| //===---------------------------------------------------------------------===// |
| // Random ideas for the X86 backend. |
| //===---------------------------------------------------------------------===// |
| |
| Missing features: |
| - Support for SSE4: http://www.intel.com/software/penryn |
| http://softwarecommunity.intel.com/isn/Downloads/Intel%20SSE4%20Programming%20Reference.pdf |
| - support for 3DNow! |
| - weird abis? |
| |
| //===---------------------------------------------------------------------===// |
| |
| CodeGen/X86/lea-3.ll:test3 should be a single LEA, not a shift/move. The X86 |
| backend knows how to three-addressify this shift, but it appears the register |
| allocator isn't even asking it to do so in this case. We should investigate |
| why this isn't happening, it could have significant impact on other important |
| cases for X86 as well. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This should be one DIV/IDIV instruction, not a libcall: |
| |
| unsigned test(unsigned long long X, unsigned Y) { |
| return X/Y; |
| } |
| |
| This can be done trivially with a custom legalizer. What about overflow |
| though? http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224 |
| |
| //===---------------------------------------------------------------------===// |
| |
| Improvements to the multiply -> shift/add algorithm: |
| http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html |
| |
| //===---------------------------------------------------------------------===// |
| |
| Improve code like this (occurs fairly frequently, e.g. in LLVM): |
| long long foo(int x) { return 1LL << x; } |
| |
| http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html |
| http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html |
| http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html |
| |
| Another useful one would be ~0ULL >> X and ~0ULL << X. |
| |
| One better solution for 1LL << x is: |
| xorl %eax, %eax |
| xorl %edx, %edx |
| testb $32, %cl |
| sete %al |
| setne %dl |
| sall %cl, %eax |
| sall %cl, %edx |
| |
| But that requires good 8-bit subreg support. |
| |
| Also, this might be better. It's an extra shift, but it's one instruction |
| shorter, and doesn't stress 8-bit subreg support. |
| (From http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01148.html, |
| but without the unnecessary and.) |
| movl %ecx, %eax |
| shrl $5, %eax |
| movl %eax, %edx |
| xorl $1, %edx |
| sall %cl, %eax |
| sall %cl. %edx |
| |
| 64-bit shifts (in general) expand to really bad code. Instead of using |
| cmovs, we should expand to a conditional branch like GCC produces. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Compile this: |
| _Bool f(_Bool a) { return a!=1; } |
| |
| into: |
| movzbl %dil, %eax |
| xorl $1, %eax |
| ret |
| |
| (Although note that this isn't a legal way to express the code that llvm-gcc |
| currently generates for that function.) |
| |
| //===---------------------------------------------------------------------===// |
| |
| Some isel ideas: |
| |
| 1. Dynamic programming based approach when compile time if not an |
| issue. |
| 2. Code duplication (addressing mode) during isel. |
| 3. Other ideas from "Register-Sensitive Selection, Duplication, and |
| Sequencing of Instructions". |
| 4. Scheduling for reduced register pressure. E.g. "Minimum Register |
| Instruction Sequence Problem: Revisiting Optimal Code Generation for DAGs" |
| and other related papers. |
| http://citeseer.ist.psu.edu/govindarajan01minimum.html |
| |
| //===---------------------------------------------------------------------===// |
| |
| Should we promote i16 to i32 to avoid partial register update stalls? |
| |
| //===---------------------------------------------------------------------===// |
| |
| Leave any_extend as pseudo instruction and hint to register |
| allocator. Delay codegen until post register allocation. |
| Note. any_extend is now turned into an INSERT_SUBREG. We still need to teach |
| the coalescer how to deal with it though. |
| |
| //===---------------------------------------------------------------------===// |
| |
| It appears icc use push for parameter passing. Need to investigate. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Only use inc/neg/not instructions on processors where they are faster than |
| add/sub/xor. They are slower on the P4 due to only updating some processor |
| flags. |
| |
| //===---------------------------------------------------------------------===// |
| |
| The instruction selector sometimes misses folding a load into a compare. The |
| pattern is written as (cmp reg, (load p)). Because the compare isn't |
| commutative, it is not matched with the load on both sides. The dag combiner |
| should be made smart enough to cannonicalize the load into the RHS of a compare |
| when it can invert the result of the compare for free. |
| |
| //===---------------------------------------------------------------------===// |
| |
| How about intrinsics? An example is: |
| *res = _mm_mulhi_epu16(*A, _mm_mul_epu32(*B, *C)); |
| |
| compiles to |
| pmuludq (%eax), %xmm0 |
| movl 8(%esp), %eax |
| movdqa (%eax), %xmm1 |
| pmulhuw %xmm0, %xmm1 |
| |
| The transformation probably requires a X86 specific pass or a DAG combiner |
| target specific hook. |
| |
| //===---------------------------------------------------------------------===// |
| |
| In many cases, LLVM generates code like this: |
| |
| _test: |
| movl 8(%esp), %eax |
| cmpl %eax, 4(%esp) |
| setl %al |
| movzbl %al, %eax |
| ret |
| |
| on some processors (which ones?), it is more efficient to do this: |
| |
| _test: |
| movl 8(%esp), %ebx |
| xor %eax, %eax |
| cmpl %ebx, 4(%esp) |
| setl %al |
| ret |
| |
| Doing this correctly is tricky though, as the xor clobbers the flags. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We should generate bts/btr/etc instructions on targets where they are cheap or |
| when codesize is important. e.g., for: |
| |
| void setbit(int *target, int bit) { |
| *target |= (1 << bit); |
| } |
| void clearbit(int *target, int bit) { |
| *target &= ~(1 << bit); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| Instead of the following for memset char*, 1, 10: |
| |
| movl $16843009, 4(%edx) |
| movl $16843009, (%edx) |
| movw $257, 8(%edx) |
| |
| It might be better to generate |
| |
| movl $16843009, %eax |
| movl %eax, 4(%edx) |
| movl %eax, (%edx) |
| movw al, 8(%edx) |
| |
| when we can spare a register. It reduces code size. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Evaluate what the best way to codegen sdiv X, (2^C) is. For X/8, we currently |
| get this: |
| |
| define i32 @test1(i32 %X) { |
| %Y = sdiv i32 %X, 8 |
| ret i32 %Y |
| } |
| |
| _test1: |
| movl 4(%esp), %eax |
| movl %eax, %ecx |
| sarl $31, %ecx |
| shrl $29, %ecx |
| addl %ecx, %eax |
| sarl $3, %eax |
| ret |
| |
| GCC knows several different ways to codegen it, one of which is this: |
| |
| _test1: |
| movl 4(%esp), %eax |
| cmpl $-1, %eax |
| leal 7(%eax), %ecx |
| cmovle %ecx, %eax |
| sarl $3, %eax |
| ret |
| |
| which is probably slower, but it's interesting at least :) |
| |
| //===---------------------------------------------------------------------===// |
| |
| We are currently lowering large (1MB+) memmove/memcpy to rep/stosl and rep/movsl |
| We should leave these as libcalls for everything over a much lower threshold, |
| since libc is hand tuned for medium and large mem ops (avoiding RFO for large |
| stores, TLB preheating, etc) |
| |
| //===---------------------------------------------------------------------===// |
| |
| Optimize this into something reasonable: |
| x * copysign(1.0, y) * copysign(1.0, z) |
| |
| //===---------------------------------------------------------------------===// |
| |
| Optimize copysign(x, *y) to use an integer load from y. |
| |
| //===---------------------------------------------------------------------===// |
| |
| %X = weak global int 0 |
| |
| void %foo(int %N) { |
| %N = cast int %N to uint |
| %tmp.24 = setgt int %N, 0 |
| br bool %tmp.24, label %no_exit, label %return |
| |
| no_exit: |
| %indvar = phi uint [ 0, %entry ], [ %indvar.next, %no_exit ] |
| %i.0.0 = cast uint %indvar to int |
| volatile store int %i.0.0, int* %X |
| %indvar.next = add uint %indvar, 1 |
| %exitcond = seteq uint %indvar.next, %N |
| br bool %exitcond, label %return, label %no_exit |
| |
| return: |
| ret void |
| } |
| |
| compiles into: |
| |
| .text |
| .align 4 |
| .globl _foo |
| _foo: |
| movl 4(%esp), %eax |
| cmpl $1, %eax |
| jl LBB_foo_4 # return |
| LBB_foo_1: # no_exit.preheader |
| xorl %ecx, %ecx |
| LBB_foo_2: # no_exit |
| movl L_X$non_lazy_ptr, %edx |
| movl %ecx, (%edx) |
| incl %ecx |
| cmpl %eax, %ecx |
| jne LBB_foo_2 # no_exit |
| LBB_foo_3: # return.loopexit |
| LBB_foo_4: # return |
| ret |
| |
| We should hoist "movl L_X$non_lazy_ptr, %edx" out of the loop after |
| remateralization is implemented. This can be accomplished with 1) a target |
| dependent LICM pass or 2) makeing SelectDAG represent the whole function. |
| |
| //===---------------------------------------------------------------------===// |
| |
| The following tests perform worse with LSR: |
| |
| lambda, siod, optimizer-eval, ackermann, hash2, nestedloop, strcat, and Treesor. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We are generating far worse code than gcc: |
| |
| volatile short X, Y; |
| |
| void foo(int N) { |
| int i; |
| for (i = 0; i < N; i++) { X = i; Y = i*4; } |
| } |
| |
| LBB1_1: # entry.bb_crit_edge |
| xorl %ecx, %ecx |
| xorw %dx, %dx |
| LBB1_2: # bb |
| movl L_X$non_lazy_ptr, %esi |
| movw %cx, (%esi) |
| movl L_Y$non_lazy_ptr, %esi |
| movw %dx, (%esi) |
| addw $4, %dx |
| incl %ecx |
| cmpl %eax, %ecx |
| jne LBB1_2 # bb |
| |
| vs. |
| |
| xorl %edx, %edx |
| movl L_X$non_lazy_ptr-"L00000000001$pb"(%ebx), %esi |
| movl L_Y$non_lazy_ptr-"L00000000001$pb"(%ebx), %ecx |
| L4: |
| movw %dx, (%esi) |
| leal 0(,%edx,4), %eax |
| movw %ax, (%ecx) |
| addl $1, %edx |
| cmpl %edx, %edi |
| jne L4 |
| |
| This is due to the lack of post regalloc LICM. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Teach the coalescer to coalesce vregs of different register classes. e.g. FR32 / |
| FR64 to VR128. |
| |
| //===---------------------------------------------------------------------===// |
| |
| mov $reg, 48(%esp) |
| ... |
| leal 48(%esp), %eax |
| mov %eax, (%esp) |
| call _foo |
| |
| Obviously it would have been better for the first mov (or any op) to store |
| directly %esp[0] if there are no other uses. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Adding to the list of cmp / test poor codegen issues: |
| |
| int test(__m128 *A, __m128 *B) { |
| if (_mm_comige_ss(*A, *B)) |
| return 3; |
| else |
| return 4; |
| } |
| |
| _test: |
| movl 8(%esp), %eax |
| movaps (%eax), %xmm0 |
| movl 4(%esp), %eax |
| movaps (%eax), %xmm1 |
| comiss %xmm0, %xmm1 |
| setae %al |
| movzbl %al, %ecx |
| movl $3, %eax |
| movl $4, %edx |
| cmpl $0, %ecx |
| cmove %edx, %eax |
| ret |
| |
| Note the setae, movzbl, cmpl, cmove can be replaced with a single cmovae. There |
| are a number of issues. 1) We are introducing a setcc between the result of the |
| intrisic call and select. 2) The intrinsic is expected to produce a i32 value |
| so a any extend (which becomes a zero extend) is added. |
| |
| We probably need some kind of target DAG combine hook to fix this. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We generate significantly worse code for this than GCC: |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21150 |
| http://gcc.gnu.org/bugzilla/attachment.cgi?id=8701 |
| |
| There is also one case we do worse on PPC. |
| |
| //===---------------------------------------------------------------------===// |
| |
| If shorter, we should use things like: |
| movzwl %ax, %eax |
| instead of: |
| andl $65535, %EAX |
| |
| The former can also be used when the two-addressy nature of the 'and' would |
| require a copy to be inserted (in X86InstrInfo::convertToThreeAddress). |
| |
| //===---------------------------------------------------------------------===// |
| |
| Another instruction selector deficiency: |
| |
| void %bar() { |
| %tmp = load int (int)** %foo |
| %tmp = tail call int %tmp( int 3 ) |
| ret void |
| } |
| |
| _bar: |
| subl $12, %esp |
| movl L_foo$non_lazy_ptr, %eax |
| movl (%eax), %eax |
| call *%eax |
| addl $12, %esp |
| ret |
| |
| The current isel scheme will not allow the load to be folded in the call since |
| the load's chain result is read by the callseq_start. |
| |
| //===---------------------------------------------------------------------===// |
| |
| For this: |
| |
| int test(int a) |
| { |
| return a * 3; |
| } |
| |
| We currently emits |
| imull $3, 4(%esp), %eax |
| |
| Perhaps this is what we really should generate is? Is imull three or four |
| cycles? Note: ICC generates this: |
| movl 4(%esp), %eax |
| leal (%eax,%eax,2), %eax |
| |
| The current instruction priority is based on pattern complexity. The former is |
| more "complex" because it folds a load so the latter will not be emitted. |
| |
| Perhaps we should use AddedComplexity to give LEA32r a higher priority? We |
| should always try to match LEA first since the LEA matching code does some |
| estimate to determine whether the match is profitable. |
| |
| However, if we care more about code size, then imull is better. It's two bytes |
| shorter than movl + leal. |
| |
| //===---------------------------------------------------------------------===// |
| |
| __builtin_ffs codegen is messy. |
| |
| int ffs_(unsigned X) { return __builtin_ffs(X); } |
| |
| llvm produces: |
| ffs_: |
| movl 4(%esp), %ecx |
| bsfl %ecx, %eax |
| movl $32, %edx |
| cmove %edx, %eax |
| incl %eax |
| xorl %edx, %edx |
| testl %ecx, %ecx |
| cmove %edx, %eax |
| ret |
| |
| vs gcc: |
| |
| _ffs_: |
| movl $-1, %edx |
| bsfl 4(%esp), %eax |
| cmove %edx, %eax |
| addl $1, %eax |
| ret |
| |
| Another example of __builtin_ffs (use predsimplify to eliminate a select): |
| |
| int foo (unsigned long j) { |
| if (j) |
| return __builtin_ffs (j) - 1; |
| else |
| return 0; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| It appears gcc place string data with linkonce linkage in |
| .section __TEXT,__const_coal,coalesced instead of |
| .section __DATA,__const_coal,coalesced. |
| Take a look at darwin.h, there are other Darwin assembler directives that we |
| do not make use of. |
| |
| //===---------------------------------------------------------------------===// |
| |
| define i32 @foo(i32* %a, i32 %t) { |
| entry: |
| br label %cond_true |
| |
| cond_true: ; preds = %cond_true, %entry |
| %x.0.0 = phi i32 [ 0, %entry ], [ %tmp9, %cond_true ] ; <i32> [#uses=3] |
| %t_addr.0.0 = phi i32 [ %t, %entry ], [ %tmp7, %cond_true ] ; <i32> [#uses=1] |
| %tmp2 = getelementptr i32* %a, i32 %x.0.0 ; <i32*> [#uses=1] |
| %tmp3 = load i32* %tmp2 ; <i32> [#uses=1] |
| %tmp5 = add i32 %t_addr.0.0, %x.0.0 ; <i32> [#uses=1] |
| %tmp7 = add i32 %tmp5, %tmp3 ; <i32> [#uses=2] |
| %tmp9 = add i32 %x.0.0, 1 ; <i32> [#uses=2] |
| %tmp = icmp sgt i32 %tmp9, 39 ; <i1> [#uses=1] |
| br i1 %tmp, label %bb12, label %cond_true |
| |
| bb12: ; preds = %cond_true |
| ret i32 %tmp7 |
| } |
| is pessimized by -loop-reduce and -indvars |
| |
| //===---------------------------------------------------------------------===// |
| |
| u32 to float conversion improvement: |
| |
| float uint32_2_float( unsigned u ) { |
| float fl = (int) (u & 0xffff); |
| float fh = (int) (u >> 16); |
| fh *= 0x1.0p16f; |
| return fh + fl; |
| } |
| |
| 00000000 subl $0x04,%esp |
| 00000003 movl 0x08(%esp,1),%eax |
| 00000007 movl %eax,%ecx |
| 00000009 shrl $0x10,%ecx |
| 0000000c cvtsi2ss %ecx,%xmm0 |
| 00000010 andl $0x0000ffff,%eax |
| 00000015 cvtsi2ss %eax,%xmm1 |
| 00000019 mulss 0x00000078,%xmm0 |
| 00000021 addss %xmm1,%xmm0 |
| 00000025 movss %xmm0,(%esp,1) |
| 0000002a flds (%esp,1) |
| 0000002d addl $0x04,%esp |
| 00000030 ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| When using fastcc abi, align stack slot of argument of type double on 8 byte |
| boundary to improve performance. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Codegen: |
| |
| int f(int a, int b) { |
| if (a == 4 || a == 6) |
| b++; |
| return b; |
| } |
| |
| |
| as: |
| |
| or eax, 2 |
| cmp eax, 6 |
| jz label |
| |
| //===---------------------------------------------------------------------===// |
| |
| GCC's ix86_expand_int_movcc function (in i386.c) has a ton of interesting |
| simplifications for integer "x cmp y ? a : b". For example, instead of: |
| |
| int G; |
| void f(int X, int Y) { |
| G = X < 0 ? 14 : 13; |
| } |
| |
| compiling to: |
| |
| _f: |
| movl $14, %eax |
| movl $13, %ecx |
| movl 4(%esp), %edx |
| testl %edx, %edx |
| cmovl %eax, %ecx |
| movl %ecx, _G |
| ret |
| |
| it could be: |
| _f: |
| movl 4(%esp), %eax |
| sarl $31, %eax |
| notl %eax |
| addl $14, %eax |
| movl %eax, _G |
| ret |
| |
| etc. |
| |
| Another is: |
| int usesbb(unsigned int a, unsigned int b) { |
| return (a < b ? -1 : 0); |
| } |
| to: |
| _usesbb: |
| movl 8(%esp), %eax |
| cmpl %eax, 4(%esp) |
| sbbl %eax, %eax |
| ret |
| |
| instead of: |
| _usesbb: |
| xorl %eax, %eax |
| movl 8(%esp), %ecx |
| cmpl %ecx, 4(%esp) |
| movl $4294967295, %ecx |
| cmovb %ecx, %eax |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| Currently we don't have elimination of redundant stack manipulations. Consider |
| the code: |
| |
| int %main() { |
| entry: |
| call fastcc void %test1( ) |
| call fastcc void %test2( sbyte* cast (void ()* %test1 to sbyte*) ) |
| ret int 0 |
| } |
| |
| declare fastcc void %test1() |
| |
| declare fastcc void %test2(sbyte*) |
| |
| |
| This currently compiles to: |
| |
| subl $16, %esp |
| call _test5 |
| addl $12, %esp |
| subl $16, %esp |
| movl $_test5, (%esp) |
| call _test6 |
| addl $12, %esp |
| |
| The add\sub pair is really unneeded here. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Consider the expansion of: |
| |
| define i32 @test3(i32 %X) { |
| %tmp1 = urem i32 %X, 255 |
| ret i32 %tmp1 |
| } |
| |
| Currently it compiles to: |
| |
| ... |
| movl $2155905153, %ecx |
| movl 8(%esp), %esi |
| movl %esi, %eax |
| mull %ecx |
| ... |
| |
| This could be "reassociated" into: |
| |
| movl $2155905153, %eax |
| movl 8(%esp), %ecx |
| mull %ecx |
| |
| to avoid the copy. In fact, the existing two-address stuff would do this |
| except that mul isn't a commutative 2-addr instruction. I guess this has |
| to be done at isel time based on the #uses to mul? |
| |
| //===---------------------------------------------------------------------===// |
| |
| Make sure the instruction which starts a loop does not cross a cacheline |
| boundary. This requires knowning the exact length of each machine instruction. |
| That is somewhat complicated, but doable. Example 256.bzip2: |
| |
| In the new trace, the hot loop has an instruction which crosses a cacheline |
| boundary. In addition to potential cache misses, this can't help decoding as I |
| imagine there has to be some kind of complicated decoder reset and realignment |
| to grab the bytes from the next cacheline. |
| |
| 532 532 0x3cfc movb (1809(%esp, %esi), %bl <<<--- spans 2 64 byte lines |
| 942 942 0x3d03 movl %dh, (1809(%esp, %esi) |
| 937 937 0x3d0a incl %esi |
| 3 3 0x3d0b cmpb %bl, %dl |
| 27 27 0x3d0d jnz 0x000062db <main+11707> |
| |
| //===---------------------------------------------------------------------===// |
| |
| In c99 mode, the preprocessor doesn't like assembly comments like #TRUNCATE. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This could be a single 16-bit load. |
| |
| int f(char *p) { |
| if ((p[0] == 1) & (p[1] == 2)) return 1; |
| return 0; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| We should inline lrintf and probably other libc functions. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Start using the flags more. For example, compile: |
| |
| int add_zf(int *x, int y, int a, int b) { |
| if ((*x += y) == 0) |
| return a; |
| else |
| return b; |
| } |
| |
| to: |
| addl %esi, (%rdi) |
| movl %edx, %eax |
| cmovne %ecx, %eax |
| ret |
| instead of: |
| |
| _add_zf: |
| addl (%rdi), %esi |
| movl %esi, (%rdi) |
| testl %esi, %esi |
| cmove %edx, %ecx |
| movl %ecx, %eax |
| ret |
| |
| and: |
| |
| int add_zf(int *x, int y, int a, int b) { |
| if ((*x + y) < 0) |
| return a; |
| else |
| return b; |
| } |
| |
| to: |
| |
| add_zf: |
| addl (%rdi), %esi |
| movl %edx, %eax |
| cmovns %ecx, %eax |
| ret |
| |
| instead of: |
| |
| _add_zf: |
| addl (%rdi), %esi |
| testl %esi, %esi |
| cmovs %edx, %ecx |
| movl %ecx, %eax |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| These two functions have identical effects: |
| |
| unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return i;} |
| unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;} |
| |
| We currently compile them to: |
| |
| _f: |
| movl 4(%esp), %eax |
| movl %eax, %ecx |
| incl %ecx |
| movl 8(%esp), %edx |
| cmpl %edx, %ecx |
| jne LBB1_2 #UnifiedReturnBlock |
| LBB1_1: #cond_true |
| addl $2, %eax |
| ret |
| LBB1_2: #UnifiedReturnBlock |
| movl %ecx, %eax |
| ret |
| _f2: |
| movl 4(%esp), %eax |
| movl %eax, %ecx |
| incl %ecx |
| cmpl 8(%esp), %ecx |
| sete %cl |
| movzbl %cl, %ecx |
| leal 1(%ecx,%eax), %eax |
| ret |
| |
| both of which are inferior to GCC's: |
| |
| _f: |
| movl 4(%esp), %edx |
| leal 1(%edx), %eax |
| addl $2, %edx |
| cmpl 8(%esp), %eax |
| cmove %edx, %eax |
| ret |
| _f2: |
| movl 4(%esp), %eax |
| addl $1, %eax |
| xorl %edx, %edx |
| cmpl 8(%esp), %eax |
| sete %dl |
| addl %edx, %eax |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| This code: |
| |
| void test(int X) { |
| if (X) abort(); |
| } |
| |
| is currently compiled to: |
| |
| _test: |
| subl $12, %esp |
| cmpl $0, 16(%esp) |
| jne LBB1_1 |
| addl $12, %esp |
| ret |
| LBB1_1: |
| call L_abort$stub |
| |
| It would be better to produce: |
| |
| _test: |
| subl $12, %esp |
| cmpl $0, 16(%esp) |
| jne L_abort$stub |
| addl $12, %esp |
| ret |
| |
| This can be applied to any no-return function call that takes no arguments etc. |
| Alternatively, the stack save/restore logic could be shrink-wrapped, producing |
| something like this: |
| |
| _test: |
| cmpl $0, 4(%esp) |
| jne LBB1_1 |
| ret |
| LBB1_1: |
| subl $12, %esp |
| call L_abort$stub |
| |
| Both are useful in different situations. Finally, it could be shrink-wrapped |
| and tail called, like this: |
| |
| _test: |
| cmpl $0, 4(%esp) |
| jne LBB1_1 |
| ret |
| LBB1_1: |
| pop %eax # realign stack. |
| call L_abort$stub |
| |
| Though this probably isn't worth it. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We need to teach the codegen to convert two-address INC instructions to LEA |
| when the flags are dead (likewise dec). For example, on X86-64, compile: |
| |
| int foo(int A, int B) { |
| return A+1; |
| } |
| |
| to: |
| |
| _foo: |
| leal 1(%edi), %eax |
| ret |
| |
| instead of: |
| |
| _foo: |
| incl %edi |
| movl %edi, %eax |
| ret |
| |
| Another example is: |
| |
| ;; X's live range extends beyond the shift, so the register allocator |
| ;; cannot coalesce it with Y. Because of this, a copy needs to be |
| ;; emitted before the shift to save the register value before it is |
| ;; clobbered. However, this copy is not needed if the register |
| ;; allocator turns the shift into an LEA. This also occurs for ADD. |
| |
| ; Check that the shift gets turned into an LEA. |
| ; RUN: llvm-as < %s | llc -march=x86 -x86-asm-syntax=intel | \ |
| ; RUN: not grep {mov E.X, E.X} |
| |
| @G = external global i32 ; <i32*> [#uses=3] |
| |
| define i32 @test1(i32 %X, i32 %Y) { |
| %Z = add i32 %X, %Y ; <i32> [#uses=1] |
| volatile store i32 %Y, i32* @G |
| volatile store i32 %Z, i32* @G |
| ret i32 %X |
| } |
| |
| define i32 @test2(i32 %X) { |
| %Z = add i32 %X, 1 ; <i32> [#uses=1] |
| volatile store i32 %Z, i32* @G |
| ret i32 %X |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| Sometimes it is better to codegen subtractions from a constant (e.g. 7-x) with |
| a neg instead of a sub instruction. Consider: |
| |
| int test(char X) { return 7-X; } |
| |
| we currently produce: |
| _test: |
| movl $7, %eax |
| movsbl 4(%esp), %ecx |
| subl %ecx, %eax |
| ret |
| |
| We would use one fewer register if codegen'd as: |
| |
| movsbl 4(%esp), %eax |
| neg %eax |
| add $7, %eax |
| ret |
| |
| Note that this isn't beneficial if the load can be folded into the sub. In |
| this case, we want a sub: |
| |
| int test(int X) { return 7-X; } |
| _test: |
| movl $7, %eax |
| subl 4(%esp), %eax |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| Leaf functions that require one 4-byte spill slot have a prolog like this: |
| |
| _foo: |
| pushl %esi |
| subl $4, %esp |
| ... |
| and an epilog like this: |
| addl $4, %esp |
| popl %esi |
| ret |
| |
| It would be smaller, and potentially faster, to push eax on entry and to |
| pop into a dummy register instead of using addl/subl of esp. Just don't pop |
| into any return registers :) |
| |
| //===---------------------------------------------------------------------===// |
| |
| The X86 backend should fold (branch (or (setcc, setcc))) into multiple |
| branches. We generate really poor code for: |
| |
| double testf(double a) { |
| return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0); |
| } |
| |
| For example, the entry BB is: |
| |
| _testf: |
| subl $20, %esp |
| pxor %xmm0, %xmm0 |
| movsd 24(%esp), %xmm1 |
| ucomisd %xmm0, %xmm1 |
| setnp %al |
| sete %cl |
| testb %cl, %al |
| jne LBB1_5 # UnifiedReturnBlock |
| LBB1_1: # cond_true |
| |
| |
| it would be better to replace the last four instructions with: |
| |
| jp LBB1_1 |
| je LBB1_5 |
| LBB1_1: |
| |
| We also codegen the inner ?: into a diamond: |
| |
| cvtss2sd LCPI1_0(%rip), %xmm2 |
| cvtss2sd LCPI1_1(%rip), %xmm3 |
| ucomisd %xmm1, %xmm0 |
| ja LBB1_3 # cond_true |
| LBB1_2: # cond_true |
| movapd %xmm3, %xmm2 |
| LBB1_3: # cond_true |
| movapd %xmm2, %xmm0 |
| ret |
| |
| We should sink the load into xmm3 into the LBB1_2 block. This should |
| be pretty easy, and will nuke all the copies. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This: |
| #include <algorithm> |
| inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b) |
| { return std::make_pair(a + b, a + b < a); } |
| bool no_overflow(unsigned a, unsigned b) |
| { return !full_add(a, b).second; } |
| |
| Should compile to: |
| |
| |
| _Z11no_overflowjj: |
| addl %edi, %esi |
| setae %al |
| ret |
| |
| FIXME: That code looks wrong; bool return is normally defined as zext. |
| |
| on x86-64, not: |
| |
| __Z11no_overflowjj: |
| addl %edi, %esi |
| cmpl %edi, %esi |
| setae %al |
| movzbl %al, %eax |
| ret |
| |
| |
| //===---------------------------------------------------------------------===// |
| |
| Re-materialize MOV32r0 etc. with xor instead of changing them to moves if the |
| condition register is dead. xor reg reg is shorter than mov reg, #0. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We aren't matching RMW instructions aggressively |
| enough. Here's a reduced testcase (more in PR1160): |
| |
| define void @test(i32* %huge_ptr, i32* %target_ptr) { |
| %A = load i32* %huge_ptr ; <i32> [#uses=1] |
| %B = load i32* %target_ptr ; <i32> [#uses=1] |
| %C = or i32 %A, %B ; <i32> [#uses=1] |
| store i32 %C, i32* %target_ptr |
| ret void |
| } |
| |
| $ llvm-as < t.ll | llc -march=x86-64 |
| |
| _test: |
| movl (%rdi), %eax |
| orl (%rsi), %eax |
| movl %eax, (%rsi) |
| ret |
| |
| That should be something like: |
| |
| _test: |
| movl (%rdi), %eax |
| orl %eax, (%rsi) |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| The following code: |
| |
| bb114.preheader: ; preds = %cond_next94 |
| %tmp231232 = sext i16 %tmp62 to i32 ; <i32> [#uses=1] |
| %tmp233 = sub i32 32, %tmp231232 ; <i32> [#uses=1] |
| %tmp245246 = sext i16 %tmp65 to i32 ; <i32> [#uses=1] |
| %tmp252253 = sext i16 %tmp68 to i32 ; <i32> [#uses=1] |
| %tmp254 = sub i32 32, %tmp252253 ; <i32> [#uses=1] |
| %tmp553554 = bitcast i16* %tmp37 to i8* ; <i8*> [#uses=2] |
| %tmp583584 = sext i16 %tmp98 to i32 ; <i32> [#uses=1] |
| %tmp585 = sub i32 32, %tmp583584 ; <i32> [#uses=1] |
| %tmp614615 = sext i16 %tmp101 to i32 ; <i32> [#uses=1] |
| %tmp621622 = sext i16 %tmp104 to i32 ; <i32> [#uses=1] |
| %tmp623 = sub i32 32, %tmp621622 ; <i32> [#uses=1] |
| br label %bb114 |
| |
| produces: |
| |
| LBB3_5: # bb114.preheader |
| movswl -68(%ebp), %eax |
| movl $32, %ecx |
| movl %ecx, -80(%ebp) |
| subl %eax, -80(%ebp) |
| movswl -52(%ebp), %eax |
| movl %ecx, -84(%ebp) |
| subl %eax, -84(%ebp) |
| movswl -70(%ebp), %eax |
| movl %ecx, -88(%ebp) |
| subl %eax, -88(%ebp) |
| movswl -50(%ebp), %eax |
| subl %eax, %ecx |
| movl %ecx, -76(%ebp) |
| movswl -42(%ebp), %eax |
| movl %eax, -92(%ebp) |
| movswl -66(%ebp), %eax |
| movl %eax, -96(%ebp) |
| movw $0, -98(%ebp) |
| |
| This appears to be bad because the RA is not folding the store to the stack |
| slot into the movl. The above instructions could be: |
| movl $32, -80(%ebp) |
| ... |
| movl $32, -84(%ebp) |
| ... |
| This seems like a cross between remat and spill folding. |
| |
| This has redundant subtractions of %eax from a stack slot. However, %ecx doesn't |
| change, so we could simply subtract %eax from %ecx first and then use %ecx (or |
| vice-versa). |
| |
| //===---------------------------------------------------------------------===// |
| |
| For this code: |
| |
| cond_next603: ; preds = %bb493, %cond_true336, %cond_next599 |
| %v.21050.1 = phi i32 [ %v.21050.0, %cond_next599 ], [ %tmp344, %cond_true336 ], [ %v.2, %bb493 ] ; <i32> [#uses=1] |
| %maxz.21051.1 = phi i32 [ %maxz.21051.0, %cond_next599 ], [ 0, %cond_true336 ], [ %maxz.2, %bb493 ] ; <i32> [#uses=2] |
| %cnt.01055.1 = phi i32 [ %cnt.01055.0, %cond_next599 ], [ 0, %cond_true336 ], [ %cnt.0, %bb493 ] ; <i32> [#uses=2] |
| %byteptr.9 = phi i8* [ %byteptr.12, %cond_next599 ], [ %byteptr.0, %cond_true336 ], [ %byteptr.10, %bb493 ] ; <i8*> [#uses=9] |
| %bitptr.6 = phi i32 [ %tmp5571104.1, %cond_next599 ], [ %tmp4921049, %cond_true336 ], [ %bitptr.7, %bb493 ] ; <i32> [#uses=4] |
| %source.5 = phi i32 [ %tmp602, %cond_next599 ], [ %source.0, %cond_true336 ], [ %source.6, %bb493 ] ; <i32> [#uses=7] |
| %tmp606 = getelementptr %struct.const_tables* @tables, i32 0, i32 0, i32 %cnt.01055.1 ; <i8*> [#uses=1] |
| %tmp607 = load i8* %tmp606, align 1 ; <i8> [#uses=1] |
| |
| We produce this: |
| |
| LBB4_70: # cond_next603 |
| movl -20(%ebp), %esi |
| movl L_tables$non_lazy_ptr-"L4$pb"(%esi), %esi |
| |
| However, ICC caches this information before the loop and produces this: |
| |
| movl 88(%esp), %eax #481.12 |
| |
| //===---------------------------------------------------------------------===// |
| |
| This code: |
| |
| %tmp659 = icmp slt i16 %tmp654, 0 ; <i1> [#uses=1] |
| br i1 %tmp659, label %cond_true662, label %cond_next715 |
| |
| produces this: |
| |
| testw %cx, %cx |
| movswl %cx, %esi |
| jns LBB4_109 # cond_next715 |
| |
| Shark tells us that using %cx in the testw instruction is sub-optimal. It |
| suggests using the 32-bit register (which is what ICC uses). |
| |
| //===---------------------------------------------------------------------===// |
| |
| We compile this: |
| |
| void compare (long long foo) { |
| if (foo < 4294967297LL) |
| abort(); |
| } |
| |
| to: |
| |
| compare: |
| subl $4, %esp |
| cmpl $0, 8(%esp) |
| setne %al |
| movzbw %al, %ax |
| cmpl $1, 12(%esp) |
| setg %cl |
| movzbw %cl, %cx |
| cmove %ax, %cx |
| testb $1, %cl |
| jne .LBB1_2 # UnifiedReturnBlock |
| .LBB1_1: # ifthen |
| call abort |
| .LBB1_2: # UnifiedReturnBlock |
| addl $4, %esp |
| ret |
| |
| (also really horrible code on ppc). This is due to the expand code for 64-bit |
| compares. GCC produces multiple branches, which is much nicer: |
| |
| compare: |
| subl $12, %esp |
| movl 20(%esp), %edx |
| movl 16(%esp), %eax |
| decl %edx |
| jle .L7 |
| .L5: |
| addl $12, %esp |
| ret |
| .p2align 4,,7 |
| .L7: |
| jl .L4 |
| cmpl $0, %eax |
| .p2align 4,,8 |
| ja .L5 |
| .L4: |
| .p2align 4,,9 |
| call abort |
| |
| //===---------------------------------------------------------------------===// |
| |
| Tail call optimization improvements: Tail call optimization currently |
| pushes all arguments on the top of the stack (their normal place for |
| non-tail call optimized calls) that source from the callers arguments |
| or that source from a virtual register (also possibly sourcing from |
| callers arguments). |
| This is done to prevent overwriting of parameters (see example |
| below) that might be used later. |
| |
| example: |
| |
| int callee(int32, int64); |
| int caller(int32 arg1, int32 arg2) { |
| int64 local = arg2 * 2; |
| return callee(arg2, (int64)local); |
| } |
| |
| [arg1] [!arg2 no longer valid since we moved local onto it] |
| [arg2] -> [(int64) |
| [RETADDR] local ] |
| |
| Moving arg1 onto the stack slot of callee function would overwrite |
| arg2 of the caller. |
| |
| Possible optimizations: |
| |
| |
| - Analyse the actual parameters of the callee to see which would |
| overwrite a caller parameter which is used by the callee and only |
| push them onto the top of the stack. |
| |
| int callee (int32 arg1, int32 arg2); |
| int caller (int32 arg1, int32 arg2) { |
| return callee(arg1,arg2); |
| } |
| |
| Here we don't need to write any variables to the top of the stack |
| since they don't overwrite each other. |
| |
| int callee (int32 arg1, int32 arg2); |
| int caller (int32 arg1, int32 arg2) { |
| return callee(arg2,arg1); |
| } |
| |
| Here we need to push the arguments because they overwrite each |
| other. |
| |
| //===---------------------------------------------------------------------===// |
| |
| main () |
| { |
| int i = 0; |
| unsigned long int z = 0; |
| |
| do { |
| z -= 0x00004000; |
| i++; |
| if (i > 0x00040000) |
| abort (); |
| } while (z > 0); |
| exit (0); |
| } |
| |
| gcc compiles this to: |
| |
| _main: |
| subl $28, %esp |
| xorl %eax, %eax |
| jmp L2 |
| L3: |
| cmpl $262144, %eax |
| je L10 |
| L2: |
| addl $1, %eax |
| cmpl $262145, %eax |
| jne L3 |
| call L_abort$stub |
| L10: |
| movl $0, (%esp) |
| call L_exit$stub |
| |
| llvm: |
| |
| _main: |
| subl $12, %esp |
| movl $1, %eax |
| movl $16384, %ecx |
| LBB1_1: # bb |
| cmpl $262145, %eax |
| jge LBB1_4 # cond_true |
| LBB1_2: # cond_next |
| incl %eax |
| addl $4294950912, %ecx |
| cmpl $16384, %ecx |
| jne LBB1_1 # bb |
| LBB1_3: # bb11 |
| xorl %eax, %eax |
| addl $12, %esp |
| ret |
| LBB1_4: # cond_true |
| call L_abort$stub |
| |
| 1. LSR should rewrite the first cmp with induction variable %ecx. |
| 2. DAG combiner should fold |
| leal 1(%eax), %edx |
| cmpl $262145, %edx |
| => |
| cmpl $262144, %eax |
| |
| //===---------------------------------------------------------------------===// |
| |
| define i64 @test(double %X) { |
| %Y = fptosi double %X to i64 |
| ret i64 %Y |
| } |
| |
| compiles to: |
| |
| _test: |
| subl $20, %esp |
| movsd 24(%esp), %xmm0 |
| movsd %xmm0, 8(%esp) |
| fldl 8(%esp) |
| fisttpll (%esp) |
| movl 4(%esp), %edx |
| movl (%esp), %eax |
| addl $20, %esp |
| #FP_REG_KILL |
| ret |
| |
| This should just fldl directly from the input stack slot. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This code: |
| int foo (int x) { return (x & 65535) | 255; } |
| |
| Should compile into: |
| |
| _foo: |
| movzwl 4(%esp), %eax |
| orl $255, %eax |
| ret |
| |
| instead of: |
| _foo: |
| movl $255, %eax |
| orl 4(%esp), %eax |
| andl $65535, %eax |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| We're codegen'ing multiply of long longs inefficiently: |
| |
| unsigned long long LLM(unsigned long long arg1, unsigned long long arg2) { |
| return arg1 * arg2; |
| } |
| |
| We compile to (fomit-frame-pointer): |
| |
| _LLM: |
| pushl %esi |
| movl 8(%esp), %ecx |
| movl 16(%esp), %esi |
| movl %esi, %eax |
| mull %ecx |
| imull 12(%esp), %esi |
| addl %edx, %esi |
| imull 20(%esp), %ecx |
| movl %esi, %edx |
| addl %ecx, %edx |
| popl %esi |
| ret |
| |
| This looks like a scheduling deficiency and lack of remat of the load from |
| the argument area. ICC apparently produces: |
| |
| movl 8(%esp), %ecx |
| imull 12(%esp), %ecx |
| movl 16(%esp), %eax |
| imull 4(%esp), %eax |
| addl %eax, %ecx |
| movl 4(%esp), %eax |
| mull 12(%esp) |
| addl %ecx, %edx |
| ret |
| |
| Note that it remat'd loads from 4(esp) and 12(esp). See this GCC PR: |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17236 |
| |
| //===---------------------------------------------------------------------===// |
| |
| We can fold a store into "zeroing a reg". Instead of: |
| |
| xorl %eax, %eax |
| movl %eax, 124(%esp) |
| |
| we should get: |
| |
| movl $0, 124(%esp) |
| |
| if the flags of the xor are dead. |
| |
| Likewise, we isel "x<<1" into "add reg,reg". If reg is spilled, this should |
| be folded into: shl [mem], 1 |
| |
| //===---------------------------------------------------------------------===// |
| |
| This testcase misses a read/modify/write opportunity (from PR1425): |
| |
| void vertical_decompose97iH1(int *b0, int *b1, int *b2, int width){ |
| int i; |
| for(i=0; i<width; i++) |
| b1[i] += (1*(b0[i] + b2[i])+0)>>0; |
| } |
| |
| We compile it down to: |
| |
| LBB1_2: # bb |
| movl (%esi,%edi,4), %ebx |
| addl (%ecx,%edi,4), %ebx |
| addl (%edx,%edi,4), %ebx |
| movl %ebx, (%ecx,%edi,4) |
| incl %edi |
| cmpl %eax, %edi |
| jne LBB1_2 # bb |
| |
| the inner loop should add to the memory location (%ecx,%edi,4), saving |
| a mov. Something like: |
| |
| movl (%esi,%edi,4), %ebx |
| addl (%edx,%edi,4), %ebx |
| addl %ebx, (%ecx,%edi,4) |
| |
| Here is another interesting example: |
| |
| void vertical_compose97iH1(int *b0, int *b1, int *b2, int width){ |
| int i; |
| for(i=0; i<width; i++) |
| b1[i] -= (1*(b0[i] + b2[i])+0)>>0; |
| } |
| |
| We miss the r/m/w opportunity here by using 2 subs instead of an add+sub[mem]: |
| |
| LBB9_2: # bb |
| movl (%ecx,%edi,4), %ebx |
| subl (%esi,%edi,4), %ebx |
| subl (%edx,%edi,4), %ebx |
| movl %ebx, (%ecx,%edi,4) |
| incl %edi |
| cmpl %eax, %edi |
| jne LBB9_2 # bb |
| |
| Additionally, LSR should rewrite the exit condition of these loops to use |
| a stride-4 IV, would would allow all the scales in the loop to go away. |
| This would result in smaller code and more efficient microops. |
| |
| //===---------------------------------------------------------------------===// |
| |
| In SSE mode, we turn abs and neg into a load from the constant pool plus a xor |
| or and instruction, for example: |
| |
| xorpd LCPI1_0, %xmm2 |
| |
| However, if xmm2 gets spilled, we end up with really ugly code like this: |
| |
| movsd (%esp), %xmm0 |
| xorpd LCPI1_0, %xmm0 |
| movsd %xmm0, (%esp) |
| |
| Since we 'know' that this is a 'neg', we can actually "fold" the spill into |
| the neg/abs instruction, turning it into an *integer* operation, like this: |
| |
| xorl 2147483648, [mem+4] ## 2147483648 = (1 << 31) |
| |
| you could also use xorb, but xorl is less likely to lead to a partial register |
| stall. Here is a contrived testcase: |
| |
| double a, b, c; |
| void test(double *P) { |
| double X = *P; |
| a = X; |
| bar(); |
| X = -X; |
| b = X; |
| bar(); |
| c = X; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| handling llvm.memory.barrier on pre SSE2 cpus |
| |
| should generate: |
| lock ; mov %esp, %esp |
| |
| //===---------------------------------------------------------------------===// |
| |
| The generated code on x86 for checking for signed overflow on a multiply the |
| obvious way is much longer than it needs to be. |
| |
| int x(int a, int b) { |
| long long prod = (long long)a*b; |
| return prod > 0x7FFFFFFF || prod < (-0x7FFFFFFF-1); |
| } |
| |
| See PR2053 for more details. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We should investigate using cdq/ctld (effect: edx = sar eax, 31) |
| more aggressively; it should cost the same as a move+shift on any modern |
| processor, but it's a lot shorter. Downside is that it puts more |
| pressure on register allocation because it has fixed operands. |
| |
| Example: |
| int abs(int x) {return x < 0 ? -x : x;} |
| |
| gcc compiles this to the following when using march/mtune=pentium2/3/4/m/etc.: |
| abs: |
| movl 4(%esp), %eax |
| cltd |
| xorl %edx, %eax |
| subl %edx, %eax |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| Consider: |
| int test(unsigned long a, unsigned long b) { return -(a < b); } |
| |
| We currently compile this to: |
| |
| define i32 @test(i32 %a, i32 %b) nounwind { |
| %tmp3 = icmp ult i32 %a, %b ; <i1> [#uses=1] |
| %tmp34 = zext i1 %tmp3 to i32 ; <i32> [#uses=1] |
| %tmp5 = sub i32 0, %tmp34 ; <i32> [#uses=1] |
| ret i32 %tmp5 |
| } |
| |
| and |
| |
| _test: |
| movl 8(%esp), %eax |
| cmpl %eax, 4(%esp) |
| setb %al |
| movzbl %al, %eax |
| negl %eax |
| ret |
| |
| Several deficiencies here. First, we should instcombine zext+neg into sext: |
| |
| define i32 @test2(i32 %a, i32 %b) nounwind { |
| %tmp3 = icmp ult i32 %a, %b ; <i1> [#uses=1] |
| %tmp34 = sext i1 %tmp3 to i32 ; <i32> [#uses=1] |
| ret i32 %tmp34 |
| } |
| |
| However, before we can do that, we have to fix the bad codegen that we get for |
| sext from bool: |
| |
| _test2: |
| movl 8(%esp), %eax |
| cmpl %eax, 4(%esp) |
| setb %al |
| movzbl %al, %eax |
| shll $31, %eax |
| sarl $31, %eax |
| ret |
| |
| This code should be at least as good as the code above. Once this is fixed, we |
| can optimize this specific case even more to: |
| |
| movl 8(%esp), %eax |
| xorl %ecx, %ecx |
| cmpl %eax, 4(%esp) |
| sbbl %ecx, %ecx |
| |
| //===---------------------------------------------------------------------===// |
| |
| Take the following code (from |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=16541): |
| |
| extern unsigned char first_one[65536]; |
| int FirstOnet(unsigned long long arg1) |
| { |
| if (arg1 >> 48) |
| return (first_one[arg1 >> 48]); |
| return 0; |
| } |
| |
| |
| The following code is currently generated: |
| FirstOnet: |
| movl 8(%esp), %eax |
| cmpl $65536, %eax |
| movl 4(%esp), %ecx |
| jb .LBB1_2 # UnifiedReturnBlock |
| .LBB1_1: # ifthen |
| shrl $16, %eax |
| movzbl first_one(%eax), %eax |
| ret |
| .LBB1_2: # UnifiedReturnBlock |
| xorl %eax, %eax |
| ret |
| |
| There are a few possible improvements here: |
| 1. We should be able to eliminate the dead load into %ecx |
| 2. We could change the "movl 8(%esp), %eax" into |
| "movzwl 10(%esp), %eax"; this lets us change the cmpl |
| into a testl, which is shorter, and eliminate the shift. |
| |
| We could also in theory eliminate the branch by using a conditional |
| for the address of the load, but that seems unlikely to be worthwhile |
| in general. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Take the following code: |
| |
| #include <xmmintrin.h> |
| __m128i doload64(short x) {return _mm_set_epi16(x,x,x,x,x,x,x,x);} |
| |
| LLVM currently generates the following on x86: |
| doload64: |
| movzwl 4(%esp), %eax |
| movd %eax, %xmm0 |
| punpcklwd %xmm0, %xmm0 |
| pshufd $0, %xmm0, %xmm0 |
| ret |
| |
| gcc's generated code: |
| doload64: |
| movd 4(%esp), %xmm0 |
| punpcklwd %xmm0, %xmm0 |
| pshufd $0, %xmm0, %xmm0 |
| ret |
| |
| LLVM should be able to generate the same thing as gcc. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Take the following code: |
| #include <xmmintrin.h> |
| __m128i doload64(short x) {return _mm_set_epi16(0,0,0,0,0,0,0,1);} |
| |
| On x86, LLVM generates the following: |
| doload64: |
| subl $28, %esp |
| movl $0, 4(%esp) |
| movl $1, (%esp) |
| movq (%esp), %xmm0 |
| addl $28, %esp |
| ret |
| |
| LLVM should instead generate something more like the following: |
| doload64: |
| movl $1, %eax |
| movd %eax, %xmm0 |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| We compile this function: |
| |
| define i32 @foo(i32 %a, i32 %b, i32 %c, i8 zeroext %d) nounwind { |
| entry: |
| %tmp2 = icmp eq i8 %d, 0 ; <i1> [#uses=1] |
| br i1 %tmp2, label %bb7, label %bb |
| |
| bb: ; preds = %entry |
| %tmp6 = add i32 %b, %a ; <i32> [#uses=1] |
| ret i32 %tmp6 |
| |
| bb7: ; preds = %entry |
| %tmp10 = sub i32 %a, %c ; <i32> [#uses=1] |
| ret i32 %tmp10 |
| } |
| |
| to: |
| |
| _foo: |
| cmpb $0, 16(%esp) |
| movl 12(%esp), %ecx |
| movl 8(%esp), %eax |
| movl 4(%esp), %edx |
| je LBB1_2 # bb7 |
| LBB1_1: # bb |
| addl %edx, %eax |
| ret |
| LBB1_2: # bb7 |
| movl %edx, %eax |
| subl %ecx, %eax |
| ret |
| |
| The coallescer could coallesce "edx" with "eax" to avoid the movl in LBB1_2 |
| if it commuted the addl in LBB1_1. |
| |
| //===---------------------------------------------------------------------===// |
| |