| //===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===// |
| // |
| // This file defines a simple peephole instruction selector for the x86 platform |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "llvm/Function.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/iOther.h" |
| #include "llvm/Type.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Pass.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include <map> |
| |
| namespace { |
| struct ISel : public FunctionPass, InstVisitor<ISel> { |
| TargetMachine &TM; |
| MachineFunction *F; // The function we are compiling into |
| MachineBasicBlock *BB; // The current MBB we are compiling |
| |
| unsigned CurReg; |
| std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs |
| |
| ISel(TargetMachine &tm) |
| : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {} |
| |
| /// runOnFunction - Top level implementation of instruction selection for |
| /// the entire function. |
| /// |
| bool runOnFunction(Function &Fn) { |
| F = &MachineFunction::construct(&Fn, TM); |
| visit(Fn); |
| RegMap.clear(); |
| F = 0; |
| return false; // We never modify the LLVM itself. |
| } |
| |
| /// visitBasicBlock - This method is called when we are visiting a new basic |
| /// block. This simply creates a new MachineBasicBlock to emit code into |
| /// and adds it to the current MachineFunction. Subsequent visit* for |
| /// instructions will be invoked for all instructions in the basic block. |
| /// |
| void visitBasicBlock(BasicBlock &LLVM_BB) { |
| BB = new MachineBasicBlock(&LLVM_BB); |
| // FIXME: Use the auto-insert form when it's available |
| F->getBasicBlockList().push_back(BB); |
| } |
| |
| // Visitation methods for various instructions. These methods simply emit |
| // fixed X86 code for each instruction. |
| // |
| void visitReturnInst(ReturnInst &RI); |
| void visitBranchInst(BranchInst &BI); |
| void visitAdd(BinaryOperator &B); |
| void visitShiftInst(ShiftInst &I); |
| |
| void visitInstruction(Instruction &I) { |
| std::cerr << "Cannot instruction select: " << I; |
| abort(); |
| } |
| |
| |
| /// copyConstantToRegister - Output the instructions required to put the |
| /// specified constant into the specified register. |
| /// |
| void copyConstantToRegister(Constant *C, unsigned Reg); |
| |
| /// getReg - This method turns an LLVM value into a register number. This |
| /// is guaranteed to produce the same register number for a particular value |
| /// every time it is queried. |
| /// |
| unsigned getReg(Value &V) { return getReg(&V); } // Allow references |
| unsigned getReg(Value *V) { |
| unsigned &Reg = RegMap[V]; |
| if (Reg == 0) |
| Reg = CurReg++; |
| |
| // If this operand is a constant, emit the code to copy the constant into |
| // the register here... |
| // |
| if (Constant *C = dyn_cast<Constant>(V)) |
| copyConstantToRegister(C, Reg); |
| |
| return Reg; |
| } |
| }; |
| } |
| |
| /// getClass - Turn a primitive type into a "class" number which is based on the |
| /// size of the type, and whether or not it is floating point. |
| /// |
| static inline unsigned getClass(const Type *Ty) { |
| switch (Ty->getPrimitiveID()) { |
| case Type::SByteTyID: |
| case Type::UByteTyID: return 0; // Byte operands are class #0 |
| case Type::ShortTyID: |
| case Type::UShortTyID: return 1; // Short operands are class #1 |
| case Type::IntTyID: |
| case Type::UIntTyID: |
| case Type::PointerTyID: return 2; // Int's and pointers are class #2 |
| |
| case Type::LongTyID: |
| case Type::ULongTyID: return 3; // Longs are class #3 |
| case Type::FloatTyID: return 4; // Float is class #4 |
| case Type::DoubleTyID: return 5; // Doubles are class #5 |
| default: |
| assert(0 && "Invalid type to getClass!"); |
| return 0; // not reached |
| } |
| } |
| |
| /// copyConstantToRegister - Output the instructions required to put the |
| /// specified constant into the specified register. |
| /// |
| void ISel::copyConstantToRegister(Constant *C, unsigned R) { |
| assert (!isa<ConstantExpr>(C) && "Constant expressions not yet handled!\n"); |
| |
| if (C->getType()->isIntegral()) { |
| unsigned Class = getClass(C->getType()); |
| assert(Class != 3 && "Type not handled yet!"); |
| |
| static const unsigned IntegralOpcodeTab[] = { |
| X86::MOVir8, X86::MOVir16, X86::MOVir32 |
| }; |
| |
| if (C->getType()->isSigned()) { |
| ConstantSInt *CSI = cast<ConstantSInt>(C); |
| BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue()); |
| } else { |
| ConstantUInt *CUI = cast<ConstantUInt>(C); |
| BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue()); |
| } |
| } else { |
| assert(0 && "Type not handled yet!"); |
| } |
| } |
| |
| |
| /// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such, |
| /// we have the following possibilities: |
| /// |
| /// ret void: No return value, simply emit a 'ret' instruction |
| /// ret sbyte, ubyte : Extend value into EAX and return |
| /// ret short, ushort: Extend value into EAX and return |
| /// ret int, uint : Move value into EAX and return |
| /// ret pointer : Move value into EAX and return |
| /// ret long, ulong : Move value into EAX/EDX (?) and return |
| /// ret float/double : ? Top of FP stack? XMM0? |
| /// |
| void ISel::visitReturnInst(ReturnInst &I) { |
| if (I.getNumOperands() != 0) { // Not 'ret void'? |
| // Move result into a hard register... then emit a ret |
| visitInstruction(I); // abort |
| } |
| |
| // Emit a simple 'ret' instruction... appending it to the end of the basic |
| // block |
| BuildMI(BB, X86::RET, 0); |
| } |
| |
| void ISel::visitBranchInst(BranchInst &BI) { |
| if (BI.isConditional()) // Only handles unconditional branches so far... |
| visitInstruction(BI); |
| |
| BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0)); |
| } |
| |
| |
| /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here |
| /// for constant immediate shift values, and for constant immediate |
| /// shift values equal to 1. Even the general case is sort of special, |
| /// because the shift amount has to be in CL, not just any old register. |
| /// |
| void |
| ISel::visitShiftInst (ShiftInst & I) |
| { |
| unsigned Op0r = getReg (I.getOperand (0)); |
| unsigned DestReg = getReg (I); |
| bool isLeftShift = I.getOpcode() == Instruction::Shl; |
| bool isOperandSigned = I.getType()->isUnsigned(); |
| unsigned OperandClass = getClass(I.getType()); |
| |
| if (OperandClass > 2) |
| visitInstruction(I); // Can't handle longs yet! |
| |
| if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1))) |
| { |
| // The shift amount is constant, guaranteed to be a ubyte. Get its value. |
| assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); |
| unsigned char shAmt = CUI->getValue(); |
| |
| static const unsigned ConstantOperand[][4] = { |
| { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR |
| { X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR |
| { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL |
| { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL |
| }; |
| |
| const unsigned *OpTab = // Figure out the operand table to use |
| ConstantOperand[isLeftShift*2+isOperandSigned]; |
| |
| // Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.) |
| BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt); |
| } |
| else |
| { |
| // The shift amount is non-constant. |
| // |
| // In fact, you can only shift with a variable shift amount if |
| // that amount is already in the CL register, so we have to put it |
| // there first. |
| // |
| |
| // Emit: move cl, shiftAmount (put the shift amount in CL.) |
| BuildMI (BB, X86::MOVrr8, 2, X86::CL).addReg(getReg(I.getOperand(1))); |
| |
| // This is a shift right (SHR). |
| static const unsigned NonConstantOperand[][4] = { |
| { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR |
| { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR |
| { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL |
| { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL |
| }; |
| |
| const unsigned *OpTab = // Figure out the operand table to use |
| NonConstantOperand[isLeftShift*2+isOperandSigned]; |
| |
| BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addReg(X86::CL); |
| } |
| } |
| |
| |
| /// 'add' instruction - Simply turn this into an x86 reg,reg add instruction. |
| void ISel::visitAdd(BinaryOperator &B) { |
| unsigned Op0r = getReg(B.getOperand(0)), Op1r = getReg(B.getOperand(1)); |
| unsigned DestReg = getReg(B); |
| unsigned Class = getClass(B.getType()); |
| |
| static const unsigned Opcodes[] = { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32 }; |
| |
| if (Class >= sizeof(Opcodes)/sizeof(Opcodes[0])) |
| visitInstruction(B); // Not handled class yet... |
| |
| BuildMI(BB, Opcodes[Class], 2, DestReg).addReg(Op0r).addReg(Op1r); |
| |
| // For Longs: Here we have a pair of operands each occupying a pair of |
| // registers. We need to do an ADDrr32 of the least-significant pair |
| // immediately followed by an ADCrr32 (Add with Carry) of the most-significant |
| // pair. I don't know how we are representing these multi-register arguments. |
| } |
| |
| |
| |
| /// createSimpleX86InstructionSelector - This pass converts an LLVM function |
| /// into a machine code representation is a very simple peep-hole fashion. The |
| /// generated code sucks but the implementation is nice and simple. |
| /// |
| Pass *createSimpleX86InstructionSelector(TargetMachine &TM) { |
| return new ISel(TM); |
| } |