmitter { |
| JITMemoryManager MemMgr; |
| |
| // CurBlock - The start of the current block of memory. CurByte - The |
| // current byte being emitted to. |
| unsigned char *CurBlock, *CurByte; |
| |
| // When outputting a function stub in the context of some other function, we |
| // save CurBlock and CurByte here. |
| unsigned char *SavedCurBlock, *SavedCurByte; |
| |
| // ConstantPoolAddresses - Contains the location for each entry in the |
| // constant pool. |
| std::vector<void*> ConstantPoolAddresses; |
| |
| /// Relocations - These are the relocations that the function needs, as |
| /// emitted. |
| std::vector<MachineRelocation> Relocations; |
| public: |
| JITEmitter(JIT &jit) { TheJIT = &jit; } |
| |
| virtual void startFunction(MachineFunction &F); |
| virtual void finishFunction(MachineFunction &F); |
| virtual void emitConstantPool(MachineConstantPool *MCP); |
| virtual void startFunctionStub(unsigned StubSize); |
| virtual void* finishFunctionStub(const Function *F); |
| virtual void emitByte(unsigned char B); |
| virtual void emitWord(unsigned W); |
| virtual void emitWordAt(unsigned W, unsigned *Ptr); |
| |
| virtual void addRelocation(const MachineRelocation &MR) { |
| Relocations.push_back(MR); |
| } |
| |
| virtual uint64_t getCurrentPCValue(); |
| virtual uint64_t getCurrentPCOffset(); |
| virtual uint64_t getConstantPoolEntryAddress(unsigned Entry); |
| |
| private: |
| void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub); |
| }; |
| } |
| |
| MachineCodeEmitter *JIT::createEmitter(JIT &jit) { |
| return new JITEmitter(jit); |
| } |
| |
| void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, |
| bool DoesntNeedStub) { |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { |
| /// FIXME: If we straightened things out, this could actually emit the |
| /// global immediately instead of queuing it for codegen later! |
| return TheJIT->getOrEmitGlobalVariable(GV); |
| } |
| |
| // If we have already compiled the function, return a pointer to its body. |
| Function *F = cast<Function>(V); |
| void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); |
| if (ResultPtr) return ResultPtr; |
| |
| if (F->hasExternalLinkage() && F->isExternal()) { |
| // If this is an external function pointer, we can force the JIT to |
| // 'compile' it, which really just adds it to the map. |
| if (DoesntNeedStub) |
| return TheJIT->getPointerToFunction(F); |
| |
| return getJITResolver(this).getFunctionStub(F); |
| } |
| |
| // Okay, the function has not been compiled yet, if the target callback |
| // mechanism is capable of rewriting the instruction directly, prefer to do |
| // that instead of emitting a stub. |
| if (DoesntNeedStub) |
| return getJITResolver(this).AddCallbackAtLocation(F, Reference); |
| |
| // Otherwise, we have to emit a lazy resolving stub. |
| return getJITResolver(this).getFunctionStub(F); |
| } |
| |
| void JITEmitter::startFunction(MachineFunction &F) { |
| CurByte = CurBlock = MemMgr.startFunctionBody(); |
| TheJIT->addGlobalMapping(F.getFunction(), CurBlock); |
| } |
| |
| void JITEmitter::finishFunction(MachineFunction &F) { |
| MemMgr.endFunctionBody(CurByte); |
| ConstantPoolAddresses.clear(); |
| NumBytes += CurByte-CurBlock; |
| |
| if (!Relocations.empty()) { |
| // Resolve the relocations to concrete pointers. |
| for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { |
| MachineRelocation &MR = Relocations[i]; |
| void *ResultPtr; |
| if (MR.isString()) |
| ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString()); |
| else |
| ResultPtr = getPointerToGlobal(MR.getGlobalValue(), |
| CurBlock+MR.getMachineCodeOffset(), |
| MR.doesntNeedFunctionStub()); |
| MR.setResultPointer(ResultPtr); |
| } |
| |
| TheJIT->getJITInfo().relocate(CurBlock, &Relocations[0], |
| Relocations.size()); |
| } |
| |
| DEBUG(std::cerr << "JIT: Finished CodeGen of [" << (void*)CurBlock |
| << "] Function: " << F.getFunction()->getName() |
| << ": " << CurByte-CurBlock << " bytes of text, " |
| << Relocations.size() << " relocations\n"); |
| Relocations.clear(); |
| } |
| |
| void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { |
| const std::vector<Constant*> &Constants = MCP->getConstants(); |
| if (Constants.empty()) return; |
| |
| for (unsigned i = 0, e = Constants.size(); i != e; ++i) { |
| const Type *Ty = Constants[i]->getType(); |
| unsigned Size = (unsigned)TheJIT->getTargetData().getTypeSize(Ty); |
| unsigned Alignment = TheJIT->getTargetData().getTypeAlignment(Ty); |
| |
| void *Addr = MemMgr.allocateConstant(Size, Alignment); |
| TheJIT->InitializeMemory(Constants[i], Addr); |
| ConstantPoolAddresses.push_back(Addr); |
| } |
| } |
| |
| void JITEmitter::startFunctionStub(unsigned StubSize) { |
| SavedCurBlock = CurBlock; SavedCurByte = CurByte; |
| CurByte = CurBlock = MemMgr.allocateStub(StubSize); |
| } |
| |
| void *JITEmitter::finishFunctionStub(const Function *F) { |
| NumBytes += CurByte-CurBlock; |
| std::swap(CurBlock, SavedCurBlock); |
| CurByte = SavedCurByte; |
| return SavedCurBlock; |
| } |
| |
| void JITEmitter::emitByte(unsigned char B) { |
| *CurByte++ = B; // Write the byte to memory |
| } |
| |
| void JITEmitter::emitWord(unsigned W) { |
| // This won't work if the endianness of the host and target don't agree! (For |
| // a JIT this can't happen though. :) |
| *(unsigned*)CurByte = W; |
| CurByte += sizeof(unsigned); |
| } |
| |
| void JITEmitter::emitWordAt(unsigned W, unsigned *Ptr) { |
| *Ptr = W; |
| } |
| |
| // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry |
| // in the constant pool that was last emitted with the 'emitConstantPool' |
| // method. |
| // |
| uint64_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) { |
| assert(ConstantNum < ConstantPoolAddresses.size() && |
| "Invalid ConstantPoolIndex!"); |
| return (intptr_t)ConstantPoolAddresses[ConstantNum]; |
| } |
| |
| // getCurrentPCValue - This returns the address that the next emitted byte |
| // will be output to. |
| // |
| uint64_t JITEmitter::getCurrentPCValue() { |
| return (intptr_t)CurByte; |
| } |
| |
| uint64_t JITEmitter::getCurrentPCOffset() { |
| return (intptr_t)CurByte-(intptr_t)CurBlock; |
| } |
| |
| // getPointerToNamedFunction - This function is used as a global wrapper to |
| // JIT::getPointerToNamedFunction for the purpose of resolving symbols when |
| // bugpoint is debugging the JIT. In that scenario, we are loading an .so and |
| // need to resolve function(s) that are being mis-codegenerated, so we need to |
| // resolve their addresses at runtime, and this is the way to do it. |
| extern "C" { |
| void *getPointerToNamedFunction(const char *Name) { |
| Module &M = TheJIT->getModule(); |
| if (Function *F = M.getNamedFunction(Name)) |
| return TheJIT->getPointerToFunction(F); |
| return TheJIT->getPointerToNamedFunction(Name); |
| } |
| } |