| //===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the bison parser for LLVM assembly languages files. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| %{ |
| #include "ParserInternals.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "llvm/ValueSymbolTable.h" |
| #include "llvm/AutoUpgrade.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Streams.h" |
| #include <algorithm> |
| #include <list> |
| #include <map> |
| #include <utility> |
| |
| // The following is a gross hack. In order to rid the libAsmParser library of |
| // exceptions, we have to have a way of getting the yyparse function to go into |
| // an error situation. So, whenever we want an error to occur, the GenerateError |
| // function (see bottom of file) sets TriggerError. Then, at the end of each |
| // production in the grammer we use CHECK_FOR_ERROR which will invoke YYERROR |
| // (a goto) to put YACC in error state. Furthermore, several calls to |
| // GenerateError are made from inside productions and they must simulate the |
| // previous exception behavior by exiting the production immediately. We have |
| // replaced these with the GEN_ERROR macro which calls GeneratError and then |
| // immediately invokes YYERROR. This would be so much cleaner if it was a |
| // recursive descent parser. |
| static bool TriggerError = false; |
| #define CHECK_FOR_ERROR { if (TriggerError) { TriggerError = false; YYABORT; } } |
| #define GEN_ERROR(msg) { GenerateError(msg); YYERROR; } |
| |
| int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit |
| int yylex(); // declaration" of xxx warnings. |
| int yyparse(); |
| using namespace llvm; |
| |
| static Module *ParserResult; |
| |
| // DEBUG_UPREFS - Define this symbol if you want to enable debugging output |
| // relating to upreferences in the input stream. |
| // |
| //#define DEBUG_UPREFS 1 |
| #ifdef DEBUG_UPREFS |
| #define UR_OUT(X) cerr << X |
| #else |
| #define UR_OUT(X) |
| #endif |
| |
| #define YYERROR_VERBOSE 1 |
| |
| static GlobalVariable *CurGV; |
| |
| |
| // This contains info used when building the body of a function. It is |
| // destroyed when the function is completed. |
| // |
| typedef std::vector<Value *> ValueList; // Numbered defs |
| |
| static void |
| ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers=0); |
| |
| static struct PerModuleInfo { |
| Module *CurrentModule; |
| ValueList Values; // Module level numbered definitions |
| ValueList LateResolveValues; |
| std::vector<PATypeHolder> Types; |
| std::map<ValID, PATypeHolder> LateResolveTypes; |
| |
| /// PlaceHolderInfo - When temporary placeholder objects are created, remember |
| /// how they were referenced and on which line of the input they came from so |
| /// that we can resolve them later and print error messages as appropriate. |
| std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo; |
| |
| // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward |
| // references to global values. Global values may be referenced before they |
| // are defined, and if so, the temporary object that they represent is held |
| // here. This is used for forward references of GlobalValues. |
| // |
| typedef std::map<std::pair<const PointerType *, |
| ValID>, GlobalValue*> GlobalRefsType; |
| GlobalRefsType GlobalRefs; |
| |
| void ModuleDone() { |
| // If we could not resolve some functions at function compilation time |
| // (calls to functions before they are defined), resolve them now... Types |
| // are resolved when the constant pool has been completely parsed. |
| // |
| ResolveDefinitions(LateResolveValues); |
| if (TriggerError) |
| return; |
| |
| // Check to make sure that all global value forward references have been |
| // resolved! |
| // |
| if (!GlobalRefs.empty()) { |
| std::string UndefinedReferences = "Unresolved global references exist:\n"; |
| |
| for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end(); |
| I != E; ++I) { |
| UndefinedReferences += " " + I->first.first->getDescription() + " " + |
| I->first.second.getName() + "\n"; |
| } |
| GenerateError(UndefinedReferences); |
| return; |
| } |
| |
| // Look for intrinsic functions and CallInst that need to be upgraded |
| for (Module::iterator FI = CurrentModule->begin(), |
| FE = CurrentModule->end(); FI != FE; ) |
| UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove |
| |
| Values.clear(); // Clear out function local definitions |
| Types.clear(); |
| CurrentModule = 0; |
| } |
| |
| // GetForwardRefForGlobal - Check to see if there is a forward reference |
| // for this global. If so, remove it from the GlobalRefs map and return it. |
| // If not, just return null. |
| GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) { |
| // Check to see if there is a forward reference to this global variable... |
| // if there is, eliminate it and patch the reference to use the new def'n. |
| GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID)); |
| GlobalValue *Ret = 0; |
| if (I != GlobalRefs.end()) { |
| Ret = I->second; |
| GlobalRefs.erase(I); |
| } |
| return Ret; |
| } |
| |
| bool TypeIsUnresolved(PATypeHolder* PATy) { |
| // If it isn't abstract, its resolved |
| const Type* Ty = PATy->get(); |
| if (!Ty->isAbstract()) |
| return false; |
| // Traverse the type looking for abstract types. If it isn't abstract then |
| // we don't need to traverse that leg of the type. |
| std::vector<const Type*> WorkList, SeenList; |
| WorkList.push_back(Ty); |
| while (!WorkList.empty()) { |
| const Type* Ty = WorkList.back(); |
| SeenList.push_back(Ty); |
| WorkList.pop_back(); |
| if (const OpaqueType* OpTy = dyn_cast<OpaqueType>(Ty)) { |
| // Check to see if this is an unresolved type |
| std::map<ValID, PATypeHolder>::iterator I = LateResolveTypes.begin(); |
| std::map<ValID, PATypeHolder>::iterator E = LateResolveTypes.end(); |
| for ( ; I != E; ++I) { |
| if (I->second.get() == OpTy) |
| return true; |
| } |
| } else if (const SequentialType* SeqTy = dyn_cast<SequentialType>(Ty)) { |
| const Type* TheTy = SeqTy->getElementType(); |
| if (TheTy->isAbstract() && TheTy != Ty) { |
| std::vector<const Type*>::iterator I = SeenList.begin(), |
| E = SeenList.end(); |
| for ( ; I != E; ++I) |
| if (*I == TheTy) |
| break; |
| if (I == E) |
| WorkList.push_back(TheTy); |
| } |
| } else if (const StructType* StrTy = dyn_cast<StructType>(Ty)) { |
| for (unsigned i = 0; i < StrTy->getNumElements(); ++i) { |
| const Type* TheTy = StrTy->getElementType(i); |
| if (TheTy->isAbstract() && TheTy != Ty) { |
| std::vector<const Type*>::iterator I = SeenList.begin(), |
| E = SeenList.end(); |
| for ( ; I != E; ++I) |
| if (*I == TheTy) |
| break; |
| if (I == E) |
| WorkList.push_back(TheTy); |
| } |
| } |
| } |
| } |
| return false; |
| } |
| } CurModule; |
| |
| static struct PerFunctionInfo { |
| Function *CurrentFunction; // Pointer to current function being created |
| |
| ValueList Values; // Keep track of #'d definitions |
| unsigned NextValNum; |
| ValueList LateResolveValues; |
| bool isDeclare; // Is this function a forward declararation? |
| GlobalValue::LinkageTypes Linkage; // Linkage for forward declaration. |
| GlobalValue::VisibilityTypes Visibility; |
| |
| /// BBForwardRefs - When we see forward references to basic blocks, keep |
| /// track of them here. |
| std::map<ValID, BasicBlock*> BBForwardRefs; |
| |
| inline PerFunctionInfo() { |
| CurrentFunction = 0; |
| isDeclare = false; |
| Linkage = GlobalValue::ExternalLinkage; |
| Visibility = GlobalValue::DefaultVisibility; |
| } |
| |
| inline void FunctionStart(Function *M) { |
| CurrentFunction = M; |
| NextValNum = 0; |
| } |
| |
| void FunctionDone() { |
| // Any forward referenced blocks left? |
| if (!BBForwardRefs.empty()) { |
| GenerateError("Undefined reference to label " + |
| BBForwardRefs.begin()->second->getName()); |
| return; |
| } |
| |
| // Resolve all forward references now. |
| ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues); |
| |
| Values.clear(); // Clear out function local definitions |
| BBForwardRefs.clear(); |
| CurrentFunction = 0; |
| isDeclare = false; |
| Linkage = GlobalValue::ExternalLinkage; |
| Visibility = GlobalValue::DefaultVisibility; |
| } |
| } CurFun; // Info for the current function... |
| |
| static bool inFunctionScope() { return CurFun.CurrentFunction != 0; } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Code to handle definitions of all the types |
| //===----------------------------------------------------------------------===// |
| |
| static void InsertValue(Value *V, ValueList &ValueTab = CurFun.Values) { |
| // Things that have names or are void typed don't get slot numbers |
| if (V->hasName() || (V->getType() == Type::VoidTy)) |
| return; |
| |
| // In the case of function values, we have to allow for the forward reference |
| // of basic blocks, which are included in the numbering. Consequently, we keep |
| // track of the next insertion location with NextValNum. When a BB gets |
| // inserted, it could change the size of the CurFun.Values vector. |
| if (&ValueTab == &CurFun.Values) { |
| if (ValueTab.size() <= CurFun.NextValNum) |
| ValueTab.resize(CurFun.NextValNum+1); |
| ValueTab[CurFun.NextValNum++] = V; |
| return; |
| } |
| // For all other lists, its okay to just tack it on the back of the vector. |
| ValueTab.push_back(V); |
| } |
| |
| static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) { |
| switch (D.Type) { |
| case ValID::LocalID: // Is it a numbered definition? |
| // Module constants occupy the lowest numbered slots... |
| if (D.Num < CurModule.Types.size()) |
| return CurModule.Types[D.Num]; |
| break; |
| case ValID::LocalName: // Is it a named definition? |
| if (const Type *N = CurModule.CurrentModule->getTypeByName(D.getName())) { |
| D.destroy(); // Free old strdup'd memory... |
| return N; |
| } |
| break; |
| default: |
| GenerateError("Internal parser error: Invalid symbol type reference"); |
| return 0; |
| } |
| |
| // If we reached here, we referenced either a symbol that we don't know about |
| // or an id number that hasn't been read yet. We may be referencing something |
| // forward, so just create an entry to be resolved later and get to it... |
| // |
| if (DoNotImprovise) return 0; // Do we just want a null to be returned? |
| |
| |
| if (inFunctionScope()) { |
| if (D.Type == ValID::LocalName) { |
| GenerateError("Reference to an undefined type: '" + D.getName() + "'"); |
| return 0; |
| } else { |
| GenerateError("Reference to an undefined type: #" + utostr(D.Num)); |
| return 0; |
| } |
| } |
| |
| std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D); |
| if (I != CurModule.LateResolveTypes.end()) |
| return I->second; |
| |
| Type *Typ = OpaqueType::get(); |
| CurModule.LateResolveTypes.insert(std::make_pair(D, Typ)); |
| return Typ; |
| } |
| |
| // getExistingVal - Look up the value specified by the provided type and |
| // the provided ValID. If the value exists and has already been defined, return |
| // it. Otherwise return null. |
| // |
| static Value *getExistingVal(const Type *Ty, const ValID &D) { |
| if (isa<FunctionType>(Ty)) { |
| GenerateError("Functions are not values and " |
| "must be referenced as pointers"); |
| return 0; |
| } |
| |
| switch (D.Type) { |
| case ValID::LocalID: { // Is it a numbered definition? |
| // Check that the number is within bounds. |
| if (D.Num >= CurFun.Values.size()) |
| return 0; |
| Value *Result = CurFun.Values[D.Num]; |
| if (Ty != Result->getType()) { |
| GenerateError("Numbered value (%" + utostr(D.Num) + ") of type '" + |
| Result->getType()->getDescription() + "' does not match " |
| "expected type, '" + Ty->getDescription() + "'"); |
| return 0; |
| } |
| return Result; |
| } |
| case ValID::GlobalID: { // Is it a numbered definition? |
| if (D.Num >= CurModule.Values.size()) |
| return 0; |
| Value *Result = CurModule.Values[D.Num]; |
| if (Ty != Result->getType()) { |
| GenerateError("Numbered value (@" + utostr(D.Num) + ") of type '" + |
| Result->getType()->getDescription() + "' does not match " |
| "expected type, '" + Ty->getDescription() + "'"); |
| return 0; |
| } |
| return Result; |
| } |
| |
| case ValID::LocalName: { // Is it a named definition? |
| if (!inFunctionScope()) |
| return 0; |
| ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable(); |
| Value *N = SymTab.lookup(D.getName()); |
| if (N == 0) |
| return 0; |
| if (N->getType() != Ty) |
| return 0; |
| |
| D.destroy(); // Free old strdup'd memory... |
| return N; |
| } |
| case ValID::GlobalName: { // Is it a named definition? |
| ValueSymbolTable &SymTab = CurModule.CurrentModule->getValueSymbolTable(); |
| Value *N = SymTab.lookup(D.getName()); |
| if (N == 0) |
| return 0; |
| if (N->getType() != Ty) |
| return 0; |
| |
| D.destroy(); // Free old strdup'd memory... |
| return N; |
| } |
| |
| // Check to make sure that "Ty" is an integral type, and that our |
| // value will fit into the specified type... |
| case ValID::ConstSIntVal: // Is it a constant pool reference?? |
| if (!isa<IntegerType>(Ty) || |
| !ConstantInt::isValueValidForType(Ty, D.ConstPool64)) { |
| GenerateError("Signed integral constant '" + |
| itostr(D.ConstPool64) + "' is invalid for type '" + |
| Ty->getDescription() + "'"); |
| return 0; |
| } |
| return ConstantInt::get(Ty, D.ConstPool64, true); |
| |
| case ValID::ConstUIntVal: // Is it an unsigned const pool reference? |
| if (isa<IntegerType>(Ty) && |
| ConstantInt::isValueValidForType(Ty, D.UConstPool64)) |
| return ConstantInt::get(Ty, D.UConstPool64); |
| |
| if (!isa<IntegerType>(Ty) || |
| !ConstantInt::isValueValidForType(Ty, D.ConstPool64)) { |
| GenerateError("Integral constant '" + utostr(D.UConstPool64) + |
| "' is invalid or out of range for type '" + |
| Ty->getDescription() + "'"); |
| return 0; |
| } |
| // This is really a signed reference. Transmogrify. |
| return ConstantInt::get(Ty, D.ConstPool64, true); |
| |
| case ValID::ConstFPVal: // Is it a floating point const pool reference? |
| if (!Ty->isFloatingPoint() || |
| !ConstantFP::isValueValidForType(Ty, *D.ConstPoolFP)) { |
| GenerateError("FP constant invalid for type"); |
| return 0; |
| } |
| // Lexer has no type info, so builds all float and double FP constants |
| // as double. Fix this here. Long double does not need this. |
| if (&D.ConstPoolFP->getSemantics() == &APFloat::IEEEdouble && |
| Ty==Type::FloatTy) |
| D.ConstPoolFP->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven); |
| return ConstantFP::get(*D.ConstPoolFP); |
| |
| case ValID::ConstNullVal: // Is it a null value? |
| if (!isa<PointerType>(Ty)) { |
| GenerateError("Cannot create a a non pointer null"); |
| return 0; |
| } |
| return ConstantPointerNull::get(cast<PointerType>(Ty)); |
| |
| case ValID::ConstUndefVal: // Is it an undef value? |
| return UndefValue::get(Ty); |
| |
| case ValID::ConstZeroVal: // Is it a zero value? |
| return Constant::getNullValue(Ty); |
| |
| case ValID::ConstantVal: // Fully resolved constant? |
| if (D.ConstantValue->getType() != Ty) { |
| GenerateError("Constant expression type different from required type"); |
| return 0; |
| } |
| return D.ConstantValue; |
| |
| case ValID::InlineAsmVal: { // Inline asm expression |
| const PointerType *PTy = dyn_cast<PointerType>(Ty); |
| const FunctionType *FTy = |
| PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; |
| if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints)) { |
| GenerateError("Invalid type for asm constraint string"); |
| return 0; |
| } |
| InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints, |
| D.IAD->HasSideEffects); |
| D.destroy(); // Free InlineAsmDescriptor. |
| return IA; |
| } |
| default: |
| assert(0 && "Unhandled case!"); |
| return 0; |
| } // End of switch |
| |
| assert(0 && "Unhandled case!"); |
| return 0; |
| } |
| |
| // getVal - This function is identical to getExistingVal, except that if a |
| // value is not already defined, it "improvises" by creating a placeholder var |
| // that looks and acts just like the requested variable. When the value is |
| // defined later, all uses of the placeholder variable are replaced with the |
| // real thing. |
| // |
| static Value *getVal(const Type *Ty, const ValID &ID) { |
| if (Ty == Type::LabelTy) { |
| GenerateError("Cannot use a basic block here"); |
| return 0; |
| } |
| |
| // See if the value has already been defined. |
| Value *V = getExistingVal(Ty, ID); |
| if (V) return V; |
| if (TriggerError) return 0; |
| |
| if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty)) { |
| GenerateError("Invalid use of a non-first-class type"); |
| return 0; |
| } |
| |
| // If we reached here, we referenced either a symbol that we don't know about |
| // or an id number that hasn't been read yet. We may be referencing something |
| // forward, so just create an entry to be resolved later and get to it... |
| // |
| switch (ID.Type) { |
| case ValID::GlobalName: |
| case ValID::GlobalID: { |
| const PointerType *PTy = dyn_cast<PointerType>(Ty); |
| if (!PTy) { |
| GenerateError("Invalid type for reference to global" ); |
| return 0; |
| } |
| const Type* ElTy = PTy->getElementType(); |
| if (const FunctionType *FTy = dyn_cast<FunctionType>(ElTy)) |
| V = Function::Create(FTy, GlobalValue::ExternalLinkage); |
| else |
| V = new GlobalVariable(ElTy, false, GlobalValue::ExternalLinkage, 0, "", |
| (Module*)0, false, PTy->getAddressSpace()); |
| break; |
| } |
| default: |
| V = new Argument(Ty); |
| } |
| |
| // Remember where this forward reference came from. FIXME, shouldn't we try |
| // to recycle these things?? |
| CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID, |
| LLLgetLineNo()))); |
| |
| if (inFunctionScope()) |
| InsertValue(V, CurFun.LateResolveValues); |
| else |
| InsertValue(V, CurModule.LateResolveValues); |
| return V; |
| } |
| |
| /// defineBBVal - This is a definition of a new basic block with the specified |
| /// identifier which must be the same as CurFun.NextValNum, if its numeric. |
| static BasicBlock *defineBBVal(const ValID &ID) { |
| assert(inFunctionScope() && "Can't get basic block at global scope!"); |
| |
| BasicBlock *BB = 0; |
| |
| // First, see if this was forward referenced |
| |
| std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID); |
| if (BBI != CurFun.BBForwardRefs.end()) { |
| BB = BBI->second; |
| // The forward declaration could have been inserted anywhere in the |
| // function: insert it into the correct place now. |
| CurFun.CurrentFunction->getBasicBlockList().remove(BB); |
| CurFun.CurrentFunction->getBasicBlockList().push_back(BB); |
| |
| // We're about to erase the entry, save the key so we can clean it up. |
| ValID Tmp = BBI->first; |
| |
| // Erase the forward ref from the map as its no longer "forward" |
| CurFun.BBForwardRefs.erase(ID); |
| |
| // The key has been removed from the map but so we don't want to leave |
| // strdup'd memory around so destroy it too. |
| Tmp.destroy(); |
| |
| // If its a numbered definition, bump the number and set the BB value. |
| if (ID.Type == ValID::LocalID) { |
| assert(ID.Num == CurFun.NextValNum && "Invalid new block number"); |
| InsertValue(BB); |
| } |
| } else { |
| // We haven't seen this BB before and its first mention is a definition. |
| // Just create it and return it. |
| std::string Name (ID.Type == ValID::LocalName ? ID.getName() : ""); |
| BB = BasicBlock::Create(Name, CurFun.CurrentFunction); |
| if (ID.Type == ValID::LocalID) { |
| assert(ID.Num == CurFun.NextValNum && "Invalid new block number"); |
| InsertValue(BB); |
| } |
| } |
| |
| ID.destroy(); |
| return BB; |
| } |
| |
| /// getBBVal - get an existing BB value or create a forward reference for it. |
| /// |
| static BasicBlock *getBBVal(const ValID &ID) { |
| assert(inFunctionScope() && "Can't get basic block at global scope!"); |
| |
| BasicBlock *BB = 0; |
| |
| std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID); |
| if (BBI != CurFun.BBForwardRefs.end()) { |
| BB = BBI->second; |
| } if (ID.Type == ValID::LocalName) { |
| std::string Name = ID.getName(); |
| Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name); |
| if (N) { |
| if (N->getType()->getTypeID() == Type::LabelTyID) |
| BB = cast<BasicBlock>(N); |
| else |
| GenerateError("Reference to label '" + Name + "' is actually of type '"+ |
| N->getType()->getDescription() + "'"); |
| } |
| } else if (ID.Type == ValID::LocalID) { |
| if (ID.Num < CurFun.NextValNum && ID.Num < CurFun.Values.size()) { |
| if (CurFun.Values[ID.Num]->getType()->getTypeID() == Type::LabelTyID) |
| BB = cast<BasicBlock>(CurFun.Values[ID.Num]); |
| else |
| GenerateError("Reference to label '%" + utostr(ID.Num) + |
| "' is actually of type '"+ |
| CurFun.Values[ID.Num]->getType()->getDescription() + "'"); |
| } |
| } else { |
| GenerateError("Illegal label reference " + ID.getName()); |
| return 0; |
| } |
| |
| // If its already been defined, return it now. |
| if (BB) { |
| ID.destroy(); // Free strdup'd memory. |
| return BB; |
| } |
| |
| // Otherwise, this block has not been seen before, create it. |
| std::string Name; |
| if (ID.Type == ValID::LocalName) |
| Name = ID.getName(); |
| BB = BasicBlock::Create(Name, CurFun.CurrentFunction); |
| |
| // Insert it in the forward refs map. |
| CurFun.BBForwardRefs[ID] = BB; |
| |
| return BB; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Code to handle forward references in instructions |
| //===----------------------------------------------------------------------===// |
| // |
| // This code handles the late binding needed with statements that reference |
| // values not defined yet... for example, a forward branch, or the PHI node for |
| // a loop body. |
| // |
| // This keeps a table (CurFun.LateResolveValues) of all such forward references |
| // and back patchs after we are done. |
| // |
| |
| // ResolveDefinitions - If we could not resolve some defs at parsing |
| // time (forward branches, phi functions for loops, etc...) resolve the |
| // defs now... |
| // |
| static void |
| ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers) { |
| // Loop over LateResolveDefs fixing up stuff that couldn't be resolved |
| while (!LateResolvers.empty()) { |
| Value *V = LateResolvers.back(); |
| LateResolvers.pop_back(); |
| |
| std::map<Value*, std::pair<ValID, int> >::iterator PHI = |
| CurModule.PlaceHolderInfo.find(V); |
| assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!"); |
| |
| ValID &DID = PHI->second.first; |
| |
| Value *TheRealValue = getExistingVal(V->getType(), DID); |
| if (TriggerError) |
| return; |
| if (TheRealValue) { |
| V->replaceAllUsesWith(TheRealValue); |
| delete V; |
| CurModule.PlaceHolderInfo.erase(PHI); |
| } else if (FutureLateResolvers) { |
| // Functions have their unresolved items forwarded to the module late |
| // resolver table |
| InsertValue(V, *FutureLateResolvers); |
| } else { |
| if (DID.Type == ValID::LocalName || DID.Type == ValID::GlobalName) { |
| GenerateError("Reference to an invalid definition: '" +DID.getName()+ |
| "' of type '" + V->getType()->getDescription() + "'", |
| PHI->second.second); |
| return; |
| } else { |
| GenerateError("Reference to an invalid definition: #" + |
| itostr(DID.Num) + " of type '" + |
| V->getType()->getDescription() + "'", |
| PHI->second.second); |
| return; |
| } |
| } |
| } |
| LateResolvers.clear(); |
| } |
| |
| // ResolveTypeTo - A brand new type was just declared. This means that (if |
| // name is not null) things referencing Name can be resolved. Otherwise, things |
| // refering to the number can be resolved. Do this now. |
| // |
| static void ResolveTypeTo(std::string *Name, const Type *ToTy) { |
| ValID D; |
| if (Name) |
| D = ValID::createLocalName(*Name); |
| else |
| D = ValID::createLocalID(CurModule.Types.size()); |
| |
| std::map<ValID, PATypeHolder>::iterator I = |
| CurModule.LateResolveTypes.find(D); |
| if (I != CurModule.LateResolveTypes.end()) { |
| ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy); |
| CurModule.LateResolveTypes.erase(I); |
| } |
| } |
| |
| // setValueName - Set the specified value to the name given. The name may be |
| // null potentially, in which case this is a noop. The string passed in is |
| // assumed to be a malloc'd string buffer, and is free'd by this function. |
| // |
| static void setValueName(Value *V, std::string *NameStr) { |
| if (!NameStr) return; |
| std::string Name(*NameStr); // Copy string |
| delete NameStr; // Free old string |
| |
| if (V->getType() == Type::VoidTy) { |
| GenerateError("Can't assign name '" + Name+"' to value with void type"); |
| return; |
| } |
| |
| assert(inFunctionScope() && "Must be in function scope!"); |
| ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable(); |
| if (ST.lookup(Name)) { |
| GenerateError("Redefinition of value '" + Name + "' of type '" + |
| V->getType()->getDescription() + "'"); |
| return; |
| } |
| |
| // Set the name. |
| V->setName(Name); |
| } |
| |
| /// ParseGlobalVariable - Handle parsing of a global. If Initializer is null, |
| /// this is a declaration, otherwise it is a definition. |
| static GlobalVariable * |
| ParseGlobalVariable(std::string *NameStr, |
| GlobalValue::LinkageTypes Linkage, |
| GlobalValue::VisibilityTypes Visibility, |
| bool isConstantGlobal, const Type *Ty, |
| Constant *Initializer, bool IsThreadLocal, |
| unsigned AddressSpace = 0) { |
| if (isa<FunctionType>(Ty)) { |
| GenerateError("Cannot declare global vars of function type"); |
| return 0; |
| } |
| if (Ty == Type::LabelTy) { |
| GenerateError("Cannot declare global vars of label type"); |
| return 0; |
| } |
| |
| const PointerType *PTy = PointerType::get(Ty, AddressSpace); |
| |
| std::string Name; |
| if (NameStr) { |
| Name = *NameStr; // Copy string |
| delete NameStr; // Free old string |
| } |
| |
| // See if this global value was forward referenced. If so, recycle the |
| // object. |
| ValID ID; |
| if (!Name.empty()) { |
| ID = ValID::createGlobalName(Name); |
| } else { |
| ID = ValID::createGlobalID(CurModule.Values.size()); |
| } |
| |
| if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) { |
| // Move the global to the end of the list, from whereever it was |
| // previously inserted. |
| GlobalVariable *GV = cast<GlobalVariable>(FWGV); |
| CurModule.CurrentModule->getGlobalList().remove(GV); |
| CurModule.CurrentModule->getGlobalList().push_back(GV); |
| GV->setInitializer(Initializer); |
| GV->setLinkage(Linkage); |
| GV->setVisibility(Visibility); |
| GV->setConstant(isConstantGlobal); |
| GV->setThreadLocal(IsThreadLocal); |
| InsertValue(GV, CurModule.Values); |
| return GV; |
| } |
| |
| // If this global has a name |
| if (!Name.empty()) { |
| // if the global we're parsing has an initializer (is a definition) and |
| // has external linkage. |
| if (Initializer && Linkage != GlobalValue::InternalLinkage) |
| // If there is already a global with external linkage with this name |
| if (CurModule.CurrentModule->getGlobalVariable(Name, false)) { |
| // If we allow this GVar to get created, it will be renamed in the |
| // symbol table because it conflicts with an existing GVar. We can't |
| // allow redefinition of GVars whose linking indicates that their name |
| // must stay the same. Issue the error. |
| GenerateError("Redefinition of global variable named '" + Name + |
| "' of type '" + Ty->getDescription() + "'"); |
| return 0; |
| } |
| } |
| |
| // Otherwise there is no existing GV to use, create one now. |
| GlobalVariable *GV = |
| new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name, |
| CurModule.CurrentModule, IsThreadLocal, AddressSpace); |
| GV->setVisibility(Visibility); |
| InsertValue(GV, CurModule.Values); |
| return GV; |
| } |
| |
| // setTypeName - Set the specified type to the name given. The name may be |
| // null potentially, in which case this is a noop. The string passed in is |
| // assumed to be a malloc'd string buffer, and is freed by this function. |
| // |
| // This function returns true if the type has already been defined, but is |
| // allowed to be redefined in the specified context. If the name is a new name |
| // for the type plane, it is inserted and false is returned. |
| static bool setTypeName(const Type *T, std::string *NameStr) { |
| assert(!inFunctionScope() && "Can't give types function-local names!"); |
| if (NameStr == 0) return false; |
| |
| std::string Name(*NameStr); // Copy string |
| delete NameStr; // Free old string |
| |
| // We don't allow assigning names to void type |
| if (T == Type::VoidTy) { |
| GenerateError("Can't assign name '" + Name + "' to the void type"); |
| return false; |
| } |
| |
| // Set the type name, checking for conflicts as we do so. |
| bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T); |
| |
| if (AlreadyExists) { // Inserting a name that is already defined??? |
| const Type *Existing = CurModule.CurrentModule->getTypeByName(Name); |
| assert(Existing && "Conflict but no matching type?!"); |
| |
| // There is only one case where this is allowed: when we are refining an |
| // opaque type. In this case, Existing will be an opaque type. |
| if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) { |
| // We ARE replacing an opaque type! |
| const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T); |
| return true; |
| } |
| |
| // Otherwise, this is an attempt to redefine a type. That's okay if |
| // the redefinition is identical to the original. This will be so if |
| // Existing and T point to the same Type object. In this one case we |
| // allow the equivalent redefinition. |
| if (Existing == T) return true; // Yes, it's equal. |
| |
| // Any other kind of (non-equivalent) redefinition is an error. |
| GenerateError("Redefinition of type named '" + Name + "' of type '" + |
| T->getDescription() + "'"); |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Code for handling upreferences in type names... |
| // |
| |
| // TypeContains - Returns true if Ty directly contains E in it. |
| // |
| static bool TypeContains(const Type *Ty, const Type *E) { |
| return std::find(Ty->subtype_begin(), Ty->subtype_end(), |
| E) != Ty->subtype_end(); |
| } |
| |
| namespace { |
| struct UpRefRecord { |
| // NestingLevel - The number of nesting levels that need to be popped before |
| // this type is resolved. |
| unsigned NestingLevel; |
| |
| // LastContainedTy - This is the type at the current binding level for the |
| // type. Every time we reduce the nesting level, this gets updated. |
| const Type *LastContainedTy; |
| |
| // UpRefTy - This is the actual opaque type that the upreference is |
| // represented with. |
| OpaqueType *UpRefTy; |
| |
| UpRefRecord(unsigned NL, OpaqueType *URTy) |
| : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {} |
| }; |
| } |
| |
| // UpRefs - A list of the outstanding upreferences that need to be resolved. |
| static std::vector<UpRefRecord> UpRefs; |
| |
| /// HandleUpRefs - Every time we finish a new layer of types, this function is |
| /// called. It loops through the UpRefs vector, which is a list of the |
| /// currently active types. For each type, if the up reference is contained in |
| /// the newly completed type, we decrement the level count. When the level |
| /// count reaches zero, the upreferenced type is the type that is passed in: |
| /// thus we can complete the cycle. |
| /// |
| static PATypeHolder HandleUpRefs(const Type *ty) { |
| // If Ty isn't abstract, or if there are no up-references in it, then there is |
| // nothing to resolve here. |
| if (!ty->isAbstract() || UpRefs.empty()) return ty; |
| |
| PATypeHolder Ty(ty); |
| UR_OUT("Type '" << Ty->getDescription() << |
| "' newly formed. Resolving upreferences.\n" << |
| UpRefs.size() << " upreferences active!\n"); |
| |
| // If we find any resolvable upreferences (i.e., those whose NestingLevel goes |
| // to zero), we resolve them all together before we resolve them to Ty. At |
| // the end of the loop, if there is anything to resolve to Ty, it will be in |
| // this variable. |
| OpaqueType *TypeToResolve = 0; |
| |
| for (unsigned i = 0; i != UpRefs.size(); ++i) { |
| UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " |
| << UpRefs[i].second->getDescription() << ") = " |
| << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n"); |
| if (TypeContains(Ty, UpRefs[i].LastContainedTy)) { |
| // Decrement level of upreference |
| unsigned Level = --UpRefs[i].NestingLevel; |
| UpRefs[i].LastContainedTy = Ty; |
| UR_OUT(" Uplevel Ref Level = " << Level << "\n"); |
| if (Level == 0) { // Upreference should be resolved! |
| if (!TypeToResolve) { |
| TypeToResolve = UpRefs[i].UpRefTy; |
| } else { |
| UR_OUT(" * Resolving upreference for " |
| << UpRefs[i].second->getDescription() << "\n"; |
| std::string OldName = UpRefs[i].UpRefTy->getDescription()); |
| UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve); |
| UR_OUT(" * Type '" << OldName << "' refined upreference to: " |
| << (const void*)Ty << ", " << Ty->getDescription() << "\n"); |
| } |
| UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list... |
| --i; // Do not skip the next element... |
| } |
| } |
| } |
| |
| if (TypeToResolve) { |
| UR_OUT(" * Resolving upreference for " |
| << UpRefs[i].second->getDescription() << "\n"; |
| std::string OldName = TypeToResolve->getDescription()); |
| TypeToResolve->refineAbstractTypeTo(Ty); |
| } |
| |
| return Ty; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RunVMAsmParser - Define an interface to this parser |
| //===----------------------------------------------------------------------===// |
| // |
| static Module* RunParser(Module * M); |
| |
| Module *llvm::RunVMAsmParser(llvm::MemoryBuffer *MB) { |
| InitLLLexer(MB); |
| Module *M = RunParser(new Module(LLLgetFilename())); |
| FreeLexer(); |
| return M; |
| } |
| |
| %} |
| |
| %union { |
| llvm::Module *ModuleVal; |
| llvm::Function *FunctionVal; |
| llvm::BasicBlock *BasicBlockVal; |
| llvm::TerminatorInst *TermInstVal; |
| llvm::Instruction *InstVal; |
| llvm::Constant *ConstVal; |
| |
| const llvm::Type *PrimType; |
| std::list<llvm::PATypeHolder> *TypeList; |
| llvm::PATypeHolder *TypeVal; |
| llvm::Value *ValueVal; |
| std::vector<llvm::Value*> *ValueList; |
| std::vector<unsigned> *ConstantList; |
| llvm::ArgListType *ArgList; |
| llvm::TypeWithAttrs TypeWithAttrs; |
| llvm::TypeWithAttrsList *TypeWithAttrsList; |
| llvm::ParamList *ParamList; |
| |
| // Represent the RHS of PHI node |
| std::list<std::pair<llvm::Value*, |
| llvm::BasicBlock*> > *PHIList; |
| std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable; |
| std::vector<llvm::Constant*> *ConstVector; |
| |
| llvm::GlobalValue::LinkageTypes Linkage; |
| llvm::GlobalValue::VisibilityTypes Visibility; |
| llvm::ParameterAttributes ParamAttrs; |
| llvm::APInt *APIntVal; |
| int64_t SInt64Val; |
| uint64_t UInt64Val; |
| int SIntVal; |
| unsigned UIntVal; |
| llvm::APFloat *FPVal; |
| bool BoolVal; |
| |
| std::string *StrVal; // This memory must be deleted |
| llvm::ValID ValIDVal; |
| |
| llvm::Instruction::BinaryOps BinaryOpVal; |
| llvm::Instruction::TermOps TermOpVal; |
| llvm::Instruction::MemoryOps MemOpVal; |
| llvm::Instruction::CastOps CastOpVal; |
| llvm::Instruction::OtherOps OtherOpVal; |
| llvm::ICmpInst::Predicate IPredicate; |
| llvm::FCmpInst::Predicate FPredicate; |
| } |
| |
| %type <ModuleVal> Module |
| %type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList |
| %type <BasicBlockVal> BasicBlock InstructionList |
| %type <TermInstVal> BBTerminatorInst |
| %type <InstVal> Inst InstVal MemoryInst |
| %type <ConstVal> ConstVal ConstExpr AliaseeRef |
| %type <ConstVector> ConstVector |
| %type <ArgList> ArgList ArgListH |
| %type <PHIList> PHIList |
| %type <ParamList> ParamList // For call param lists & GEP indices |
| %type <ValueList> IndexList // For GEP indices |
| %type <ConstantList> ConstantIndexList // For insertvalue/extractvalue indices |
| %type <TypeList> TypeListI |
| %type <TypeWithAttrsList> ArgTypeList ArgTypeListI |
| %type <TypeWithAttrs> ArgType |
| %type <JumpTable> JumpTable |
| %type <BoolVal> GlobalType // GLOBAL or CONSTANT? |
| %type <BoolVal> ThreadLocal // 'thread_local' or not |
| %type <BoolVal> OptVolatile // 'volatile' or not |
| %type <BoolVal> OptTailCall // TAIL CALL or plain CALL. |
| %type <BoolVal> OptSideEffect // 'sideeffect' or not. |
| %type <Linkage> GVInternalLinkage GVExternalLinkage |
| %type <Linkage> FunctionDefineLinkage FunctionDeclareLinkage |
| %type <Linkage> AliasLinkage |
| %type <Visibility> GVVisibilityStyle |
| |
| // ValueRef - Unresolved reference to a definition or BB |
| %type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef |
| %type <ValueVal> ResolvedVal // <type> <valref> pair |
| %type <ValueList> ReturnedVal |
| // Tokens and types for handling constant integer values |
| // |
| // ESINT64VAL - A negative number within long long range |
| %token <SInt64Val> ESINT64VAL |
| |
| // EUINT64VAL - A positive number within uns. long long range |
| %token <UInt64Val> EUINT64VAL |
| |
| // ESAPINTVAL - A negative number with arbitrary precision |
| %token <APIntVal> ESAPINTVAL |
| |
| // EUAPINTVAL - A positive number with arbitrary precision |
| %token <APIntVal> EUAPINTVAL |
| |
| %token <UIntVal> LOCALVAL_ID GLOBALVAL_ID // %123 @123 |
| %token <FPVal> FPVAL // Float or Double constant |
| |
| // Built in types... |
| %type <TypeVal> Types ResultTypes |
| %type <PrimType> IntType FPType PrimType // Classifications |
| %token <PrimType> VOID INTTYPE |
| %token <PrimType> FLOAT DOUBLE X86_FP80 FP128 PPC_FP128 LABEL |
| %token TYPE |
| |
| |
| %token<StrVal> LOCALVAR GLOBALVAR LABELSTR |
| %token<StrVal> STRINGCONSTANT ATSTRINGCONSTANT PCTSTRINGCONSTANT |
| %type <StrVal> LocalName OptLocalName OptLocalAssign |
| %type <StrVal> GlobalName OptGlobalAssign GlobalAssign |
| %type <StrVal> OptSection SectionString OptGC |
| |
| %type <UIntVal> OptAlign OptCAlign OptAddrSpace |
| |
| %token ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK |
| %token DECLARE DEFINE GLOBAL CONSTANT SECTION ALIAS VOLATILE THREAD_LOCAL |
| %token TO DOTDOTDOT NULL_TOK UNDEF INTERNAL LINKONCE WEAK APPENDING |
| %token DLLIMPORT DLLEXPORT EXTERN_WEAK COMMON |
| %token OPAQUE EXTERNAL TARGET TRIPLE ALIGN ADDRSPACE |
| %token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT |
| %token CC_TOK CCC_TOK FASTCC_TOK COLDCC_TOK X86_STDCALLCC_TOK X86_FASTCALLCC_TOK |
| %token DATALAYOUT |
| %type <UIntVal> OptCallingConv |
| %type <ParamAttrs> OptParamAttrs ParamAttr |
| %type <ParamAttrs> OptFuncAttrs FuncAttr |
| |
| // Basic Block Terminating Operators |
| %token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE |
| |
| // Binary Operators |
| %type <BinaryOpVal> ArithmeticOps LogicalOps // Binops Subcatagories |
| %token <BinaryOpVal> ADD SUB MUL UDIV SDIV FDIV UREM SREM FREM AND OR XOR |
| %token <BinaryOpVal> SHL LSHR ASHR |
| |
| %token <OtherOpVal> ICMP FCMP VICMP VFCMP |
| %type <IPredicate> IPredicates |
| %type <FPredicate> FPredicates |
| %token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE |
| %token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE |
| |
| // Memory Instructions |
| %token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR |
| |
| // Cast Operators |
| %type <CastOpVal> CastOps |
| %token <CastOpVal> TRUNC ZEXT SEXT FPTRUNC FPEXT BITCAST |
| %token <CastOpVal> UITOFP SITOFP FPTOUI FPTOSI INTTOPTR PTRTOINT |
| |
| // Other Operators |
| %token <OtherOpVal> PHI_TOK SELECT VAARG |
| %token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR |
| %token <OtherOpVal> GETRESULT |
| %token <OtherOpVal> EXTRACTVALUE INSERTVALUE |
| |
| // Function Attributes |
| %token SIGNEXT ZEROEXT NORETURN INREG SRET NOUNWIND NOALIAS BYVAL NEST |
| %token READNONE READONLY GC |
| |
| // Visibility Styles |
| %token DEFAULT HIDDEN PROTECTED |
| |
| %start Module |
| %% |
| |
| |
| // Operations that are notably excluded from this list include: |
| // RET, BR, & SWITCH because they end basic blocks and are treated specially. |
| // |
| ArithmeticOps: ADD | SUB | MUL | UDIV | SDIV | FDIV | UREM | SREM | FREM; |
| LogicalOps : SHL | LSHR | ASHR | AND | OR | XOR; |
| CastOps : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | BITCAST | |
| UITOFP | SITOFP | FPTOUI | FPTOSI | INTTOPTR | PTRTOINT; |
| |
| IPredicates |
| : EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; } |
| | SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; } |
| | SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; } |
| | ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; } |
| | ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; } |
| ; |
| |
| FPredicates |
| : OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; } |
| | OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; } |
| | OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; } |
| | ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; } |
| | UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; } |
| | ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; } |
| | ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; } |
| | TRUETOK { $$ = FCmpInst::FCMP_TRUE; } |
| | FALSETOK { $$ = FCmpInst::FCMP_FALSE; } |
| ; |
| |
| // These are some types that allow classification if we only want a particular |
| // thing... for example, only a signed, unsigned, or integral type. |
| IntType : INTTYPE; |
| FPType : FLOAT | DOUBLE | PPC_FP128 | FP128 | X86_FP80; |
| |
| LocalName : LOCALVAR | STRINGCONSTANT | PCTSTRINGCONSTANT ; |
| OptLocalName : LocalName | /*empty*/ { $$ = 0; }; |
| |
| OptAddrSpace : ADDRSPACE '(' EUINT64VAL ')' { $$=$3; } |
| | /*empty*/ { $$=0; }; |
| |
| /// OptLocalAssign - Value producing statements have an optional assignment |
| /// component. |
| OptLocalAssign : LocalName '=' { |
| $$ = $1; |
| CHECK_FOR_ERROR |
| } |
| | /*empty*/ { |
| $$ = 0; |
| CHECK_FOR_ERROR |
| }; |
| |
| GlobalName : GLOBALVAR | ATSTRINGCONSTANT ; |
| |
| OptGlobalAssign : GlobalAssign |
| | /*empty*/ { |
| $$ = 0; |
| CHECK_FOR_ERROR |
| }; |
| |
| GlobalAssign : GlobalName '=' { |
| $$ = $1; |
| CHECK_FOR_ERROR |
| }; |
| |
| GVInternalLinkage |
| : INTERNAL { $$ = GlobalValue::InternalLinkage; } |
| | WEAK { $$ = GlobalValue::WeakLinkage; } |
| | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; } |
| | APPENDING { $$ = GlobalValue::AppendingLinkage; } |
| | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; } |
| | COMMON { $$ = GlobalValue::CommonLinkage; } |
| ; |
| |
| GVExternalLinkage |
| : DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; } |
| | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; } |
| | EXTERNAL { $$ = GlobalValue::ExternalLinkage; } |
| ; |
| |
| GVVisibilityStyle |
| : /*empty*/ { $$ = GlobalValue::DefaultVisibility; } |
| | DEFAULT { $$ = GlobalValue::DefaultVisibility; } |
| | HIDDEN { $$ = GlobalValue::HiddenVisibility; } |
| | PROTECTED { $$ = GlobalValue::ProtectedVisibility; } |
| ; |
| |
| FunctionDeclareLinkage |
| : /*empty*/ { $$ = GlobalValue::ExternalLinkage; } |
| | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; } |
| | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; } |
| ; |
| |
| FunctionDefineLinkage |
| : /*empty*/ { $$ = GlobalValue::ExternalLinkage; } |
| | INTERNAL { $$ = GlobalValue::InternalLinkage; } |
| | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; } |
| | WEAK { $$ = GlobalValue::WeakLinkage; } |
| | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; } |
| ; |
| |
| AliasLinkage |
| : /*empty*/ { $$ = GlobalValue::ExternalLinkage; } |
| | WEAK { $$ = GlobalValue::WeakLinkage; } |
| | INTERNAL { $$ = GlobalValue::InternalLinkage; } |
| ; |
| |
| OptCallingConv : /*empty*/ { $$ = CallingConv::C; } | |
| CCC_TOK { $$ = CallingConv::C; } | |
| FASTCC_TOK { $$ = CallingConv::Fast; } | |
| COLDCC_TOK { $$ = CallingConv::Cold; } | |
| X86_STDCALLCC_TOK { $$ = CallingConv::X86_StdCall; } | |
| X86_FASTCALLCC_TOK { $$ = CallingConv::X86_FastCall; } | |
| CC_TOK EUINT64VAL { |
| if ((unsigned)$2 != $2) |
| GEN_ERROR("Calling conv too large"); |
| $$ = $2; |
| CHECK_FOR_ERROR |
| }; |
| |
| ParamAttr : ZEROEXT { $$ = ParamAttr::ZExt; } |
| | ZEXT { $$ = ParamAttr::ZExt; } |
| | SIGNEXT { $$ = ParamAttr::SExt; } |
| | SEXT { $$ = ParamAttr::SExt; } |
| | INREG { $$ = ParamAttr::InReg; } |
| | SRET { $$ = ParamAttr::StructRet; } |
| | NOALIAS { $$ = ParamAttr::NoAlias; } |
| | BYVAL { $$ = ParamAttr::ByVal; } |
| | NEST { $$ = ParamAttr::Nest; } |
| | ALIGN EUINT64VAL { $$ = |
| ParamAttr::constructAlignmentFromInt($2); } |
| ; |
| |
| OptParamAttrs : /* empty */ { $$ = ParamAttr::None; } |
| | OptParamAttrs ParamAttr { |
| $$ = $1 | $2; |
| } |
| ; |
| |
| FuncAttr : NORETURN { $$ = ParamAttr::NoReturn; } |
| | NOUNWIND { $$ = ParamAttr::NoUnwind; } |
| | ZEROEXT { $$ = ParamAttr::ZExt; } |
| | SIGNEXT { $$ = ParamAttr::SExt; } |
| | READNONE { $$ = ParamAttr::ReadNone; } |
| | READONLY { $$ = ParamAttr::ReadOnly; } |
| ; |
| |
| OptFuncAttrs : /* empty */ { $$ = ParamAttr::None; } |
| | OptFuncAttrs FuncAttr { |
| $$ = $1 | $2; |
| } |
| ; |
| |
| OptGC : /* empty */ { $$ = 0; } |
| | GC STRINGCONSTANT { |
| $$ = $2; |
| } |
| ; |
| |
| // OptAlign/OptCAlign - An optional alignment, and an optional alignment with |
| // a comma before it. |
| OptAlign : /*empty*/ { $$ = 0; } | |
| ALIGN EUINT64VAL { |
| $$ = $2; |
| if ($$ != 0 && !isPowerOf2_32($$)) |
| GEN_ERROR("Alignment must be a power of two"); |
| CHECK_FOR_ERROR |
| }; |
| OptCAlign : /*empty*/ { $$ = 0; } | |
| ',' ALIGN EUINT64VAL { |
| $$ = $3; |
| if ($$ != 0 && !isPowerOf2_32($$)) |
| GEN_ERROR("Alignment must be a power of two"); |
| CHECK_FOR_ERROR |
| }; |
| |
| |
| |
| SectionString : SECTION STRINGCONSTANT { |
| for (unsigned i = 0, e = $2->length(); i != e; ++i) |
| if ((*$2)[i] == '"' || (*$2)[i] == '\\') |
| GEN_ERROR("Invalid character in section name"); |
| $$ = $2; |
| CHECK_FOR_ERROR |
| }; |
| |
| OptSection : /*empty*/ { $$ = 0; } | |
| SectionString { $$ = $1; }; |
| |
| // GlobalVarAttributes - Used to pass the attributes string on a global. CurGV |
| // is set to be the global we are processing. |
| // |
| GlobalVarAttributes : /* empty */ {} | |
| ',' GlobalVarAttribute GlobalVarAttributes {}; |
| GlobalVarAttribute : SectionString { |
| CurGV->setSection(*$1); |
| delete $1; |
| CHECK_FOR_ERROR |
| } |
| | ALIGN EUINT64VAL { |
| if ($2 != 0 && !isPowerOf2_32($2)) |
| GEN_ERROR("Alignment must be a power of two"); |
| CurGV->setAlignment($2); |
| CHECK_FOR_ERROR |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Types includes all predefined types... except void, because it can only be |
| // used in specific contexts (function returning void for example). |
| |
| // Derived types are added later... |
| // |
| PrimType : INTTYPE | FLOAT | DOUBLE | PPC_FP128 | FP128 | X86_FP80 | LABEL ; |
| |
| Types |
| : OPAQUE { |
| $$ = new PATypeHolder(OpaqueType::get()); |
| CHECK_FOR_ERROR |
| } |
| | PrimType { |
| $$ = new PATypeHolder($1); |
| CHECK_FOR_ERROR |
| } |
| | Types OptAddrSpace '*' { // Pointer type? |
| if (*$1 == Type::LabelTy) |
| GEN_ERROR("Cannot form a pointer to a basic block"); |
| $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1, $2))); |
| delete $1; |
| CHECK_FOR_ERROR |
| } |
| | SymbolicValueRef { // Named types are also simple types... |
| const Type* tmp = getTypeVal($1); |
| CHECK_FOR_ERROR |
| $$ = new PATypeHolder(tmp); |
| } |
| | '\\' EUINT64VAL { // Type UpReference |
| if ($2 > (uint64_t)~0U) GEN_ERROR("Value out of range"); |
| OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder |
| UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector... |
| $$ = new PATypeHolder(OT); |
| UR_OUT("New Upreference!\n"); |
| CHECK_FOR_ERROR |
| } |
| | Types '(' ArgTypeListI ')' OptFuncAttrs { |
| // Allow but ignore attributes on function types; this permits auto-upgrade. |
| // FIXME: remove in LLVM 3.0. |
| const Type *RetTy = *$1; |
| if (!FunctionType::isValidReturnType(RetTy)) |
| GEN_ERROR("Invalid result type for LLVM function"); |
| |
| std::vector<const Type*> Params; |
| TypeWithAttrsList::iterator I = $3->begin(), E = $3->end(); |
| for (; I != E; ++I ) { |
| const Type *Ty = I->Ty->get(); |
| Params.push_back(Ty); |
| } |
| |
| bool isVarArg = Params.size() && Params.back() == Type::VoidTy; |
| if (isVarArg) Params.pop_back(); |
| |
| for (unsigned i = 0; i != Params.size(); ++i) |
| if (!(Params[i]->isFirstClassType() || isa<OpaqueType>(Params[i]))) |
| GEN_ERROR("Function arguments must be value types!"); |
| |
| CHECK_FOR_ERROR |
| |
| FunctionType *FT = FunctionType::get(RetTy, Params, isVarArg); |
| delete $3; // Delete the argument list |
| delete $1; // Delete the return type handle |
| $$ = new PATypeHolder(HandleUpRefs(FT)); |
| CHECK_FOR_ERROR |
| } |
| | VOID '(' ArgTypeListI ')' OptFuncAttrs { |
| // Allow but ignore attributes on function types; this permits auto-upgrade. |
| // FIXME: remove in LLVM 3.0. |
| std::vector<const Type*> Params; |
| TypeWithAttrsList::iterator I = $3->begin(), E = $3->end(); |
| for ( ; I != E; ++I ) { |
| const Type* Ty = I->Ty->get(); |
| Params.push_back(Ty); |
| } |
| |
| bool isVarArg = Params.size() && Params.back() == Type::VoidTy; |
| if (isVarArg) Params.pop_back(); |
| |
| for (unsigned i = 0; i != Params.size(); ++i) |
| if (!(Params[i]->isFirstClassType() || isa<OpaqueType>(Params[i]))) |
| GEN_ERROR("Function arguments must be value types!"); |
| |
| CHECK_FOR_ERROR |
| |
| FunctionType *FT = FunctionType::get($1, Params, isVarArg); |
| delete $3; // Delete the argument list |
| $$ = new PATypeHolder(HandleUpRefs(FT)); |
| CHECK_FOR_ERROR |
| } |
| |
| | '[' EUINT64VAL 'x' Types ']' { // Sized array type? |
| $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, $2))); |
| delete $4; |
| CHECK_FOR_ERROR |
| } |
| | '<' EUINT64VAL 'x' Types '>' { // Vector type? |
| const llvm::Type* ElemTy = $4->get(); |
| if ((unsigned)$2 != $2) |
| GEN_ERROR("Unsigned result not equal to signed result"); |
| if (!ElemTy->isFloatingPoint() && !ElemTy->isInteger()) |
| GEN_ERROR("Element type of a VectorType must be primitive"); |
| $$ = new PATypeHolder(HandleUpRefs(VectorType::get(*$4, (unsigned)$2))); |
| delete $4; |
| CHECK_FOR_ERROR |
| } |
| | '{' TypeListI '}' { // Structure type? |
| std::vector<const Type*> Elements; |
| for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(), |
| E = $2->end(); I != E; ++I) |
| Elements.push_back(*I); |
| |
| $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements))); |
| delete $2; |
| CHECK_FOR_ERROR |
| } |
| | '{' '}' { // Empty structure type? |
| $$ = new PATypeHolder(StructType::get(std::vector<const Type*>())); |
| CHECK_FOR_ERROR |
| } |
| | '<' '{' TypeListI '}' '>' { |
| std::vector<const Type*> Elements; |
| for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(), |
| E = $3->end(); I != E; ++I) |
| Elements.push_back(*I); |
| |
| $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true))); |
| delete $3; |
| CHECK_FOR_ERROR |
| } |
| | '<' '{' '}' '>' { // Empty structure type? |
| $$ = new PATypeHolder(StructType::get(std::vector<const Type*>(), true)); |
| CHECK_FOR_ERROR |
| } |
| ; |
| |
| ArgType |
| : Types OptParamAttrs { |
| // Allow but ignore attributes on function types; this permits auto-upgrade. |
| // FIXME: remove in LLVM 3.0. |
| $$.Ty = $1; |
| $$.Attrs = ParamAttr::None; |
| } |
| ; |
| |
| ResultTypes |
| : Types { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); |
| if (!(*$1)->isFirstClassType() && !isa<StructType>($1->get())) |
| GEN_ERROR("LLVM functions cannot return aggregate types"); |
| $$ = $1; |
| } |
| | VOID { |
| $$ = new PATypeHolder(Type::VoidTy); |
| } |
| ; |
| |
| ArgTypeList : ArgType { |
| $$ = new TypeWithAttrsList(); |
| $$->push_back($1); |
| CHECK_FOR_ERROR |
| } |
| | ArgTypeList ',' ArgType { |
| ($$=$1)->push_back($3); |
| CHECK_FOR_ERROR |
| } |
| ; |
| |
| ArgTypeListI |
| : ArgTypeList |
| | ArgTypeList ',' DOTDOTDOT { |
| $$=$1; |
| TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None; |
| TWA.Ty = new PATypeHolder(Type::VoidTy); |
| $$->push_back(TWA); |
| CHECK_FOR_ERROR |
| } |
| | DOTDOTDOT { |
| $$ = new TypeWithAttrsList; |
| TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None; |
| TWA.Ty = new PATypeHolder(Type::VoidTy); |
| $$->push_back(TWA); |
| CHECK_FOR_ERROR |
| } |
| | /*empty*/ { |
| $$ = new TypeWithAttrsList(); |
| CHECK_FOR_ERROR |
| }; |
| |
| // TypeList - Used for struct declarations and as a basis for function type |
| // declaration type lists |
| // |
| TypeListI : Types { |
| $$ = new std::list<PATypeHolder>(); |
| $$->push_back(*$1); |
| delete $1; |
| CHECK_FOR_ERROR |
| } |
| | TypeListI ',' Types { |
| ($$=$1)->push_back(*$3); |
| delete $3; |
| CHECK_FOR_ERROR |
| }; |
| |
| // ConstVal - The various declarations that go into the constant pool. This |
| // production is used ONLY to represent constants that show up AFTER a 'const', |
| // 'constant' or 'global' token at global scope. Constants that can be inlined |
| // into other expressions (such as integers and constexprs) are handled by the |
| // ResolvedVal, ValueRef and ConstValueRef productions. |
| // |
| ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); |
| const ArrayType *ATy = dyn_cast<ArrayType>($1->get()); |
| if (ATy == 0) |
| GEN_ERROR("Cannot make array constant with type: '" + |
| (*$1)->getDescription() + "'"); |
| const Type *ETy = ATy->getElementType(); |
| uint64_t NumElements = ATy->getNumElements(); |
| |
| // Verify that we have the correct size... |
| if (NumElements != uint64_t(-1) && NumElements != $3->size()) |
| GEN_ERROR("Type mismatch: constant sized array initialized with " + |
| utostr($3->size()) + " arguments, but has size of " + |
| utostr(NumElements) + ""); |
| |
| // Verify all elements are correct type! |
| for (unsigned i = 0; i < $3->size(); i++) { |
| if (ETy != (*$3)[i]->getType()) |
| GEN_ERROR("Element #" + utostr(i) + " is not of type '" + |
| ETy->getDescription() +"' as required!\nIt is of type '"+ |
| (*$3)[i]->getType()->getDescription() + "'."); |
| } |
| |
| $$ = ConstantArray::get(ATy, *$3); |
| delete $1; delete $3; |
| CHECK_FOR_ERROR |
| } |
| | Types '[' ']' { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); |
| const ArrayType *ATy = dyn_cast<ArrayType>($1->get()); |
| if (ATy == 0) |
| GEN_ERROR("Cannot make array constant with type: '" + |
| (*$1)->getDescription() + "'"); |
| |
| uint64_t NumElements = ATy->getNumElements(); |
| if (NumElements != uint64_t(-1) && NumElements != 0) |
| GEN_ERROR("Type mismatch: constant sized array initialized with 0" |
| " arguments, but has size of " + utostr(NumElements) +""); |
| $$ = ConstantArray::get(ATy, std::vector<Constant*>()); |
| delete $1; |
| CHECK_FOR_ERROR |
| } |
| | Types 'c' STRINGCONSTANT { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); |
| const ArrayType *ATy = dyn_cast<ArrayType>($1->get()); |
| if (ATy == 0) |
| GEN_ERROR("Cannot make array constant with type: '" + |
| (*$1)->getDescription() + "'"); |
| |
| uint64_t NumElements = ATy->getNumElements(); |
| const Type *ETy = ATy->getElementType(); |
| if (NumElements != uint64_t(-1) && NumElements != $3->length()) |
| GEN_ERROR("Can't build string constant of size " + |
| utostr($3->length()) + |
| " when array has size " + utostr(NumElements) + ""); |
| std::vector<Constant*> Vals; |
| if (ETy == Type::Int8Ty) { |
| for (uint64_t i = 0; i < $3->length(); ++i) |
| Vals.push_back(ConstantInt::get(ETy, (*$3)[i])); |
| } else { |
| delete $3; |
| GEN_ERROR("Cannot build string arrays of non byte sized elements"); |
| } |
| delete $3; |
| $$ = ConstantArray::get(ATy, Vals); |
| delete $1; |
| CHECK_FOR_ERROR |
| } |
| | Types '<' ConstVector '>' { // Nonempty unsized arr |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); |
| const VectorType *PTy = dyn_cast<VectorType>($1->get()); |
| if (PTy == 0) |
| GEN_ERROR("Cannot make packed constant with type: '" + |
| (*$1)->getDescription() + "'"); |
| const Type *ETy = PTy->getElementType(); |
| unsigned NumElements = PTy->getNumElements(); |
| |
| // Verify that we have the correct size... |
| if (NumElements != unsigned(-1) && NumElements != (unsigned)$3->size()) |
| GEN_ERROR("Type mismatch: constant sized packed initialized with " + |
| utostr($3->size()) + " arguments, but has size of " + |
| utostr(NumElements) + ""); |
| |
| // Verify all elements are correct type! |
| for (unsigned i = 0; i < $3->size(); i++) { |
| if (ETy != (*$3)[i]->getType()) |
| GEN_ERROR("Element #" + utostr(i) + " is not of type '" + |
| ETy->getDescription() +"' as required!\nIt is of type '"+ |
| (*$3)[i]->getType()->getDescription() + "'."); |
| } |
| |
| $$ = ConstantVector::get(PTy, *$3); |
| delete $1; delete $3; |
| CHECK_FOR_ERROR |
| } |
| | Types '{' ConstVector '}' { |
| const StructType *STy = dyn_cast<StructType>($1->get()); |
| if (STy == 0) |
| GEN_ERROR("Cannot make struct constant with type: '" + |
| (*$1)->getDescription() + "'"); |
| |
| if ($3->size() != STy->getNumContainedTypes()) |
| GEN_ERROR("Illegal number of initializers for structure type"); |
| |
| // Check to ensure that constants are compatible with the type initializer! |
| for (unsigned i = 0, e = $3->size(); i != e; ++i) |
| if ((*$3)[i]->getType() != STy->getElementType(i)) |
| GEN_ERROR("Expected type '" + |
| STy->getElementType(i)->getDescription() + |
| "' for element #" + utostr(i) + |
| " of structure initializer"); |
| |
| // Check to ensure that Type is not packed |
| if (STy->isPacked()) |
| GEN_ERROR("Unpacked Initializer to vector type '" + |
| STy->getDescription() + "'"); |
| |
| $$ = ConstantStruct::get(STy, *$3); |
| delete $1; delete $3; |
| CHECK_FOR_ERROR |
| } |
| | Types '{' '}' { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); |
| const StructType *STy = dyn_cast<StructType>($1->get()); |
| if (STy == 0) |
| GEN_ERROR("Cannot make struct constant with type: '" + |
| (*$1)->getDescription() + "'"); |
| |
| if (STy->getNumContainedTypes() != 0) |
| GEN_ERROR("Illegal number of initializers for structure type"); |
| |
| // Check to ensure that Type is not packed |
| if (STy->isPacked()) |
| GEN_ERROR("Unpacked Initializer to vector type '" + |
| STy->getDescription() + "'"); |
| |
| $$ = ConstantStruct::get(STy, std::vector<Constant*>()); |
| delete $1; |
| CHECK_FOR_ERROR |
| } |
| | Types '<' '{' ConstVector '}' '>' { |
| const StructType *STy = dyn_cast<StructType>($1->get()); |
| if (STy == 0) |
| GEN_ERROR("Cannot make struct constant with type: '" + |
| (*$1)->getDescription() + "'"); |
| |
| if ($4->size() != STy->getNumContainedTypes()) |
| GEN_ERROR("Illegal number of initializers for structure type"); |
| |
| // Check to ensure that constants are compatible with the type initializer! |
| for (unsigned i = 0, e = $4->size(); i != e; ++i) |
| if ((*$4)[i]->getType() != STy->getElementType(i)) |
| GEN_ERROR("Expected type '" + |
| STy->getElementType(i)->getDescription() + |
| "' for element #" + utostr(i) + |
| " of structure initializer"); |
| |
| // Check to ensure that Type is packed |
| if (!STy->isPacked()) |
| GEN_ERROR("Vector initializer to non-vector type '" + |
| STy->getDescription() + "'"); |
| |
| $$ = ConstantStruct::get(STy, *$4); |
| delete $1; delete $4; |
| CHECK_FOR_ERROR |
| } |
| | Types '<' '{' '}' '>' { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); |
| const StructType *STy = dyn_cast<StructType>($1->get()); |
| if (STy == 0) |
| GEN_ERROR("Cannot make struct constant with type: '" + |
| (*$1)->getDescription() + "'"); |
| |
| if (STy->getNumContainedTypes() != 0) |
| GEN_ERROR("Illegal number of initializers for structure type"); |
| |
| // Check to ensure that Type is packed |
| if (!STy->isPacked()) |
| GEN_ERROR("Vector initializer to non-vector type '" + |
| STy->getDescription() + "'"); |
| |
| $$ = ConstantStruct::get(STy, std::vector<Constant*>()); |
| delete $1; |
| CHECK_FOR_ERROR |
| } |
| | Types NULL_TOK { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); |
| const PointerType *PTy = dyn_cast<PointerType>($1->get()); |
| if (PTy == 0) |
| GEN_ERROR("Cannot make null pointer constant with type: '" + |
| (*$1)->getDescription() + "'"); |
| |
| $$ = ConstantPointerNull::get(PTy); |
| delete $1; |
| CHECK_FOR_ERROR |
| } |
| | Types UNDEF { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); |
| $$ = UndefValue::get($1->get()); |
| delete $1; |
| CHECK_FOR_ERROR |
| } |
| | Types SymbolicValueRef { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); |
| const PointerType *Ty = dyn_cast<PointerType>($1->get()); |
| if (Ty == 0) |
| GEN_ERROR("Global const reference must be a pointer type " + (*$1)->getDescription()); |
| |
| // ConstExprs can exist in the body of a function, thus creating |
| // GlobalValues whenever they refer to a variable. Because we are in |
| // the context of a function, getExistingVal will search the functions |
| // symbol table instead of the module symbol table for the global symbol, |
| // which throws things all off. To get around this, we just tell |
| // getExistingVal that we are at global scope here. |
| // |
| Function *SavedCurFn = CurFun.CurrentFunction; |
| CurFun.CurrentFunction = 0; |
| |
| Value *V = getExistingVal(Ty, $2); |
| CHECK_FOR_ERROR |
| |
| CurFun.CurrentFunction = SavedCurFn; |
| |
| // If this is an initializer for a constant pointer, which is referencing a |
| // (currently) undefined variable, create a stub now that shall be replaced |
| // in the future with the right type of variable. |
| // |
| if (V == 0) { |
| assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!"); |
| const PointerType *PT = cast<PointerType>(Ty); |
| |
| // First check to see if the forward references value is already created! |
| PerModuleInfo::GlobalRefsType::iterator I = |
| CurModule.GlobalRefs.find(std::make_pair(PT, $2)); |
| |
| if (I != CurModule.GlobalRefs.end()) { |
| V = I->second; // Placeholder already exists, use it... |
| $2.destroy(); |
| } else { |
| std::string Name; |
| if ($2.Type == ValID::GlobalName) |
| Name = $2.getName(); |
| else if ($2.Type != ValID::GlobalID) |
| GEN_ERROR("Invalid reference to global"); |
| |
| // Create the forward referenced global. |
| GlobalValue *GV; |
| if (const FunctionType *FTy = |
| dyn_cast<FunctionType>(PT->getElementType())) { |
| GV = Function::Create(FTy, GlobalValue::ExternalWeakLinkage, Name, |
| CurModule.CurrentModule); |
| } else { |
| GV = new GlobalVariable(PT->getElementType(), false, |
| GlobalValue::ExternalWeakLinkage, 0, |
| Name, CurModule.CurrentModule); |
| } |
| |
| // Keep track of the fact that we have a forward ref to recycle it |
| CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV)); |
| V = GV; |
| } |
| } |
| |
| $$ = cast<GlobalValue>(V); |
| delete $1; // Free the type handle |
| CHECK_FOR_ERROR |
| } |
| | Types ConstExpr { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); |
| if ($1->get() != $2->getType()) |
| GEN_ERROR("Mismatched types for constant expression: " + |
| (*$1)->getDescription() + " and " + $2->getType()->getDescription()); |
| $$ = $2; |
| delete $1; |
| CHECK_FOR_ERROR |
| } |
| | Types ZEROINITIALIZER { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); |
| const Type *Ty = $1->get(); |
| if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty)) |
| GEN_ERROR("Cannot create a null initialized value of this type"); |
| $$ = Constant::getNullValue(Ty); |
| delete $1; |
| CHECK_FOR_ERROR |
| } |
| | IntType ESINT64VAL { // integral constants |
| if (!ConstantInt::isValueValidForType($1, $2)) |
| GEN_ERROR("Constant value doesn't fit in type"); |
| $$ = ConstantInt::get($1, $2, true); |
| CHECK_FOR_ERROR |
| } |
| | IntType ESAPINTVAL { // arbitrary precision integer constants |
| uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth(); |
| if ($2->getBitWidth() > BitWidth) { |
| GEN_ERROR("Constant value does not fit in type"); |
| } |
| $2->sextOrTrunc(BitWidth); |
| $$ = ConstantInt::get(*$2); |
| delete $2; |
| CHECK_FOR_ERROR |
| } |
| | IntType EUINT64VAL { // integral constants |
| if (!ConstantInt::isValueValidForType($1, $2)) |
| GEN_ERROR("Constant value doesn't fit in type"); |
| $$ = ConstantInt::get($1, $2, false); |
| CHECK_FOR_ERROR |
| } |
| | IntType EUAPINTVAL { // arbitrary precision integer constants |
| uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth(); |
| if ($2->getBitWidth() > BitWidth) { |
| GEN_ERROR("Constant value does not fit in type"); |
| } |
| $2->zextOrTrunc(BitWidth); |
| $$ = ConstantInt::get(*$2); |
| delete $2; |
| CHECK_FOR_ERROR |
| } |
| | INTTYPE TRUETOK { // Boolean constants |
| if (cast<IntegerType>($1)->getBitWidth() != 1) |
| GEN_ERROR("Constant true must have type i1"); |
| $$ = ConstantInt::getTrue(); |
| CHECK_FOR_ERROR |
| } |
| | INTTYPE FALSETOK { // Boolean constants |
| if (cast<IntegerType>($1)->getBitWidth() != 1) |
| GEN_ERROR("Constant false must have type i1"); |
| $$ = ConstantInt::getFalse(); |
| CHECK_FOR_ERROR |
| } |
| | FPType FPVAL { // Floating point constants |
| if (!ConstantFP::isValueValidForType($1, *$2)) |
| GEN_ERROR("Floating point constant invalid for type"); |
| // Lexer has no type info, so builds all float and double FP constants |
| // as double. Fix this here. Long double is done right. |
| if (&$2->getSemantics()==&APFloat::IEEEdouble && $1==Type::FloatTy) |
| $2->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven); |
| $$ = ConstantFP::get(*$2); |
| delete $2; |
| CHECK_FOR_ERROR |
| }; |
| |
| |
| ConstExpr: CastOps '(' ConstVal TO Types ')' { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription()); |
| Constant *Val = $3; |
| const Type *DestTy = $5->get(); |
| if (!CastInst::castIsValid($1, $3, DestTy)) |
| GEN_ERROR("invalid cast opcode for cast from '" + |
| Val->getType()->getDescription() + "' to '" + |
| DestTy->getDescription() + "'"); |
| $$ = ConstantExpr::getCast($1, $3, DestTy); |
| delete $5; |
| } |
| | GETELEMENTPTR '(' ConstVal IndexList ')' { |
| if (!isa<PointerType>($3->getType())) |
| GEN_ERROR("GetElementPtr requires a pointer operand"); |
| |
| const Type *IdxTy = |
| GetElementPtrInst::getIndexedType($3->getType(), $4->begin(), $4->end()); |
| if (!IdxTy) |
| GEN_ERROR("Index list invalid for constant getelementptr"); |
| |
| SmallVector<Constant*, 8> IdxVec; |
| for (unsigned i = 0, e = $4->size(); i != e; ++i) |
| if (Constant *C = dyn_cast<Constant>((*$4)[i])) |
| IdxVec.push_back(C); |
| else |
| GEN_ERROR("Indices to constant getelementptr must be constants"); |
| |
| delete $4; |
| |
| $$ = ConstantExpr::getGetElementPtr($3, &IdxVec[0], IdxVec.size()); |
| CHECK_FOR_ERROR |
| } |
| | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' { |
| if ($3->getType() != Type::Int1Ty) |
| GEN_ERROR("Select condition must be of boolean type"); |
| if ($5->getType() != $7->getType()) |
| GEN_ERROR("Select operand types must match"); |
| $$ = ConstantExpr::getSelect($3, $5, $7); |
| CHECK_FOR_ERROR |
| } |
| | ArithmeticOps '(' ConstVal ',' ConstVal ')' { |
| if ($3->getType() != $5->getType()) |
| GEN_ERROR("Binary operator types must match"); |
| CHECK_FOR_ERROR; |
| $$ = ConstantExpr::get($1, $3, $5); |
| } |
| | LogicalOps '(' ConstVal ',' ConstVal ')' { |
| if ($3->getType() != $5->getType()) |
| GEN_ERROR("Logical operator types must match"); |
| if (!$3->getType()->isInteger()) { |
| if (Instruction::isShift($1) || !isa<VectorType>($3->getType()) || |
| !cast<VectorType>($3->getType())->getElementType()->isInteger()) |
| GEN_ERROR("Logical operator requires integral operands"); |
| } |
| $$ = ConstantExpr::get($1, $3, $5); |
| CHECK_FOR_ERROR |
| } |
| | ICMP IPredicates '(' ConstVal ',' ConstVal ')' { |
| if ($4->getType() != $6->getType()) |
| GEN_ERROR("icmp operand types must match"); |
| $$ = ConstantExpr::getICmp($2, $4, $6); |
| } |
| | FCMP FPredicates '(' ConstVal ',' ConstVal ')' { |
| if ($4->getType() != $6->getType()) |
| GEN_ERROR("fcmp operand types must match"); |
| $$ = ConstantExpr::getFCmp($2, $4, $6); |
| } |
| | VICMP IPredicates '(' ConstVal ',' ConstVal ')' { |
| if ($4->getType() != $6->getType()) |
| GEN_ERROR("vicmp operand types must match"); |
| $$ = ConstantExpr::getVICmp($2, $4, $6); |
| } |
| | VFCMP FPredicates '(' ConstVal ',' ConstVal ')' { |
| if ($4->getType() != $6->getType()) |
| GEN_ERROR("vfcmp operand types must match"); |
| $$ = ConstantExpr::getVFCmp($2, $4, $6); |
| } |
| | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' { |
| if (!ExtractElementInst::isValidOperands($3, $5)) |
| GEN_ERROR("Invalid extractelement operands"); |
| $$ = ConstantExpr::getExtractElement($3, $5); |
| CHECK_FOR_ERROR |
| } |
| | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' { |
| if (!InsertElementInst::isValidOperands($3, $5, $7)) |
| GEN_ERROR("Invalid insertelement operands"); |
| $$ = ConstantExpr::getInsertElement($3, $5, $7); |
| CHECK_FOR_ERROR |
| } |
| | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' { |
| if (!ShuffleVectorInst::isValidOperands($3, $5, $7)) |
| GEN_ERROR("Invalid shufflevector operands"); |
| $$ = ConstantExpr::getShuffleVector($3, $5, $7); |
| CHECK_FOR_ERROR |
| } |
| | EXTRACTVALUE '(' ConstVal ConstantIndexList ')' { |
| if (!isa<StructType>($3->getType()) && !isa<ArrayType>($3->getType())) |
| GEN_ERROR("ExtractValue requires an aggregate operand"); |
| |
| $$ = ConstantExpr::getExtractValue($3, &(*$4)[0], $4->size()); |
| delete $4; |
| CHECK_FOR_ERROR |
| } |
| | INSERTVALUE '(' ConstVal ',' ConstVal ConstantIndexList ')' { |
| if (!isa<StructType>($3->getType()) && !isa<ArrayType>($3->getType())) |
| GEN_ERROR("InsertValue requires an aggregate operand"); |
| |
| $$ = ConstantExpr::getInsertValue($3, $5, &(*$6)[0], $6->size()); |
| delete $6; |
| CHECK_FOR_ERROR |
| }; |
| |
| |
| // ConstVector - A list of comma separated constants. |
| ConstVector : ConstVector ',' ConstVal { |
| ($$ = $1)->push_back($3); |
| CHECK_FOR_ERROR |
| } |
| | ConstVal { |
| $$ = new std::vector<Constant*>(); |
| $$->push_back($1); |
| CHECK_FOR_ERROR |
| }; |
| |
| |
| // GlobalType - Match either GLOBAL or CONSTANT for global declarations... |
| GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; }; |
| |
| // ThreadLocal |
| ThreadLocal : THREAD_LOCAL { $$ = true; } | { $$ = false; }; |
| |
| // AliaseeRef - Match either GlobalValue or bitcast to GlobalValue. |
| AliaseeRef : ResultTypes SymbolicValueRef { |
| const Type* VTy = $1->get(); |
| Value *V = getVal(VTy, $2); |
| CHECK_FOR_ERROR |
| GlobalValue* Aliasee = dyn_cast<GlobalValue>(V); |
| if (!Aliasee) |
| GEN_ERROR("Aliases can be created only to global values"); |
| |
| $$ = Aliasee; |
| CHECK_FOR_ERROR |
| delete $1; |
| } |
| | BITCAST '(' AliaseeRef TO Types ')' { |
| Constant *Val = $3; |
| const Type *DestTy = $5->get(); |
| if (!CastInst::castIsValid($1, $3, DestTy)) |
| GEN_ERROR("invalid cast opcode for cast from '" + |
| Val->getType()->getDescription() + "' to '" + |
| DestTy->getDescription() + "'"); |
| |
| $$ = ConstantExpr::getCast($1, $3, DestTy); |
| CHECK_FOR_ERROR |
| delete $5; |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Rules to match Modules |
| //===----------------------------------------------------------------------===// |
| |
| // Module rule: Capture the result of parsing the whole file into a result |
| // variable... |
| // |
| Module |
| : DefinitionList { |
| $$ = ParserResult = CurModule.CurrentModule; |
| CurModule.ModuleDone(); |
| CHECK_FOR_ERROR; |
| } |
| | /*empty*/ { |
| $$ = ParserResult = CurModule.CurrentModule; |
| CurModule.ModuleDone(); |
| CHECK_FOR_ERROR; |
| } |
| ; |
| |
| DefinitionList |
| : Definition |
| | DefinitionList Definition |
| ; |
| |
| Definition |
| : DEFINE { CurFun.isDeclare = false; } Function { |
| CurFun.FunctionDone(); |
| CHECK_FOR_ERROR |
| } |
| | DECLARE { CurFun.isDeclare = true; } FunctionProto { |
| CHECK_FOR_ERROR |
| } |
| | MODULE ASM_TOK AsmBlock { |
| CHECK_FOR_ERROR |
| } |
| | OptLocalAssign TYPE Types { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription()); |
| // Eagerly resolve types. This is not an optimization, this is a |
| // requirement that is due to the fact that we could have this: |
| // |
| // %list = type { %list * } |
| // %list = type { %list * } ; repeated type decl |
| // |
| // If types are not resolved eagerly, then the two types will not be |
| // determined to be the same type! |
| // |
| ResolveTypeTo($1, *$3); |
| |
| if (!setTypeName(*$3, $1) && !$1) { |
| CHECK_FOR_ERROR |
| // If this is a named type that is not a redefinition, add it to the slot |
| // table. |
| CurModule.Types.push_back(*$3); |
| } |
| |
| delete $3; |
| CHECK_FOR_ERROR |
| } |
| | OptLocalAssign TYPE VOID { |
| ResolveTypeTo($1, $3); |
| |
| if (!setTypeName($3, $1) && !$1) { |
| CHECK_FOR_ERROR |
| // If this is a named type that is not a redefinition, add it to the slot |
| // table. |
| CurModule.Types.push_back($3); |
| } |
| CHECK_FOR_ERROR |
| } |
| | OptGlobalAssign GVVisibilityStyle ThreadLocal GlobalType ConstVal |
| OptAddrSpace { |
| /* "Externally Visible" Linkage */ |
| if ($5 == 0) |
| GEN_ERROR("Global value initializer is not a constant"); |
| CurGV = ParseGlobalVariable($1, GlobalValue::ExternalLinkage, |
| $2, $4, $5->getType(), $5, $3, $6); |
| CHECK_FOR_ERROR |
| } GlobalVarAttributes { |
| CurGV = 0; |
| } |
| | OptGlobalAssign GVInternalLinkage GVVisibilityStyle ThreadLocal GlobalType |
| ConstVal OptAddrSpace { |
| if ($6 == 0) |
| GEN_ERROR("Global value initializer is not a constant"); |
| CurGV = ParseGlobalVariable($1, $2, $3, $5, $6->getType(), $6, $4, $7); |
| CHECK_FOR_ERROR |
| } GlobalVarAttributes { |
| CurGV = 0; |
| } |
| | OptGlobalAssign GVExternalLinkage GVVisibilityStyle ThreadLocal GlobalType |
| Types OptAddrSpace { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$6)->getDescription()); |
| CurGV = ParseGlobalVariable($1, $2, $3, $5, *$6, 0, $4, $7); |
| CHECK_FOR_ERROR |
| delete $6; |
| } GlobalVarAttributes { |
| CurGV = 0; |
| CHECK_FOR_ERROR |
| } |
| | OptGlobalAssign GVVisibilityStyle ALIAS AliasLinkage AliaseeRef { |
| std::string Name; |
| if ($1) { |
| Name = *$1; |
| delete $1; |
| } |
| if (Name.empty()) |
| GEN_ERROR("Alias name cannot be empty"); |
| |
| Constant* Aliasee = $5; |
| if (Aliasee == 0) |
| GEN_ERROR(std::string("Invalid aliasee for alias: ") + Name); |
| |
| GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), $4, Name, Aliasee, |
| CurModule.CurrentModule); |
| GA->setVisibility($2); |
| InsertValue(GA, CurModule.Values); |
| |
| |
| // If there was a forward reference of this alias, resolve it now. |
| |
| ValID ID; |
| if (!Name.empty()) |
| ID = ValID::createGlobalName(Name); |
| else |
| ID = ValID::createGlobalID(CurModule.Values.size()-1); |
| |
| if (GlobalValue *FWGV = |
| CurModule.GetForwardRefForGlobal(GA->getType(), ID)) { |
| // Replace uses of the fwdref with the actual alias. |
| FWGV->replaceAllUsesWith(GA); |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(FWGV)) |
| GV->eraseFromParent(); |
| else |
| cast<Function>(FWGV)->eraseFromParent(); |
| } |
| ID.destroy(); |
| |
| CHECK_FOR_ERROR |
| } |
| | TARGET TargetDefinition { |
| CHECK_FOR_ERROR |
| } |
| | DEPLIBS '=' LibrariesDefinition { |
| CHECK_FOR_ERROR |
| } |
| ; |
| |
| |
| AsmBlock : STRINGCONSTANT { |
| const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm(); |
| if (AsmSoFar.empty()) |
| CurModule.CurrentModule->setModuleInlineAsm(*$1); |
| else |
| CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+*$1); |
| delete $1; |
| CHECK_FOR_ERROR |
| }; |
| |
| TargetDefinition : TRIPLE '=' STRINGCONSTANT { |
| CurModule.CurrentModule->setTargetTriple(*$3); |
| delete $3; |
| } |
| | DATALAYOUT '=' STRINGCONSTANT { |
| CurModule.CurrentModule->setDataLayout(*$3); |
| delete $3; |
| }; |
| |
| LibrariesDefinition : '[' LibList ']'; |
| |
| LibList : LibList ',' STRINGCONSTANT { |
| CurModule.CurrentModule->addLibrary(*$3); |
| delete $3; |
| CHECK_FOR_ERROR |
| } |
| | STRINGCONSTANT { |
| CurModule.CurrentModule->addLibrary(*$1); |
| delete $1; |
| CHECK_FOR_ERROR |
| } |
| | /* empty: end of list */ { |
| CHECK_FOR_ERROR |
| } |
| ; |
| |
| //===----------------------------------------------------------------------===// |
| // Rules to match Function Headers |
| //===----------------------------------------------------------------------===// |
| |
| ArgListH : ArgListH ',' Types OptParamAttrs OptLocalName { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription()); |
| if (!(*$3)->isFirstClassType()) |
| GEN_ERROR("Argument types must be first-class"); |
| ArgListEntry E; E.Attrs = $4; E.Ty = $3; E.Name = $5; |
| $$ = $1; |
| $1->push_back(E); |
| CHECK_FOR_ERROR |
| } |
| | Types OptParamAttrs OptLocalName { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); |
| if (!(*$1)->isFirstClassType()) |
| GEN_ERROR("Argument types must be first-class"); |
| ArgListEntry E; E.Attrs = $2; E.Ty = $1; E.Name = $3; |
| $$ = new ArgListType; |
| $$->push_back(E); |
| CHECK_FOR_ERROR |
| }; |
| |
| ArgList : ArgListH { |
| $$ = $1; |
| CHECK_FOR_ERROR |
| } |
| | ArgListH ',' DOTDOTDOT { |
| $$ = $1; |
| struct ArgListEntry E; |
| E.Ty = new PATypeHolder(Type::VoidTy); |
| E.Name = 0; |
| E.Attrs = ParamAttr::None; |
| $$->push_back(E); |
| CHECK_FOR_ERROR |
| } |
| | DOTDOTDOT { |
| $$ = new ArgListType; |
| struct ArgListEntry E; |
| E.Ty = new PATypeHolder(Type::VoidTy); |
| E.Name = 0; |
| E.Attrs = ParamAttr::None; |
| $$->push_back(E); |
| CHECK_FOR_ERROR |
| } |
| | /* empty */ { |
| $$ = 0; |
| CHECK_FOR_ERROR |
| }; |
| |
| FunctionHeaderH : OptCallingConv ResultTypes GlobalName '(' ArgList ')' |
| OptFuncAttrs OptSection OptAlign OptGC { |
| std::string FunctionName(*$3); |
| delete $3; // Free strdup'd memory! |
| |
| // Check the function result for abstractness if this is a define. We should |
| // have no abstract types at this point |
| if (!CurFun.isDeclare && CurModule.TypeIsUnresolved($2)) |
| GEN_ERROR("Reference to abstract result: "+ $2->get()->getDescription()); |
| |
| if (!FunctionType::isValidReturnType(*$2)) |
| GEN_ERROR("Invalid result type for LLVM function"); |
| |
| std::vector<const Type*> ParamTypeList; |
| SmallVector<ParamAttrsWithIndex, 8> Attrs; |
| if ($7 != ParamAttr::None) |
| Attrs.push_back(ParamAttrsWithIndex::get(0, $7)); |
| if ($5) { // If there are arguments... |
| unsigned index = 1; |
| for (ArgListType::iterator I = $5->begin(); I != $5->end(); ++I, ++index) { |
| const Type* Ty = I->Ty->get(); |
| if (!CurFun.isDeclare && CurModule.TypeIsUnresolved(I->Ty)) |
| GEN_ERROR("Reference to abstract argument: " + Ty->getDescription()); |
| ParamTypeList.push_back(Ty); |
| if (Ty != Type::VoidTy && I->Attrs != ParamAttr::None) |
| Attrs.push_back(ParamAttrsWithIndex::get(index, I->Attrs)); |
| } |
| } |
| |
| bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy; |
| if (isVarArg) ParamTypeList.pop_back(); |
| |
| PAListPtr PAL; |
| if (!Attrs.empty()) |
| PAL = PAListPtr::get(Attrs.begin(), Attrs.end()); |
| |
| FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg); |
| const PointerType *PFT = PointerType::getUnqual(FT); |
| delete $2; |
| |
| ValID ID; |
| if (!FunctionName.empty()) { |
| ID = ValID::createGlobalName((char*)FunctionName.c_str()); |
| } else { |
| ID = ValID::createGlobalID(CurModule.Values.size()); |
| } |
| |
| Function *Fn = 0; |
| // See if this function was forward referenced. If so, recycle the object. |
| if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) { |
| // Move the function to the end of the list, from whereever it was |
| // previously inserted. |
| Fn = cast<Function>(FWRef); |
| assert(Fn->getParamAttrs().isEmpty() && |
| "Forward reference has parameter attributes!"); |
| CurModule.CurrentModule->getFunctionList().remove(Fn); |
| CurModule.CurrentModule->getFunctionList().push_back(Fn); |
| } else if (!FunctionName.empty() && // Merge with an earlier prototype? |
| (Fn = CurModule.CurrentModule->getFunction(FunctionName))) { |
| if (Fn->getFunctionType() != FT ) { |
| // The existing function doesn't have the same type. This is an overload |
| // error. |
| GEN_ERROR("Overload of function '" + FunctionName + "' not permitted."); |
| } else if (Fn->getParamAttrs() != PAL) { |
| // The existing function doesn't have the same parameter attributes. |
| // This is an overload error. |
| GEN_ERROR("Overload of function '" + FunctionName + "' not permitted."); |
| } else if (!CurFun.isDeclare && !Fn->isDeclaration()) { |
| // Neither the existing or the current function is a declaration and they |
| // have the same name and same type. Clearly this is a redefinition. |
| GEN_ERROR("Redefinition of function '" + FunctionName + "'"); |
| } else if (Fn->isDeclaration()) { |
| // Make sure to strip off any argument names so we can't get conflicts. |
| for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end(); |
| AI != AE; ++AI) |
| AI->setName(""); |
| } |
| } else { // Not already defined? |
| Fn = Function::Create(FT, GlobalValue::ExternalWeakLinkage, FunctionName, |
| CurModule.CurrentModule); |
| InsertValue(Fn, CurModule.Values); |
| } |
| |
| CurFun.FunctionStart(Fn); |
| |
| if (CurFun.isDeclare) { |
| // If we have declaration, always overwrite linkage. This will allow us to |
| // correctly handle cases, when pointer to function is passed as argument to |
| // another function. |
| Fn->setLinkage(CurFun.Linkage); |
| Fn->setVisibility(CurFun.Visibility); |
| } |
| Fn->setCallingConv($1); |
| Fn->setParamAttrs(PAL); |
| Fn->setAlignment($9); |
| if ($8) { |
| Fn->setSection(*$8); |
| delete $8; |
| } |
| if ($10) { |
| Fn->setCollector($10->c_str()); |
| delete $10; |
| } |
| |
| // Add all of the arguments we parsed to the function... |
| if ($5) { // Is null if empty... |
| if (isVarArg) { // Nuke the last entry |
| assert($5->back().Ty->get() == Type::VoidTy && $5->back().Name == 0 && |
| "Not a varargs marker!"); |
| delete $5->back().Ty; |
| $5->pop_back(); // Delete the last entry |
| } |
| Function::arg_iterator ArgIt = Fn->arg_begin(); |
| Function::arg_iterator ArgEnd = Fn->arg_end(); |
| unsigned Idx = 1; |
| for (ArgListType::iterator I = $5->begin(); |
| I != $5->end() && ArgIt != ArgEnd; ++I, ++ArgIt) { |
| delete I->Ty; // Delete the typeholder... |
| setValueName(ArgIt, I->Name); // Insert arg into symtab... |
| CHECK_FOR_ERROR |
| InsertValue(ArgIt); |
| Idx++; |
| } |
| |
| delete $5; // We're now done with the argument list |
| } |
| CHECK_FOR_ERROR |
| }; |
| |
| BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function |
| |
| FunctionHeader : FunctionDefineLinkage GVVisibilityStyle FunctionHeaderH BEGIN { |
| $$ = CurFun.CurrentFunction; |
| |
| // Make sure that we keep track of the linkage type even if there was a |
| // previous "declare". |
| $$->setLinkage($1); |
| $$->setVisibility($2); |
| }; |
| |
| END : ENDTOK | '}'; // Allow end of '}' to end a function |
| |
| Function : BasicBlockList END { |
| $$ = $1; |
| CHECK_FOR_ERROR |
| }; |
| |
| FunctionProto : FunctionDeclareLinkage GVVisibilityStyle FunctionHeaderH { |
| CurFun.CurrentFunction->setLinkage($1); |
| CurFun.CurrentFunction->setVisibility($2); |
| $$ = CurFun.CurrentFunction; |
| CurFun.FunctionDone(); |
| CHECK_FOR_ERROR |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Rules to match Basic Blocks |
| //===----------------------------------------------------------------------===// |
| |
| OptSideEffect : /* empty */ { |
| $$ = false; |
| CHECK_FOR_ERROR |
| } |
| | SIDEEFFECT { |
| $$ = true; |
| CHECK_FOR_ERROR |
| }; |
| |
| ConstValueRef : ESINT64VAL { // A reference to a direct constant |
| $$ = ValID::create($1); |
| CHECK_FOR_ERROR |
| } |
| | EUINT64VAL { |
| $$ = ValID::create($1); |
| CHECK_FOR_ERROR |
| } |
| | FPVAL { // Perhaps it's an FP constant? |
| $$ = ValID::create($1); |
| CHECK_FOR_ERROR |
| } |
| | TRUETOK { |
| $$ = ValID::create(ConstantInt::getTrue()); |
| CHECK_FOR_ERROR |
| } |
| | FALSETOK { |
| $$ = ValID::create(ConstantInt::getFalse()); |
| CHECK_FOR_ERROR |
| } |
| | NULL_TOK { |
| $$ = ValID::createNull(); |
| CHECK_FOR_ERROR |
| } |
| | UNDEF { |
| $$ = ValID::createUndef(); |
| CHECK_FOR_ERROR |
| } |
| | ZEROINITIALIZER { // A vector zero constant. |
| $$ = ValID::createZeroInit(); |
| CHECK_FOR_ERROR |
| } |
| | '<' ConstVector '>' { // Nonempty unsized packed vector |
| const Type *ETy = (*$2)[0]->getType(); |
| unsigned NumElements = $2->size(); |
| |
| if (!ETy->isInteger() && !ETy->isFloatingPoint()) |
| GEN_ERROR("Invalid vector element type: " + ETy->getDescription()); |
| |
| VectorType* pt = VectorType::get(ETy, NumElements); |
| PATypeHolder* PTy = new PATypeHolder(HandleUpRefs(pt)); |
| |
| // Verify all elements are correct type! |
| for (unsigned i = 0; i < $2->size(); i++) { |
| if (ETy != (*$2)[i]->getType()) |
| GEN_ERROR("Element #" + utostr(i) + " is not of type '" + |
| ETy->getDescription() +"' as required!\nIt is of type '" + |
| (*$2)[i]->getType()->getDescription() + "'."); |
| } |
| |
| $$ = ValID::create(ConstantVector::get(pt, *$2)); |
| delete PTy; delete $2; |
| CHECK_FOR_ERROR |
| } |
| | '[' ConstVector ']' { // Nonempty unsized arr |
| const Type *ETy = (*$2)[0]->getType(); |
| uint64_t NumElements = $2->size(); |
| |
| if (!ETy->isFirstClassType()) |
| GEN_ERROR("Invalid array element type: " + ETy->getDescription()); |
| |
| ArrayType *ATy = ArrayType::get(ETy, NumElements); |
| PATypeHolder* PTy = new PATypeHolder(HandleUpRefs(ATy)); |
| |
| // Verify all elements are correct type! |
| for (unsigned i = 0; i < $2->size(); i++) { |
| if (ETy != (*$2)[i]->getType()) |
| GEN_ERROR("Element #" + utostr(i) + " is not of type '" + |
| ETy->getDescription() +"' as required!\nIt is of type '"+ |
| (*$2)[i]->getType()->getDescription() + "'."); |
| } |
| |
| $$ = ValID::create(ConstantArray::get(ATy, *$2)); |
| delete PTy; delete $2; |
| CHECK_FOR_ERROR |
| } |
| | '[' ']' { |
| // Use undef instead of an array because it's inconvenient to determine |
| // the element type at this point, there being no elements to examine. |
| $$ = ValID::createUndef(); |
| CHECK_FOR_ERROR |
| } |
| | 'c' STRINGCONSTANT { |
| uint64_t NumElements = $2->length(); |
| const Type *ETy = Type::Int8Ty; |
| |
| ArrayType *ATy = ArrayType::get(ETy, NumElements); |
| |
| std::vector<Constant*> Vals; |
| for (unsigned i = 0; i < $2->length(); ++i) |
| Vals.push_back(ConstantInt::get(ETy, (*$2)[i])); |
| delete $2; |
| $$ = ValID::create(ConstantArray::get(ATy, Vals)); |
| CHECK_FOR_ERROR |
| } |
| | '{' ConstVector '}' { |
| std::vector<const Type*> Elements($2->size()); |
| for (unsigned i = 0, e = $2->size(); i != e; ++i) |
| Elements[i] = (*$2)[i]->getType(); |
| |
| const StructType *STy = StructType::get(Elements); |
| PATypeHolder* PTy = new PATypeHolder(HandleUpRefs(STy)); |
| |
| $$ = ValID::create(ConstantStruct::get(STy, *$2)); |
| delete PTy; delete $2; |
| CHECK_FOR_ERROR |
| } |
| | '{' '}' { |
| const StructType *STy = StructType::get(std::vector<const Type*>()); |
| $$ = ValID::create(ConstantStruct::get(STy, std::vector<Constant*>())); |
| CHECK_FOR_ERROR |
| } |
| | '<' '{' ConstVector '}' '>' { |
| std::vector<const Type*> Elements($3->size()); |
| for (unsigned i = 0, e = $3->size(); i != e; ++i) |
| Elements[i] = (*$3)[i]->getType(); |
| |
| const StructType *STy = StructType::get(Elements, /*isPacked=*/true); |
| PATypeHolder* PTy = new PATypeHolder(HandleUpRefs(STy)); |
| |
| $$ = ValID::create(ConstantStruct::get(STy, *$3)); |
| delete PTy; delete $3; |
| CHECK_FOR_ERROR |
| } |
| | '<' '{' '}' '>' { |
| const StructType *STy = StructType::get(std::vector<const Type*>(), |
| /*isPacked=*/true); |
| $$ = ValID::create(ConstantStruct::get(STy, std::vector<Constant*>())); |
| CHECK_FOR_ERROR |
| } |
| | ConstExpr { |
| $$ = ValID::create($1); |
| CHECK_FOR_ERROR |
| } |
| | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT { |
| $$ = ValID::createInlineAsm(*$3, *$5, $2); |
| delete $3; |
| delete $5; |
| CHECK_FOR_ERROR |
| }; |
| |
| // SymbolicValueRef - Reference to one of two ways of symbolically refering to |
| // another value. |
| // |
| SymbolicValueRef : LOCALVAL_ID { // Is it an integer reference...? |
| $$ = ValID::createLocalID($1); |
| CHECK_FOR_ERROR |
| } |
| | GLOBALVAL_ID { |
| $$ = ValID::createGlobalID($1); |
| CHECK_FOR_ERROR |
| } |
| | LocalName { // Is it a named reference...? |
| $$ = ValID::createLocalName(*$1); |
| delete $1; |
| CHECK_FOR_ERROR |
| } |
| | GlobalName { // Is it a named reference...? |
| $$ = ValID::createGlobalName(*$1); |
| delete $1; |
| CHECK_FOR_ERROR |
| }; |
| |
| // ValueRef - A reference to a definition... either constant or symbolic |
| ValueRef : SymbolicValueRef | ConstValueRef; |
| |
| |
| // ResolvedVal - a <type> <value> pair. This is used only in cases where the |
| // type immediately preceeds the value reference, and allows complex constant |
| // pool references (for things like: 'ret [2 x int] [ int 12, int 42]') |
| ResolvedVal : Types ValueRef { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); |
| $$ = getVal(*$1, $2); |
| delete $1; |
| CHECK_FOR_ERROR |
| } |
| ; |
| |
| ReturnedVal : ResolvedVal { |
| $$ = new std::vector<Value *>(); |
| $$->push_back($1); |
| CHECK_FOR_ERROR |
| } |
| | ReturnedVal ',' ResolvedVal { |
| ($$=$1)->push_back($3); |
| CHECK_FOR_ERROR |
| }; |
| |
| BasicBlockList : BasicBlockList BasicBlock { |
| $$ = $1; |
| CHECK_FOR_ERROR |
| } |
| | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks |
| $$ = $1; |
| CHECK_FOR_ERROR |
| }; |
| |
| |
| // Basic blocks are terminated by branching instructions: |
| // br, br/cc, switch, ret |
| // |
| BasicBlock : InstructionList OptLocalAssign BBTerminatorInst { |
| setValueName($3, $2); |
| CHECK_FOR_ERROR |
| InsertValue($3); |
| $1->getInstList().push_back($3); |
| $$ = $1; |
| CHECK_FOR_ERROR |
| }; |
| |
| InstructionList : InstructionList Inst { |
| if (CastInst *CI1 = dyn_cast<CastInst>($2)) |
| if (CastInst *CI2 = dyn_cast<CastInst>(CI1->getOperand(0))) |
| if (CI2->getParent() == 0) |
| $1->getInstList().push_back(CI2); |
| $1->getInstList().push_back($2); |
| $$ = $1; |
| CHECK_FOR_ERROR |
| } |
| | /* empty */ { // Empty space between instruction lists |
| $$ = defineBBVal(ValID::createLocalID(CurFun.NextValNum)); |
| CHECK_FOR_ERROR |
| } |
| | LABELSTR { // Labelled (named) basic block |
| $$ = defineBBVal(ValID::createLocalName(*$1)); |
| delete $1; |
| CHECK_FOR_ERROR |
| |
| }; |
| |
| BBTerminatorInst : |
| RET ReturnedVal { // Return with a result... |
| ValueList &VL = *$2; |
| assert(!VL.empty() && "Invalid ret operands!"); |
| $$ = ReturnInst::Create(&VL[0], VL.size()); |
| delete $2; |
| CHECK_FOR_ERROR |
| } |
| | RET VOID { // Return with no result... |
| $$ = ReturnInst::Create(); |
| CHECK_FOR_ERROR |
| } |
| | BR LABEL ValueRef { // Unconditional Branch... |
| BasicBlock* tmpBB = getBBVal($3); |
| CHECK_FOR_ERROR |
| $$ = BranchInst::Create(tmpBB); |
| } // Conditional Branch... |
| | BR INTTYPE ValueRef ',' LABEL ValueRef ',' LABEL ValueRef { |
| if (cast<IntegerType>($2)->getBitWidth() != 1) |
| GEN_ERROR("Branch condition must have type i1"); |
| BasicBlock* tmpBBA = getBBVal($6); |
| CHECK_FOR_ERROR |
| BasicBlock* tmpBBB = getBBVal($9); |
| CHECK_FOR_ERROR |
| Value* tmpVal = getVal(Type::Int1Ty, $3); |
| CHECK_FOR_ERROR |
| $$ = BranchInst::Create(tmpBBA, tmpBBB, tmpVal); |
| } |
| | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' { |
| Value* tmpVal = getVal($2, $3); |
| CHECK_FOR_ERROR |
| BasicBlock* tmpBB = getBBVal($6); |
| CHECK_FOR_ERROR |
| SwitchInst *S = SwitchInst::Create(tmpVal, tmpBB, $8->size()); |
| $$ = S; |
| |
| std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(), |
| E = $8->end(); |
| for (; I != E; ++I) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first)) |
| S->addCase(CI, I->second); |
| else |
| GEN_ERROR("Switch case is constant, but not a simple integer"); |
| } |
| delete $8; |
| CHECK_FOR_ERROR |
| } |
| | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' { |
| Value* tmpVal = getVal($2, $3); |
| CHECK_FOR_ERROR |
| BasicBlock* tmpBB = getBBVal($6); |
| CHECK_FOR_ERROR |
| SwitchInst *S = SwitchInst::Create(tmpVal, tmpBB, 0); |
| $$ = S; |
| CHECK_FOR_ERROR |
| } |
| | INVOKE OptCallingConv ResultTypes ValueRef '(' ParamList ')' OptFuncAttrs |
| TO LABEL ValueRef UNWIND LABEL ValueRef { |
| |
| // Handle the short syntax |
| const PointerType *PFTy = 0; |
| const FunctionType *Ty = 0; |
| if (!(PFTy = dyn_cast<PointerType>($3->get())) || |
| !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { |
| // Pull out the types of all of the arguments... |
| std::vector<const Type*> ParamTypes; |
| ParamList::iterator I = $6->begin(), E = $6->end(); |
| for (; I != E; ++I) { |
| const Type *Ty = I->Val->getType(); |
| if (Ty == Type::VoidTy) |
| GEN_ERROR("Short call syntax cannot be used with varargs"); |
| ParamTypes.push_back(Ty); |
| } |
| |
| if (!FunctionType::isValidReturnType(*$3)) |
| GEN_ERROR("Invalid result type for LLVM function"); |
| |
| Ty = FunctionType::get($3->get(), ParamTypes, false); |
| PFTy = PointerType::getUnqual(Ty); |
| } |
| |
| delete $3; |
| |
| Value *V = getVal(PFTy, $4); // Get the function we're calling... |
| CHECK_FOR_ERROR |
| BasicBlock *Normal = getBBVal($11); |
| CHECK_FOR_ERROR |
| BasicBlock *Except = getBBVal($14); |
| CHECK_FOR_ERROR |
| |
| SmallVector<ParamAttrsWithIndex, 8> Attrs; |
| if ($8 != ParamAttr::None) |
| Attrs.push_back(ParamAttrsWithIndex::get(0, $8)); |
| |
| // Check the arguments |
| ValueList Args; |
| if ($6->empty()) { // Has no arguments? |
| // Make sure no arguments is a good thing! |
| if (Ty->getNumParams() != 0) |
| GEN_ERROR("No arguments passed to a function that " |
| "expects arguments"); |
| } else { // Has arguments? |
| // Loop through FunctionType's arguments and ensure they are specified |
| // correctly! |
| FunctionType::param_iterator I = Ty->param_begin(); |
| FunctionType::param_iterator E = Ty->param_end(); |
| ParamList::iterator ArgI = $6->begin(), ArgE = $6->end(); |
| unsigned index = 1; |
| |
| for (; ArgI != ArgE && I != E; ++ArgI, ++I, ++index) { |
| if (ArgI->Val->getType() != *I) |
| GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" + |
| (*I)->getDescription() + "'"); |
| Args.push_back(ArgI->Val); |
| if (ArgI->Attrs != ParamAttr::None) |
| Attrs.push_back(ParamAttrsWithIndex::get(index, ArgI->Attrs)); |
| } |
| |
| if (Ty->isVarArg()) { |
| if (I == E) |
| for (; ArgI != ArgE; ++ArgI, ++index) { |
| Args.push_back(ArgI->Val); // push the remaining varargs |
| if (ArgI->Attrs != ParamAttr::None) |
| Attrs.push_back(ParamAttrsWithIndex::get(index, ArgI->Attrs)); |
| } |
| } else if (I != E || ArgI != ArgE) |
| GEN_ERROR("Invalid number of parameters detected"); |
| } |
| |
| PAListPtr PAL; |
| if (!Attrs.empty()) |
| PAL = PAListPtr::get(Attrs.begin(), Attrs.end()); |
| |
| // Create the InvokeInst |
| InvokeInst *II = InvokeInst::Create(V, Normal, Except, |
| Args.begin(), Args.end()); |
| II->setCallingConv($2); |
| II->setParamAttrs(PAL); |
| $$ = II; |
| delete $6; |
| CHECK_FOR_ERROR |
| } |
| | UNWIND { |
| $$ = new UnwindInst(); |
| CHECK_FOR_ERROR |
| } |
| | UNREACHABLE { |
| $$ = new UnreachableInst(); |
| CHECK_FOR_ERROR |
| }; |
| |
| |
| |
| JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef { |
| $$ = $1; |
| Constant *V = cast<Constant>(getExistingVal($2, $3)); |
| CHECK_FOR_ERROR |
| if (V == 0) |
| GEN_ERROR("May only switch on a constant pool value"); |
| |
| BasicBlock* tmpBB = getBBVal($6); |
| CHECK_FOR_ERROR |
| $$->push_back(std::make_pair(V, tmpBB)); |
| } |
| | IntType ConstValueRef ',' LABEL ValueRef { |
| $$ = new std::vector<std::pair<Constant*, BasicBlock*> >(); |
| Constant *V = cast<Constant>(getExistingVal($1, $2)); |
| CHECK_FOR_ERROR |
| |
| if (V == 0) |
| GEN_ERROR("May only switch on a constant pool value"); |
| |
| BasicBlock* tmpBB = getBBVal($5); |
| CHECK_FOR_ERROR |
| $$->push_back(std::make_pair(V, tmpBB)); |
| }; |
| |
| Inst : OptLocalAssign InstVal { |
| // Is this definition named?? if so, assign the name... |
| setValueName($2, $1); |
| CHECK_FOR_ERROR |
| InsertValue($2); |
| $$ = $2; |
| CHECK_FOR_ERROR |
| }; |
| |
| |
| PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); |
| $$ = new std::list<std::pair<Value*, BasicBlock*> >(); |
| Value* tmpVal = getVal(*$1, $3); |
| CHECK_FOR_ERROR |
| BasicBlock* tmpBB = getBBVal($5); |
| CHECK_FOR_ERROR |
| $$->push_back(std::make_pair(tmpVal, tmpBB)); |
| delete $1; |
| } |
| | PHIList ',' '[' ValueRef ',' ValueRef ']' { |
| $$ = $1; |
| Value* tmpVal = getVal($1->front().first->getType(), $4); |
| CHECK_FOR_ERROR |
| BasicBlock* tmpBB = getBBVal($6); |
| CHECK_FOR_ERROR |
| $1->push_back(std::make_pair(tmpVal, tmpBB)); |
| }; |
| |
| |
| ParamList : Types OptParamAttrs ValueRef OptParamAttrs { |
| // FIXME: Remove trailing OptParamAttrs in LLVM 3.0, it was a mistake in 2.0 |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); |
| // Used for call and invoke instructions |
| $$ = new ParamList(); |
| ParamListEntry E; E.Attrs = $2 | $4; E.Val = getVal($1->get(), $3); |
| $$->push_back(E); |
| delete $1; |
| CHECK_FOR_ERROR |
| } |
| | LABEL OptParamAttrs ValueRef OptParamAttrs { |
| // FIXME: Remove trailing OptParamAttrs in LLVM 3.0, it was a mistake in 2.0 |
| // Labels are only valid in ASMs |
| $$ = new ParamList(); |
| ParamListEntry E; E.Attrs = $2 | $4; E.Val = getBBVal($3); |
| $$->push_back(E); |
| CHECK_FOR_ERROR |
| } |
| | ParamList ',' Types OptParamAttrs ValueRef OptParamAttrs { |
| // FIXME: Remove trailing OptParamAttrs in LLVM 3.0, it was a mistake in 2.0 |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription()); |
| $$ = $1; |
| ParamListEntry E; E.Attrs = $4 | $6; E.Val = getVal($3->get(), $5); |
| $$->push_back(E); |
| delete $3; |
| CHECK_FOR_ERROR |
| } |
| | ParamList ',' LABEL OptParamAttrs ValueRef OptParamAttrs { |
| // FIXME: Remove trailing OptParamAttrs in LLVM 3.0, it was a mistake in 2.0 |
| $$ = $1; |
| ParamListEntry E; E.Attrs = $4 | $6; E.Val = getBBVal($5); |
| $$->push_back(E); |
| CHECK_FOR_ERROR |
| } |
| | /*empty*/ { $$ = new ParamList(); }; |
| |
| IndexList // Used for gep instructions and constant expressions |
| : /*empty*/ { $$ = new std::vector<Value*>(); } |
| | IndexList ',' ResolvedVal { |
| $$ = $1; |
| $$->push_back($3); |
| CHECK_FOR_ERROR |
| } |
| ; |
| |
| ConstantIndexList // Used for insertvalue and extractvalue instructions |
| : ',' EUINT64VAL { |
| $$ = new std::vector<unsigned>(); |
| if ((unsigned)$2 != $2) |
| GEN_ERROR("Index " + utostr($2) + " is not valid for insertvalue or extractvalue."); |
| $$->push_back($2); |
| } |
| | ConstantIndexList ',' EUINT64VAL { |
| $$ = $1; |
| if ((unsigned)$3 != $3) |
| GEN_ERROR("Index " + utostr($3) + " is not valid for insertvalue or extractvalue."); |
| $$->push_back($3); |
| CHECK_FOR_ERROR |
| } |
| ; |
| |
| OptTailCall : TAIL CALL { |
| $$ = true; |
| CHECK_FOR_ERROR |
| } |
| | CALL { |
| $$ = false; |
| CHECK_FOR_ERROR |
| }; |
| |
| InstVal : ArithmeticOps Types ValueRef ',' ValueRef { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription()); |
| if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() && |
| !isa<VectorType>((*$2).get())) |
| GEN_ERROR( |
| "Arithmetic operator requires integer, FP, or packed operands"); |
| Value* val1 = getVal(*$2, $3); |
| CHECK_FOR_ERROR |
| Value* val2 = getVal(*$2, $5); |
| CHECK_FOR_ERROR |
| $$ = BinaryOperator::Create($1, val1, val2); |
| if ($$ == 0) |
| GEN_ERROR("binary operator returned null"); |
| delete $2; |
| } |
| | LogicalOps Types ValueRef ',' ValueRef { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription()); |
| if (!(*$2)->isInteger()) { |
| if (Instruction::isShift($1) || !isa<VectorType>($2->get()) || |
| !cast<VectorType>($2->get())->getElementType()->isInteger()) |
| GEN_ERROR("Logical operator requires integral operands"); |
| } |
| Value* tmpVal1 = getVal(*$2, $3); |
| CHECK_FOR_ERROR |
| Value* tmpVal2 = getVal(*$2, $5); |
| CHECK_FOR_ERROR |
| $$ = BinaryOperator::Create($1, tmpVal1, tmpVal2); |
| if ($$ == 0) |
| GEN_ERROR("binary operator returned null"); |
| delete $2; |
| } |
| | ICMP IPredicates Types ValueRef ',' ValueRef { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription()); |
| if (isa<VectorType>((*$3).get())) |
| GEN_ERROR("Vector types not supported by icmp instruction"); |
| Value* tmpVal1 = getVal(*$3, $4); |
| CHECK_FOR_ERROR |
| Value* tmpVal2 = getVal(*$3, $6); |
| CHECK_FOR_ERROR |
| $$ = CmpInst::Create($1, $2, tmpVal1, tmpVal2); |
| if ($$ == 0) |
| GEN_ERROR("icmp operator returned null"); |
| delete $3; |
| } |
| | FCMP FPredicates Types ValueRef ',' ValueRef { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription()); |
| if (isa<VectorType>((*$3).get())) |
| GEN_ERROR("Vector types not supported by fcmp instruction"); |
| Value* tmpVal1 = getVal(*$3, $4); |
| CHECK_FOR_ERROR |
| Value* tmpVal2 = getVal(*$3, $6); |
| CHECK_FOR_ERROR |
| $$ = CmpInst::Create($1, $2, tmpVal1, tmpVal2); |
| if ($$ == 0) |
| GEN_ERROR("fcmp operator returned null"); |
| delete $3; |
| } |
| | VICMP IPredicates Types ValueRef ',' ValueRef { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription()); |
| if (!isa<VectorType>((*$3).get())) |
| GEN_ERROR("Scalar types not supported by vicmp instruction"); |
| Value* tmpVal1 = getVal(*$3, $4); |
| CHECK_FOR_ERROR |
| Value* tmpVal2 = getVal(*$3, $6); |
| CHECK_FOR_ERROR |
| $$ = CmpInst::Create($1, $2, tmpVal1, tmpVal2); |
| if ($$ == 0) |
| GEN_ERROR("icmp operator returned null"); |
| delete $3; |
| } |
| | VFCMP FPredicates Types ValueRef ',' ValueRef { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription()); |
| if (!isa<VectorType>((*$3).get())) |
| GEN_ERROR("Scalar types not supported by vfcmp instruction"); |
| Value* tmpVal1 = getVal(*$3, $4); |
| CHECK_FOR_ERROR |
| Value* tmpVal2 = getVal(*$3, $6); |
| CHECK_FOR_ERROR |
| $$ = CmpInst::Create($1, $2, tmpVal1, tmpVal2); |
| if ($$ == 0) |
| GEN_ERROR("fcmp operator returned null"); |
| delete $3; |
| } |
| | CastOps ResolvedVal TO Types { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription()); |
| Value* Val = $2; |
| const Type* DestTy = $4->get(); |
| if (!CastInst::castIsValid($1, Val, DestTy)) |
| GEN_ERROR("invalid cast opcode for cast from '" + |
| Val->getType()->getDescription() + "' to '" + |
| DestTy->getDescription() + "'"); |
| $$ = CastInst::Create($1, Val, DestTy); |
| delete $4; |
| } |
| | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal { |
| if ($2->getType() != Type::Int1Ty) |
| GEN_ERROR("select condition must be boolean"); |
| if ($4->getType() != $6->getType()) |
| GEN_ERROR("select value types should match"); |
| $$ = SelectInst::Create($2, $4, $6); |
| CHECK_FOR_ERROR |
| } |
| | VAARG ResolvedVal ',' Types { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription()); |
| $$ = new VAArgInst($2, *$4); |
| delete $4; |
| CHECK_FOR_ERROR |
| } |
| | EXTRACTELEMENT ResolvedVal ',' ResolvedVal { |
| if (!ExtractElementInst::isValidOperands($2, $4)) |
| GEN_ERROR("Invalid extractelement operands"); |
| $$ = new ExtractElementInst($2, $4); |
| CHECK_FOR_ERROR |
| } |
| | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal { |
| if (!InsertElementInst::isValidOperands($2, $4, $6)) |
| GEN_ERROR("Invalid insertelement operands"); |
| $$ = InsertElementInst::Create($2, $4, $6); |
| CHECK_FOR_ERROR |
| } |
| | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal { |
| if (!ShuffleVectorInst::isValidOperands($2, $4, $6)) |
| GEN_ERROR("Invalid shufflevector operands"); |
| $$ = new ShuffleVectorInst($2, $4, $6); |
| CHECK_FOR_ERROR |
| } |
| | PHI_TOK PHIList { |
| const Type *Ty = $2->front().first->getType(); |
| if (!Ty->isFirstClassType()) |
| GEN_ERROR("PHI node operands must be of first class type"); |
| $$ = PHINode::Create(Ty); |
| ((PHINode*)$$)->reserveOperandSpace($2->size()); |
| while ($2->begin() != $2->end()) { |
| if ($2->front().first->getType() != Ty) |
| GEN_ERROR("All elements of a PHI node must be of the same type"); |
| cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second); |
| $2->pop_front(); |
| } |
| delete $2; // Free the list... |
| CHECK_FOR_ERROR |
| } |
| | OptTailCall OptCallingConv ResultTypes ValueRef '(' ParamList ')' |
| OptFuncAttrs { |
| |
| // Handle the short syntax |
| const PointerType *PFTy = 0; |
| const FunctionType *Ty = 0; |
| if (!(PFTy = dyn_cast<PointerType>($3->get())) || |
| !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { |
| // Pull out the types of all of the arguments... |
| std::vector<const Type*> ParamTypes; |
| ParamList::iterator I = $6->begin(), E = $6->end(); |
| for (; I != E; ++I) { |
| const Type *Ty = I->Val->getType(); |
| if (Ty == Type::VoidTy) |
| GEN_ERROR("Short call syntax cannot be used with varargs"); |
| ParamTypes.push_back(Ty); |
| } |
| |
| if (!FunctionType::isValidReturnType(*$3)) |
| GEN_ERROR("Invalid result type for LLVM function"); |
| |
| Ty = FunctionType::get($3->get(), ParamTypes, false); |
| PFTy = PointerType::getUnqual(Ty); |
| } |
| |
| Value *V = getVal(PFTy, $4); // Get the function we're calling... |
| CHECK_FOR_ERROR |
| |
| // Check for call to invalid intrinsic to avoid crashing later. |
| if (Function *theF = dyn_cast<Function>(V)) { |
| if (theF->hasName() && (theF->getValueName()->getKeyLength() >= 5) && |
| (0 == strncmp(theF->getValueName()->getKeyData(), "llvm.", 5)) && |
| !theF->getIntrinsicID(true)) |
| GEN_ERROR("Call to invalid LLVM intrinsic function '" + |
| theF->getName() + "'"); |
| } |
| |
| // Set up the ParamAttrs for the function |
| SmallVector<ParamAttrsWithIndex, 8> Attrs; |
| if ($8 != ParamAttr::None) |
| Attrs.push_back(ParamAttrsWithIndex::get(0, $8)); |
| // Check the arguments |
| ValueList Args; |
| if ($6->empty()) { // Has no arguments? |
| // Make sure no arguments is a good thing! |
| if (Ty->getNumParams() != 0) |
| GEN_ERROR("No arguments passed to a function that " |
| "expects arguments"); |
| } else { // Has arguments? |
| // Loop through FunctionType's arguments and ensure they are specified |
| // correctly. Also, gather any parameter attributes. |
| FunctionType::param_iterator I = Ty->param_begin(); |
| FunctionType::param_iterator E = Ty->param_end(); |
| ParamList::iterator ArgI = $6->begin(), ArgE = $6->end(); |
| unsigned index = 1; |
| |
| for (; ArgI != ArgE && I != E; ++ArgI, ++I, ++index) { |
| if (ArgI->Val->getType() != *I) |
| GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" + |
| (*I)->getDescription() + "'"); |
| Args.push_back(ArgI->Val); |
| if (ArgI->Attrs != ParamAttr::None) |
| Attrs.push_back(ParamAttrsWithIndex::get(index, ArgI->Attrs)); |
| } |
| if (Ty->isVarArg()) { |
| if (I == E) |
| for (; ArgI != ArgE; ++ArgI, ++index) { |
| Args.push_back(ArgI->Val); // push the remaining varargs |
| if (ArgI->Attrs != ParamAttr::None) |
| Attrs.push_back(ParamAttrsWithIndex::get(index, ArgI->Attrs)); |
| } |
| } else if (I != E || ArgI != ArgE) |
| GEN_ERROR("Invalid number of parameters detected"); |
| } |
| |
| // Finish off the ParamAttrs and check them |
| PAListPtr PAL; |
| if (!Attrs.empty()) |
| PAL = PAListPtr::get(Attrs.begin(), Attrs.end()); |
| |
| // Create the call node |
| CallInst *CI = CallInst::Create(V, Args.begin(), Args.end()); |
| CI->setTailCall($1); |
| CI->setCallingConv($2); |
| CI->setParamAttrs(PAL); |
| $$ = CI; |
| delete $6; |
| delete $3; |
| CHECK_FOR_ERROR |
| } |
| | MemoryInst { |
| $$ = $1; |
| CHECK_FOR_ERROR |
| }; |
| |
| OptVolatile : VOLATILE { |
| $$ = true; |
| CHECK_FOR_ERROR |
| } |
| | /* empty */ { |
| $$ = false; |
| CHECK_FOR_ERROR |
| }; |
| |
| |
| |
| MemoryInst : MALLOC Types OptCAlign { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription()); |
| $$ = new MallocInst(*$2, 0, $3); |
| delete $2; |
| CHECK_FOR_ERROR |
| } |
| | MALLOC Types ',' INTTYPE ValueRef OptCAlign { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription()); |
| if ($4 != Type::Int32Ty) |
| GEN_ERROR("Malloc array size is not a 32-bit integer!"); |
| Value* tmpVal = getVal($4, $5); |
| CHECK_FOR_ERROR |
| $$ = new MallocInst(*$2, tmpVal, $6); |
| delete $2; |
| } |
| | ALLOCA Types OptCAlign { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription()); |
| $$ = new AllocaInst(*$2, 0, $3); |
| delete $2; |
| CHECK_FOR_ERROR |
| } |
| | ALLOCA Types ',' INTTYPE ValueRef OptCAlign { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription()); |
| if ($4 != Type::Int32Ty) |
| GEN_ERROR("Alloca array size is not a 32-bit integer!"); |
| Value* tmpVal = getVal($4, $5); |
| CHECK_FOR_ERROR |
| $$ = new AllocaInst(*$2, tmpVal, $6); |
| delete $2; |
| } |
| | FREE ResolvedVal { |
| if (!isa<PointerType>($2->getType())) |
| GEN_ERROR("Trying to free nonpointer type " + |
| $2->getType()->getDescription() + ""); |
| $$ = new FreeInst($2); |
| CHECK_FOR_ERROR |
| } |
| |
| | OptVolatile LOAD Types ValueRef OptCAlign { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription()); |
| if (!isa<PointerType>($3->get())) |
| GEN_ERROR("Can't load from nonpointer type: " + |
| (*$3)->getDescription()); |
| if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType()) |
| GEN_ERROR("Can't load from pointer of non-first-class type: " + |
| (*$3)->getDescription()); |
| Value* tmpVal = getVal(*$3, $4); |
| CHECK_FOR_ERROR |
| $$ = new LoadInst(tmpVal, "", $1, $5); |
| delete $3; |
| } |
| | OptVolatile STORE ResolvedVal ',' Types ValueRef OptCAlign { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription()); |
| const PointerType *PT = dyn_cast<PointerType>($5->get()); |
| if (!PT) |
| GEN_ERROR("Can't store to a nonpointer type: " + |
| (*$5)->getDescription()); |
| const Type *ElTy = PT->getElementType(); |
| if (ElTy != $3->getType()) |
| GEN_ERROR("Can't store '" + $3->getType()->getDescription() + |
| "' into space of type '" + ElTy->getDescription() + "'"); |
| |
| Value* tmpVal = getVal(*$5, $6); |
| CHECK_FOR_ERROR |
| $$ = new StoreInst($3, tmpVal, $1, $7); |
| delete $5; |
| } |
| | GETRESULT Types ValueRef ',' EUINT64VAL { |
| Value *TmpVal = getVal($2->get(), $3); |
| if (!GetResultInst::isValidOperands(TmpVal, $5)) |
| GEN_ERROR("Invalid getresult operands"); |
| $$ = new GetResultInst(TmpVal, $5); |
| delete $2; |
| CHECK_FOR_ERROR |
| } |
| | GETELEMENTPTR Types ValueRef IndexList { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription()); |
| if (!isa<PointerType>($2->get())) |
| GEN_ERROR("getelementptr insn requires pointer operand"); |
| |
| if (!GetElementPtrInst::getIndexedType(*$2, $4->begin(), $4->end())) |
| GEN_ERROR("Invalid getelementptr indices for type '" + |
| (*$2)->getDescription()+ "'"); |
| Value* tmpVal = getVal(*$2, $3); |
| CHECK_FOR_ERROR |
| $$ = GetElementPtrInst::Create(tmpVal, $4->begin(), $4->end()); |
| delete $2; |
| delete $4; |
| } |
| | EXTRACTVALUE Types ValueRef ConstantIndexList { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription()); |
| if (!isa<StructType>($2->get()) && !isa<ArrayType>($2->get())) |
| GEN_ERROR("extractvalue insn requires an aggregate operand"); |
| |
| if (!ExtractValueInst::getIndexedType(*$2, $4->begin(), $4->end())) |
| GEN_ERROR("Invalid extractvalue indices for type '" + |
| (*$2)->getDescription()+ "'"); |
| Value* tmpVal = getVal(*$2, $3); |
| CHECK_FOR_ERROR |
| $$ = ExtractValueInst::Create(tmpVal, $4->begin(), $4->end()); |
| delete $2; |
| delete $4; |
| } |
| | INSERTVALUE Types ValueRef ',' Types ValueRef ConstantIndexList { |
| if (!UpRefs.empty()) |
| GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription()); |
| if (!isa<StructType>($2->get()) && !isa<ArrayType>($2->get())) |
| GEN_ERROR("extractvalue insn requires an aggregate operand"); |
| |
| if (ExtractValueInst::getIndexedType(*$2, $7->begin(), $7->end()) != $5->get()) |
| GEN_ERROR("Invalid insertvalue indices for type '" + |
| (*$2)->getDescription()+ "'"); |
| Value* aggVal = getVal(*$2, $3); |
| Value* tmpVal = getVal(*$5, $6); |
| CHECK_FOR_ERROR |
| $$ = InsertValueInst::Create(aggVal, tmpVal, $7->begin(), $7->end()); |
| delete $2; |
| delete $5; |
| delete $7; |
| }; |
| |
| |
| %% |
| |
| // common code from the two 'RunVMAsmParser' functions |
| static Module* RunParser(Module * M) { |
| CurModule.CurrentModule = M; |
| // Check to make sure the parser succeeded |
| if (yyparse()) { |
| if (ParserResult) |
| delete ParserResult; |
| return 0; |
| } |
| |
| // Emit an error if there are any unresolved types left. |
| if (!CurModule.LateResolveTypes.empty()) { |
| const ValID &DID = CurModule.LateResolveTypes.begin()->first; |
| if (DID.Type == ValID::LocalName) { |
| GenerateError("Undefined type remains at eof: '"+DID.getName() + "'"); |
| } else { |
| GenerateError("Undefined type remains at eof: #" + itostr(DID.Num)); |
| } |
| if (ParserResult) |
| delete ParserResult; |
| return 0; |
| } |
| |
| // Emit an error if there are any unresolved values left. |
| if (!CurModule.LateResolveValues.empty()) { |
| Value *V = CurModule.LateResolveValues.back(); |
| std::map<Value*, std::pair<ValID, int> >::iterator I = |
| CurModule.PlaceHolderInfo.find(V); |
| |
| if (I != CurModule.PlaceHolderInfo.end()) { |
| ValID &DID = I->second.first; |
| if (DID.Type == ValID::LocalName) { |
| GenerateError("Undefined value remains at eof: "+DID.getName() + "'"); |
| } else { |
| GenerateError("Undefined value remains at eof: #" + itostr(DID.Num)); |
| } |
| if (ParserResult) |
| delete ParserResult; |
| return 0; |
| } |
| } |
| |
| // Check to make sure that parsing produced a result |
| if (!ParserResult) |
| return 0; |
| |
| // Reset ParserResult variable while saving its value for the result. |
| Module *Result = ParserResult; |
| ParserResult = 0; |
| |
| return Result; |
| } |
| |
| void llvm::GenerateError(const std::string &message, int LineNo) { |
| if (LineNo == -1) LineNo = LLLgetLineNo(); |
| // TODO: column number in exception |
| if (TheParseError) |
| TheParseError->setError(LLLgetFilename(), message, LineNo); |
| TriggerError = 1; |
| } |
| |
| int yyerror(const char *ErrorMsg) { |
| std::string where = LLLgetFilename() + ":" + utostr(LLLgetLineNo()) + ": "; |
| std::string errMsg = where + "error: " + std::string(ErrorMsg); |
| if (yychar != YYEMPTY && yychar != 0) { |
| errMsg += " while reading token: '"; |
| errMsg += std::string(LLLgetTokenStart(), |
| LLLgetTokenStart()+LLLgetTokenLength()) + "'"; |
| } |
| GenerateError(errMsg); |
| return 0; |
| } |