| //===- LoopInfo.cpp - Natural Loop Calculator -------------------------------=// | 
 | // | 
 | // This file defines the LoopInfo class that is used to identify natural loops | 
 | // and determine the loop depth of various nodes of the CFG.  Note that the | 
 | // loops identified may actually be several natural loops that share the same | 
 | // header node... not just a single natural loop. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/LoopInfo.h" | 
 | #include "llvm/Analysis/Dominators.h" | 
 | #include "llvm/Support/CFG.h" | 
 | #include "llvm/Assembly/Writer.h" | 
 | #include "Support/DepthFirstIterator.h" | 
 | #include <algorithm> | 
 |  | 
 | static RegisterAnalysis<LoopInfo> | 
 | X("loops", "Natural Loop Construction", true); | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Loop implementation | 
 | // | 
 | bool Loop::contains(const BasicBlock *BB) const { | 
 |   return find(Blocks.begin(), Blocks.end(), BB) != Blocks.end(); | 
 | } | 
 |  | 
 | bool Loop::isLoopExit(const BasicBlock *BB) const { | 
 |   for (BasicBlock::succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); | 
 |        SI != SE; ++SI) { | 
 |     if (!contains(*SI)) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | unsigned Loop::getNumBackEdges() const { | 
 |   unsigned NumBackEdges = 0; | 
 |   BasicBlock *H = getHeader(); | 
 |  | 
 |   for (std::vector<BasicBlock*>::const_iterator I = Blocks.begin(), | 
 |          E = Blocks.end(); I != E; ++I) | 
 |     for (BasicBlock::succ_iterator SI = succ_begin(*I), SE = succ_end(*I); | 
 |          SI != SE; ++SI) | 
 |       if (*SI == H) | 
 | 	++NumBackEdges; | 
 |    | 
 |   return NumBackEdges; | 
 | } | 
 |  | 
 | void Loop::print(std::ostream &OS) const { | 
 |   OS << std::string(getLoopDepth()*2, ' ') << "Loop Containing: "; | 
 |  | 
 |   for (unsigned i = 0; i < getBlocks().size(); ++i) { | 
 |     if (i) OS << ","; | 
 |     WriteAsOperand(OS, getBlocks()[i], false); | 
 |   } | 
 |   if (!ExitBlocks.empty()) { | 
 |     OS << "\tExitBlocks: "; | 
 |     for (unsigned i = 0; i < getExitBlocks().size(); ++i) { | 
 |       if (i) OS << ","; | 
 |       WriteAsOperand(OS, getExitBlocks()[i], false); | 
 |     } | 
 |   } | 
 |  | 
 |   OS << "\n"; | 
 |  | 
 |   for (unsigned i = 0, e = getSubLoops().size(); i != e; ++i) | 
 |     getSubLoops()[i]->print(OS); | 
 | } | 
 |  | 
 | void Loop::dump() const { | 
 |   print(std::cerr); | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // LoopInfo implementation | 
 | // | 
 | void LoopInfo::stub() {} | 
 |  | 
 | bool LoopInfo::runOnFunction(Function &) { | 
 |   releaseMemory(); | 
 |   Calculate(getAnalysis<DominatorSet>());    // Update | 
 |   return false; | 
 | } | 
 |  | 
 | void LoopInfo::releaseMemory() { | 
 |   for (std::vector<Loop*>::iterator I = TopLevelLoops.begin(), | 
 |          E = TopLevelLoops.end(); I != E; ++I) | 
 |     delete *I;   // Delete all of the loops... | 
 |  | 
 |   BBMap.clear();                             // Reset internal state of analysis | 
 |   TopLevelLoops.clear(); | 
 | } | 
 |  | 
 |  | 
 | void LoopInfo::Calculate(const DominatorSet &DS) { | 
 |   BasicBlock *RootNode = DS.getRoot(); | 
 |  | 
 |   for (df_iterator<BasicBlock*> NI = df_begin(RootNode), | 
 | 	 NE = df_end(RootNode); NI != NE; ++NI) | 
 |     if (Loop *L = ConsiderForLoop(*NI, DS)) | 
 |       TopLevelLoops.push_back(L); | 
 |  | 
 |   for (unsigned i = 0; i < TopLevelLoops.size(); ++i) | 
 |     TopLevelLoops[i]->setLoopDepth(1); | 
 | } | 
 |  | 
 | void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   AU.setPreservesAll(); | 
 |   AU.addRequired<DominatorSet>(); | 
 | } | 
 |  | 
 | void LoopInfo::print(std::ostream &OS) const { | 
 |   for (unsigned i = 0; i < TopLevelLoops.size(); ++i) | 
 |     TopLevelLoops[i]->print(OS); | 
 | #if 0 | 
 |   for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(), | 
 |          E = BBMap.end(); I != E; ++I) | 
 |     OS << "BB '" << I->first->getName() << "' level = " | 
 |        << I->second->LoopDepth << "\n"; | 
 | #endif | 
 | } | 
 |  | 
 | static bool isNotAlreadyContainedIn(Loop *SubLoop, Loop *ParentLoop) { | 
 |   if (SubLoop == 0) return true; | 
 |   if (SubLoop == ParentLoop) return false; | 
 |   return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); | 
 | } | 
 |  | 
 | Loop *LoopInfo::ConsiderForLoop(BasicBlock *BB, const DominatorSet &DS) { | 
 |   if (BBMap.find(BB) != BBMap.end()) return 0;   // Haven't processed this node? | 
 |  | 
 |   std::vector<BasicBlock *> TodoStack; | 
 |  | 
 |   // Scan the predecessors of BB, checking to see if BB dominates any of | 
 |   // them.  This identifies backedges which target this node... | 
 |   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) | 
 |     if (DS.dominates(BB, *I))   // If BB dominates it's predecessor... | 
 |       TodoStack.push_back(*I); | 
 |  | 
 |   if (TodoStack.empty()) return 0;  // No backedges to this block... | 
 |  | 
 |   // Create a new loop to represent this basic block... | 
 |   Loop *L = new Loop(BB); | 
 |   BBMap[BB] = L; | 
 |  | 
 |   while (!TodoStack.empty()) {  // Process all the nodes in the loop | 
 |     BasicBlock *X = TodoStack.back(); | 
 |     TodoStack.pop_back(); | 
 |  | 
 |     if (!L->contains(X)) {         // As of yet unprocessed?? | 
 |       // Check to see if this block already belongs to a loop.  If this occurs | 
 |       // then we have a case where a loop that is supposed to be a child of the | 
 |       // current loop was processed before the current loop.  When this occurs, | 
 |       // this child loop gets added to a part of the current loop, making it a | 
 |       // sibling to the current loop.  We have to reparent this loop. | 
 |       if (Loop *SubLoop = const_cast<Loop*>(getLoopFor(X))) | 
 |         if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) { | 
 |           // Remove the subloop from it's current parent... | 
 |           assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L); | 
 |           Loop *SLP = SubLoop->ParentLoop;  // SubLoopParent | 
 |           std::vector<Loop*>::iterator I = | 
 |             std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop); | 
 |           assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?"); | 
 |           SLP->SubLoops.erase(I);   // Remove from parent... | 
 |            | 
 |           // Add the subloop to THIS loop... | 
 |           SubLoop->ParentLoop = L; | 
 |           L->SubLoops.push_back(SubLoop); | 
 |         } | 
 |  | 
 |       // Normal case, add the block to our loop... | 
 |       L->Blocks.push_back(X); | 
 |          | 
 |       // Add all of the predecessors of X to the end of the work stack... | 
 |       TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X)); | 
 |     } | 
 |   } | 
 |  | 
 |   // If there are any loops nested within this loop, create them now! | 
 |   for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(), | 
 | 	 E = L->Blocks.end(); I != E; ++I) | 
 |     if (Loop *NewLoop = ConsiderForLoop(*I, DS)) { | 
 |       L->SubLoops.push_back(NewLoop); | 
 |       NewLoop->ParentLoop = L; | 
 |     } | 
 |  | 
 |  | 
 |   // Add the basic blocks that comprise this loop to the BBMap so that this | 
 |   // loop can be found for them. | 
 |   // | 
 |   for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(), | 
 | 	 E = L->Blocks.end(); I != E; ++I) { | 
 |     std::map<BasicBlock*, Loop*>::iterator BBMI = BBMap.lower_bound(*I); | 
 |     if (BBMI == BBMap.end() || BBMI->first != *I)  // Not in map yet... | 
 |       BBMap.insert(BBMI, std::make_pair(*I, L));   // Must be at this level | 
 |   } | 
 |  | 
 |   // Now that we know all of the blocks that make up this loop, see if there are | 
 |   // any branches to outside of the loop... building the ExitBlocks list. | 
 |   for (std::vector<BasicBlock*>::iterator BI = L->Blocks.begin(), | 
 |          BE = L->Blocks.end(); BI != BE; ++BI) | 
 |     for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) | 
 |       if (!L->contains(*I))               // Not in current loop? | 
 |         L->ExitBlocks.push_back(*I);      // It must be an exit block... | 
 |  | 
 |   return L; | 
 | } | 
 |  | 
 | /// getLoopPreheader - If there is a preheader for this loop, return it.  A | 
 | /// loop has a preheader if there is only one edge to the header of the loop | 
 | /// from outside of the loop.  If this is the case, the block branching to the | 
 | /// header of the loop is the preheader node.  The "preheaders" pass can be | 
 | /// "Required" to ensure that there is always a preheader node for every loop. | 
 | /// | 
 | /// This method returns null if there is no preheader for the loop (either | 
 | /// because the loop is dead or because multiple blocks branch to the header | 
 | /// node of this loop). | 
 | /// | 
 | BasicBlock *Loop::getLoopPreheader() const { | 
 |   // Keep track of nodes outside the loop branching to the header... | 
 |   BasicBlock *Out = 0; | 
 |  | 
 |   // Loop over the predecessors of the header node... | 
 |   BasicBlock *Header = getHeader(); | 
 |   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); | 
 |        PI != PE; ++PI) | 
 |     if (!contains(*PI)) {     // If the block is not in the loop... | 
 |       if (Out && Out != *PI) | 
 |         return 0;             // Multiple predecessors outside the loop | 
 |       Out = *PI; | 
 |     } | 
 |    | 
 |   // Make sure there is only one exit out of the preheader... | 
 |   succ_iterator SI = succ_begin(Out); | 
 |   ++SI; | 
 |   if (SI != succ_end(Out)) | 
 |     return 0;  // Multiple exits from the block, must not be a preheader. | 
 |  | 
 |  | 
 |   // If there is exactly one preheader, return it.  If there was zero, then Out | 
 |   // is still null. | 
 |   return Out; | 
 | } | 
 |  | 
 | /// addBasicBlockToLoop - This function is used by other analyses to update loop | 
 | /// information.  NewBB is set to be a new member of the current loop.  Because | 
 | /// of this, it is added as a member of all parent loops, and is added to the | 
 | /// specified LoopInfo object as being in the current basic block.  It is not | 
 | /// valid to replace the loop header with this method. | 
 | /// | 
 | void Loop::addBasicBlockToLoop(BasicBlock *NewBB, LoopInfo &LI) { | 
 |   assert(LI[getHeader()] == this && "Incorrect LI specified for this loop!"); | 
 |   assert(NewBB && "Cannot add a null basic block to the loop!"); | 
 |   assert(LI[NewBB] == 0 && "BasicBlock already in the loop!"); | 
 |  | 
 |   // Add the loop mapping to the LoopInfo object... | 
 |   LI.BBMap[NewBB] = this; | 
 |  | 
 |   // Add the basic block to this loop and all parent loops... | 
 |   Loop *L = this; | 
 |   while (L) { | 
 |     L->Blocks.push_back(NewBB); | 
 |     L = L->getParentLoop(); | 
 |   } | 
 | } | 
 |  | 
 | /// changeExitBlock - This method is used to update loop information.  All | 
 | /// instances of the specified Old basic block are removed from the exit list | 
 | /// and replaced with New. | 
 | /// | 
 | void Loop::changeExitBlock(BasicBlock *Old, BasicBlock *New) { | 
 |   assert(Old != New && "Cannot changeExitBlock to the same thing!"); | 
 |   assert(Old && New && "Cannot changeExitBlock to or from a null node!"); | 
 |   assert(hasExitBlock(Old) && "Old exit block not found!"); | 
 |   std::vector<BasicBlock*>::iterator | 
 |     I = std::find(ExitBlocks.begin(), ExitBlocks.end(), Old); | 
 |   while (I != ExitBlocks.end()) { | 
 |     *I = New; | 
 |     I = std::find(I+1, ExitBlocks.end(), Old); | 
 |   } | 
 | } |