| //===- DAGISelEmitter.cpp - Generate an instruction selector --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This tablegen backend emits a DAG instruction selector. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "DAGISelEmitter.h" |
| #include "Record.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/Debug.h" |
| #include <set> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // SDTypeConstraint implementation |
| // |
| |
| SDTypeConstraint::SDTypeConstraint(Record *R) { |
| OperandNo = R->getValueAsInt("OperandNum"); |
| |
| if (R->isSubClassOf("SDTCisVT")) { |
| ConstraintType = SDTCisVT; |
| x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); |
| } else if (R->isSubClassOf("SDTCisInt")) { |
| ConstraintType = SDTCisInt; |
| } else if (R->isSubClassOf("SDTCisFP")) { |
| ConstraintType = SDTCisFP; |
| } else if (R->isSubClassOf("SDTCisSameAs")) { |
| ConstraintType = SDTCisSameAs; |
| x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); |
| } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { |
| ConstraintType = SDTCisVTSmallerThanOp; |
| x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = |
| R->getValueAsInt("OtherOperandNum"); |
| } else { |
| std::cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; |
| exit(1); |
| } |
| } |
| |
| /// getOperandNum - Return the node corresponding to operand #OpNo in tree |
| /// N, which has NumResults results. |
| TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo, |
| TreePatternNode *N, |
| unsigned NumResults) const { |
| assert(NumResults == 1 && "We only work with single result nodes so far!"); |
| |
| if (OpNo < NumResults) |
| return N; // FIXME: need value # |
| else |
| return N->getChild(OpNo-NumResults); |
| } |
| |
| /// ApplyTypeConstraint - Given a node in a pattern, apply this type |
| /// constraint to the nodes operands. This returns true if it makes a |
| /// change, false otherwise. If a type contradiction is found, throw an |
| /// exception. |
| bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, |
| const SDNodeInfo &NodeInfo, |
| TreePattern &TP) const { |
| unsigned NumResults = NodeInfo.getNumResults(); |
| assert(NumResults == 1 && "We only work with single result nodes so far!"); |
| |
| // Check that the number of operands is sane. |
| if (NodeInfo.getNumOperands() >= 0) { |
| if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands()) |
| TP.error(N->getOperator()->getName() + " node requires exactly " + |
| itostr(NodeInfo.getNumOperands()) + " operands!"); |
| } |
| |
| TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults); |
| |
| switch (ConstraintType) { |
| default: assert(0 && "Unknown constraint type!"); |
| case SDTCisVT: |
| // Operand must be a particular type. |
| return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP); |
| case SDTCisInt: |
| if (NodeToApply->hasTypeSet() && !MVT::isInteger(NodeToApply->getType())) |
| NodeToApply->UpdateNodeType(MVT::i1, TP); // throw an error. |
| |
| // FIXME: can tell from the target if there is only one Int type supported. |
| return false; |
| case SDTCisFP: |
| if (NodeToApply->hasTypeSet() && |
| !MVT::isFloatingPoint(NodeToApply->getType())) |
| NodeToApply->UpdateNodeType(MVT::f32, TP); // throw an error. |
| // FIXME: can tell from the target if there is only one FP type supported. |
| return false; |
| case SDTCisSameAs: { |
| TreePatternNode *OtherNode = |
| getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults); |
| return NodeToApply->UpdateNodeType(OtherNode->getType(), TP) | |
| OtherNode->UpdateNodeType(NodeToApply->getType(), TP); |
| } |
| case SDTCisVTSmallerThanOp: { |
| // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must |
| // have an integer type that is smaller than the VT. |
| if (!NodeToApply->isLeaf() || |
| !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || |
| !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() |
| ->isSubClassOf("ValueType")) |
| TP.error(N->getOperator()->getName() + " expects a VT operand!"); |
| MVT::ValueType VT = |
| getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); |
| if (!MVT::isInteger(VT)) |
| TP.error(N->getOperator()->getName() + " VT operand must be integer!"); |
| |
| TreePatternNode *OtherNode = |
| getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults); |
| if (OtherNode->hasTypeSet() && |
| (!MVT::isInteger(OtherNode->getType()) || |
| OtherNode->getType() <= VT)) |
| OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error. |
| return false; |
| } |
| } |
| return false; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SDNodeInfo implementation |
| // |
| SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { |
| EnumName = R->getValueAsString("Opcode"); |
| SDClassName = R->getValueAsString("SDClass"); |
| Record *TypeProfile = R->getValueAsDef("TypeProfile"); |
| NumResults = TypeProfile->getValueAsInt("NumResults"); |
| NumOperands = TypeProfile->getValueAsInt("NumOperands"); |
| |
| // Parse the type constraints. |
| ListInit *Constraints = TypeProfile->getValueAsListInit("Constraints"); |
| for (unsigned i = 0, e = Constraints->getSize(); i != e; ++i) { |
| assert(dynamic_cast<DefInit*>(Constraints->getElement(i)) && |
| "Constraints list should contain constraint definitions!"); |
| Record *Constraint = |
| static_cast<DefInit*>(Constraints->getElement(i))->getDef(); |
| TypeConstraints.push_back(Constraint); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TreePatternNode implementation |
| // |
| |
| TreePatternNode::~TreePatternNode() { |
| #if 0 // FIXME: implement refcounted tree nodes! |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| delete getChild(i); |
| #endif |
| } |
| |
| /// UpdateNodeType - Set the node type of N to VT if VT contains |
| /// information. If N already contains a conflicting type, then throw an |
| /// exception. This returns true if any information was updated. |
| /// |
| bool TreePatternNode::UpdateNodeType(MVT::ValueType VT, TreePattern &TP) { |
| if (VT == MVT::LAST_VALUETYPE || getType() == VT) return false; |
| if (getType() == MVT::LAST_VALUETYPE) { |
| setType(VT); |
| return true; |
| } |
| |
| TP.error("Type inference contradiction found in node " + |
| getOperator()->getName() + "!"); |
| return true; // unreachable |
| } |
| |
| |
| void TreePatternNode::print(std::ostream &OS) const { |
| if (isLeaf()) { |
| OS << *getLeafValue(); |
| } else { |
| OS << "(" << getOperator()->getName(); |
| } |
| |
| if (getType() == MVT::Other) |
| OS << ":Other"; |
| else if (getType() == MVT::LAST_VALUETYPE) |
| ;//OS << ":?"; |
| else |
| OS << ":" << getType(); |
| |
| if (!isLeaf()) { |
| if (getNumChildren() != 0) { |
| OS << " "; |
| getChild(0)->print(OS); |
| for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { |
| OS << ", "; |
| getChild(i)->print(OS); |
| } |
| } |
| OS << ")"; |
| } |
| |
| if (!PredicateFn.empty()) |
| OS << "<<P:" << PredicateFn << ">>"; |
| if (!TransformFn.empty()) |
| OS << "<<X:" << TransformFn << ">>"; |
| if (!getName().empty()) |
| OS << ":$" << getName(); |
| |
| } |
| void TreePatternNode::dump() const { |
| print(std::cerr); |
| } |
| |
| /// clone - Make a copy of this tree and all of its children. |
| /// |
| TreePatternNode *TreePatternNode::clone() const { |
| TreePatternNode *New; |
| if (isLeaf()) { |
| New = new TreePatternNode(getLeafValue()); |
| } else { |
| std::vector<TreePatternNode*> CChildren; |
| CChildren.reserve(Children.size()); |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| CChildren.push_back(getChild(i)->clone()); |
| New = new TreePatternNode(getOperator(), CChildren); |
| } |
| New->setName(getName()); |
| New->setType(getType()); |
| New->setPredicateFn(getPredicateFn()); |
| New->setTransformFn(getTransformFn()); |
| return New; |
| } |
| |
| /// SubstituteFormalArguments - Replace the formal arguments in this tree |
| /// with actual values specified by ArgMap. |
| void TreePatternNode:: |
| SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { |
| if (isLeaf()) return; |
| |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = getChild(i); |
| if (Child->isLeaf()) { |
| Init *Val = Child->getLeafValue(); |
| if (dynamic_cast<DefInit*>(Val) && |
| static_cast<DefInit*>(Val)->getDef()->getName() == "node") { |
| // We found a use of a formal argument, replace it with its value. |
| Child = ArgMap[Child->getName()]; |
| assert(Child && "Couldn't find formal argument!"); |
| setChild(i, Child); |
| } |
| } else { |
| getChild(i)->SubstituteFormalArguments(ArgMap); |
| } |
| } |
| } |
| |
| |
| /// InlinePatternFragments - If this pattern refers to any pattern |
| /// fragments, inline them into place, giving us a pattern without any |
| /// PatFrag references. |
| TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { |
| if (isLeaf()) return this; // nothing to do. |
| Record *Op = getOperator(); |
| |
| if (!Op->isSubClassOf("PatFrag")) { |
| // Just recursively inline children nodes. |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| setChild(i, getChild(i)->InlinePatternFragments(TP)); |
| return this; |
| } |
| |
| // Otherwise, we found a reference to a fragment. First, look up its |
| // TreePattern record. |
| TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op); |
| |
| // Verify that we are passing the right number of operands. |
| if (Frag->getNumArgs() != Children.size()) |
| TP.error("'" + Op->getName() + "' fragment requires " + |
| utostr(Frag->getNumArgs()) + " operands!"); |
| |
| TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); |
| |
| // Resolve formal arguments to their actual value. |
| if (Frag->getNumArgs()) { |
| // Compute the map of formal to actual arguments. |
| std::map<std::string, TreePatternNode*> ArgMap; |
| for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) |
| ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); |
| |
| FragTree->SubstituteFormalArguments(ArgMap); |
| } |
| |
| FragTree->setName(getName()); |
| |
| // Get a new copy of this fragment to stitch into here. |
| //delete this; // FIXME: implement refcounting! |
| return FragTree; |
| } |
| |
| /// ApplyTypeConstraints - Apply all of the type constraints relevent to |
| /// this node and its children in the tree. This returns true if it makes a |
| /// change, false otherwise. If a type contradiction is found, throw an |
| /// exception. |
| bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP) { |
| if (isLeaf()) return false; |
| |
| // special handling for set, which isn't really an SDNode. |
| if (getOperator()->getName() == "set") { |
| assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!"); |
| bool MadeChange = getChild(0)->ApplyTypeConstraints(TP); |
| MadeChange |= getChild(1)->ApplyTypeConstraints(TP); |
| |
| // Types of operands must match. |
| MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getType(), TP); |
| MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getType(), TP); |
| MadeChange |= UpdateNodeType(MVT::isVoid, TP); |
| return MadeChange; |
| } |
| |
| const SDNodeInfo &NI = TP.getDAGISelEmitter().getSDNodeInfo(getOperator()); |
| |
| bool MadeChange = NI.ApplyTypeConstraints(this, TP); |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| MadeChange |= getChild(i)->ApplyTypeConstraints(TP); |
| return MadeChange; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // TreePattern implementation |
| // |
| |
| TreePattern::TreePattern(Record *TheRec, const std::vector<DagInit *> &RawPat, |
| DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { |
| |
| for (unsigned i = 0, e = RawPat.size(); i != e; ++i) |
| Trees.push_back(ParseTreePattern(RawPat[i])); |
| } |
| |
| void TreePattern::error(const std::string &Msg) const { |
| dump(); |
| throw "In " + TheRecord->getName() + ": " + Msg; |
| } |
| |
| /// getIntrinsicType - Check to see if the specified record has an intrinsic |
| /// type which should be applied to it. This infer the type of register |
| /// references from the register file information, for example. |
| /// |
| MVT::ValueType TreePattern::getIntrinsicType(Record *R) const { |
| // Check to see if this is a register or a register class... |
| if (R->isSubClassOf("RegisterClass")) |
| return getValueType(R->getValueAsDef("RegType")); |
| else if (R->isSubClassOf("PatFrag")) { |
| // Pattern fragment types will be resolved when they are inlined. |
| return MVT::LAST_VALUETYPE; |
| } else if (R->isSubClassOf("Register")) { |
| assert(0 && "Explicit registers not handled here yet!\n"); |
| return MVT::LAST_VALUETYPE; |
| } else if (R->isSubClassOf("ValueType")) { |
| // Using a VTSDNode. |
| return MVT::Other; |
| } else if (R->getName() == "node") { |
| // Placeholder. |
| return MVT::LAST_VALUETYPE; |
| } |
| |
| error("Unknown value used: " + R->getName()); |
| return MVT::Other; |
| } |
| |
| TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) { |
| Record *Operator = Dag->getNodeType(); |
| |
| if (Operator->isSubClassOf("ValueType")) { |
| // If the operator is a ValueType, then this must be "type cast" of a leaf |
| // node. |
| if (Dag->getNumArgs() != 1) |
| error("Type cast only valid for a leaf node!"); |
| |
| Init *Arg = Dag->getArg(0); |
| TreePatternNode *New; |
| if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) { |
| New = new TreePatternNode(DI); |
| // If it's a regclass or something else known, set the type. |
| New->setType(getIntrinsicType(DI->getDef())); |
| } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { |
| New = ParseTreePattern(DI); |
| } else { |
| Arg->dump(); |
| error("Unknown leaf value for tree pattern!"); |
| return 0; |
| } |
| |
| // Apply the type cast. |
| New->UpdateNodeType(getValueType(Operator), *this); |
| return New; |
| } |
| |
| // Verify that this is something that makes sense for an operator. |
| if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && |
| Operator->getName() != "set") |
| error("Unrecognized node '" + Operator->getName() + "'!"); |
| |
| std::vector<TreePatternNode*> Children; |
| |
| for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { |
| Init *Arg = Dag->getArg(i); |
| if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { |
| Children.push_back(ParseTreePattern(DI)); |
| Children.back()->setName(Dag->getArgName(i)); |
| } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) { |
| Record *R = DefI->getDef(); |
| // Direct reference to a leaf DagNode or PatFrag? Turn it into a |
| // TreePatternNode if its own. |
| if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { |
| Dag->setArg(i, new DagInit(R, |
| std::vector<std::pair<Init*, std::string> >())); |
| --i; // Revisit this node... |
| } else { |
| TreePatternNode *Node = new TreePatternNode(DefI); |
| Node->setName(Dag->getArgName(i)); |
| Children.push_back(Node); |
| |
| // If it's a regclass or something else known, set the type. |
| Node->setType(getIntrinsicType(R)); |
| |
| // Input argument? |
| if (R->getName() == "node") { |
| if (Dag->getArgName(i).empty()) |
| error("'node' argument requires a name to match with operand list"); |
| Args.push_back(Dag->getArgName(i)); |
| } |
| } |
| } else { |
| Arg->dump(); |
| error("Unknown leaf value for tree pattern!"); |
| } |
| } |
| |
| return new TreePatternNode(Operator, Children); |
| } |
| |
| /// InferAllTypes - Infer/propagate as many types throughout the expression |
| /// patterns as possible. Return true if all types are infered, false |
| /// otherwise. Throw an exception if a type contradiction is found. |
| bool TreePattern::InferAllTypes() { |
| bool MadeChange = true; |
| while (MadeChange) { |
| MadeChange = false; |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) |
| MadeChange |= Trees[i]->ApplyTypeConstraints(*this); |
| } |
| |
| bool HasUnresolvedTypes = false; |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) |
| HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); |
| return !HasUnresolvedTypes; |
| } |
| |
| void TreePattern::print(std::ostream &OS) const { |
| OS << getRecord()->getName(); |
| if (!Args.empty()) { |
| OS << "(" << Args[0]; |
| for (unsigned i = 1, e = Args.size(); i != e; ++i) |
| OS << ", " << Args[i]; |
| OS << ")"; |
| } |
| OS << ": "; |
| |
| if (Trees.size() > 1) |
| OS << "[\n"; |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) { |
| OS << "\t"; |
| Trees[i]->print(OS); |
| OS << "\n"; |
| } |
| |
| if (Trees.size() > 1) |
| OS << "]\n"; |
| } |
| |
| void TreePattern::dump() const { print(std::cerr); } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // DAGISelEmitter implementation |
| // |
| |
| // Parse all of the SDNode definitions for the target, populating SDNodes. |
| void DAGISelEmitter::ParseNodeInfo() { |
| std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); |
| while (!Nodes.empty()) { |
| SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); |
| Nodes.pop_back(); |
| } |
| } |
| |
| /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms |
| /// map, and emit them to the file as functions. |
| void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) { |
| OS << "\n// Node transformations.\n"; |
| std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); |
| while (!Xforms.empty()) { |
| Record *XFormNode = Xforms.back(); |
| Record *SDNode = XFormNode->getValueAsDef("Opcode"); |
| std::string Code = XFormNode->getValueAsCode("XFormFunction"); |
| SDNodeXForms.insert(std::make_pair(XFormNode, |
| std::make_pair(SDNode, Code))); |
| |
| if (!Code.empty()) { |
| std::string ClassName = getSDNodeInfo(SDNode).getSDClassName(); |
| const char *C2 = ClassName == "SDNode" ? "N" : "inN"; |
| |
| OS << "inline SDOperand Transform_" << XFormNode->getName() |
| << "(SDNode *" << C2 << ") {\n"; |
| if (ClassName != "SDNode") |
| OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; |
| OS << Code << "\n}\n"; |
| } |
| |
| Xforms.pop_back(); |
| } |
| } |
| |
| |
| |
| /// ParseAndResolvePatternFragments - Parse all of the PatFrag definitions in |
| /// the .td file, building up the PatternFragments map. After we've collected |
| /// them all, inline fragments together as necessary, so that there are no |
| /// references left inside a pattern fragment to a pattern fragment. |
| /// |
| /// This also emits all of the predicate functions to the output file. |
| /// |
| void DAGISelEmitter::ParseAndResolvePatternFragments(std::ostream &OS) { |
| std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); |
| |
| // First step, parse all of the fragments and emit predicate functions. |
| OS << "\n// Predicate functions.\n"; |
| for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { |
| std::vector<DagInit*> Trees; |
| Trees.push_back(Fragments[i]->getValueAsDag("Fragment")); |
| TreePattern *P = new TreePattern(Fragments[i], Trees, *this); |
| PatternFragments[Fragments[i]] = P; |
| |
| // Validate the argument list, converting it to map, to discard duplicates. |
| std::vector<std::string> &Args = P->getArgList(); |
| std::set<std::string> OperandsMap(Args.begin(), Args.end()); |
| |
| if (OperandsMap.count("")) |
| P->error("Cannot have unnamed 'node' values in pattern fragment!"); |
| |
| // Parse the operands list. |
| DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); |
| if (OpsList->getNodeType()->getName() != "ops") |
| P->error("Operands list should start with '(ops ... '!"); |
| |
| // Copy over the arguments. |
| Args.clear(); |
| for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { |
| if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || |
| static_cast<DefInit*>(OpsList->getArg(j))-> |
| getDef()->getName() != "node") |
| P->error("Operands list should all be 'node' values."); |
| if (OpsList->getArgName(j).empty()) |
| P->error("Operands list should have names for each operand!"); |
| if (!OperandsMap.count(OpsList->getArgName(j))) |
| P->error("'" + OpsList->getArgName(j) + |
| "' does not occur in pattern or was multiply specified!"); |
| OperandsMap.erase(OpsList->getArgName(j)); |
| Args.push_back(OpsList->getArgName(j)); |
| } |
| |
| if (!OperandsMap.empty()) |
| P->error("Operands list does not contain an entry for operand '" + |
| *OperandsMap.begin() + "'!"); |
| |
| // If there is a code init for this fragment, emit the predicate code and |
| // keep track of the fact that this fragment uses it. |
| std::string Code = Fragments[i]->getValueAsCode("Predicate"); |
| if (!Code.empty()) { |
| assert(!P->getOnlyTree()->isLeaf() && "Can't be a leaf!"); |
| std::string ClassName = |
| getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName(); |
| const char *C2 = ClassName == "SDNode" ? "N" : "inN"; |
| |
| OS << "inline bool Predicate_" << Fragments[i]->getName() |
| << "(SDNode *" << C2 << ") {\n"; |
| if (ClassName != "SDNode") |
| OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; |
| OS << Code << "\n}\n"; |
| P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName()); |
| } |
| |
| // If there is a node transformation corresponding to this, keep track of |
| // it. |
| Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); |
| if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? |
| P->getOnlyTree()->setTransformFn("Transform_"+Transform->getName()); |
| } |
| |
| OS << "\n\n"; |
| |
| // Now that we've parsed all of the tree fragments, do a closure on them so |
| // that there are not references to PatFrags left inside of them. |
| for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(), |
| E = PatternFragments.end(); I != E; ++I) { |
| TreePattern *ThePat = I->second; |
| ThePat->InlinePatternFragments(); |
| |
| // Infer as many types as possible. Don't worry about it if we don't infer |
| // all of them, some may depend on the inputs of the pattern. |
| try { |
| ThePat->InferAllTypes(); |
| } catch (...) { |
| // If this pattern fragment is not supported by this target (no types can |
| // satisfy its constraints), just ignore it. If the bogus pattern is |
| // actually used by instructions, the type consistency error will be |
| // reported there. |
| } |
| |
| // If debugging, print out the pattern fragment result. |
| DEBUG(ThePat->dump()); |
| } |
| } |
| |
| /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an |
| /// instruction input. |
| static void HandleUse(TreePattern *I, TreePatternNode *Pat, |
| std::map<std::string, TreePatternNode*> &InstInputs) { |
| // No name -> not interesting. |
| if (Pat->getName().empty()) return; |
| |
| Record *Rec; |
| if (Pat->isLeaf()) { |
| DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); |
| if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); |
| Rec = DI->getDef(); |
| } else { |
| assert(Pat->getNumChildren() == 0 && "can't be a use with children!"); |
| Rec = Pat->getOperator(); |
| } |
| |
| TreePatternNode *&Slot = InstInputs[Pat->getName()]; |
| if (!Slot) { |
| Slot = Pat; |
| } else { |
| Record *SlotRec; |
| if (Slot->isLeaf()) { |
| Rec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); |
| } else { |
| assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); |
| SlotRec = Slot->getOperator(); |
| } |
| |
| // Ensure that the inputs agree if we've already seen this input. |
| if (Rec != SlotRec) |
| I->error("All $" + Pat->getName() + " inputs must agree with each other"); |
| if (Slot->getType() != Pat->getType()) |
| I->error("All $" + Pat->getName() + " inputs must agree with each other"); |
| } |
| } |
| |
| /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is |
| /// part of "I", the instruction), computing the set of inputs and outputs of |
| /// the pattern. Report errors if we see anything naughty. |
| void DAGISelEmitter:: |
| FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, |
| std::map<std::string, TreePatternNode*> &InstInputs, |
| std::map<std::string, Record*> &InstResults) { |
| if (Pat->isLeaf()) { |
| HandleUse(I, Pat, InstInputs); |
| return; |
| } else if (Pat->getOperator()->getName() != "set") { |
| // If this is not a set, verify that the children nodes are not void typed, |
| // and recurse. |
| for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { |
| if (Pat->getChild(i)->getType() == MVT::isVoid) |
| I->error("Cannot have void nodes inside of patterns!"); |
| FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults); |
| } |
| |
| // If this is a non-leaf node with no children, treat it basically as if |
| // it were a leaf. This handles nodes like (imm). |
| if (Pat->getNumChildren() == 0) |
| HandleUse(I, Pat, InstInputs); |
| |
| return; |
| } |
| |
| // Otherwise, this is a set, validate and collect instruction results. |
| if (Pat->getNumChildren() == 0) |
| I->error("set requires operands!"); |
| else if (Pat->getNumChildren() & 1) |
| I->error("set requires an even number of operands"); |
| |
| // Check the set destinations. |
| unsigned NumValues = Pat->getNumChildren()/2; |
| for (unsigned i = 0; i != NumValues; ++i) { |
| TreePatternNode *Dest = Pat->getChild(i); |
| if (!Dest->isLeaf()) |
| I->error("set destination should be a virtual register!"); |
| |
| DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); |
| if (!Val) |
| I->error("set destination should be a virtual register!"); |
| |
| if (!Val->getDef()->isSubClassOf("RegisterClass")) |
| I->error("set destination should be a virtual register!"); |
| if (Dest->getName().empty()) |
| I->error("set destination must have a name!"); |
| if (InstResults.count(Dest->getName())) |
| I->error("cannot set '" + Dest->getName() +"' multiple times"); |
| InstResults[Dest->getName()] = Val->getDef(); |
| |
| // Verify and collect info from the computation. |
| FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues), |
| InstInputs, InstResults); |
| } |
| } |
| |
| |
| /// ParseAndResolveInstructions - Parse all of the instructions, inlining and |
| /// resolving any fragments involved. This populates the Instructions list with |
| /// fully resolved instructions. |
| void DAGISelEmitter::ParseAndResolveInstructions() { |
| std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); |
| |
| for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { |
| if (!dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) |
| continue; // no pattern yet, ignore it. |
| |
| ListInit *LI = Instrs[i]->getValueAsListInit("Pattern"); |
| if (LI->getSize() == 0) continue; // no pattern. |
| |
| std::vector<DagInit*> Trees; |
| for (unsigned j = 0, e = LI->getSize(); j != e; ++j) |
| Trees.push_back((DagInit*)LI->getElement(j)); |
| |
| // Parse the instruction. |
| TreePattern *I = new TreePattern(Instrs[i], Trees, *this); |
| // Inline pattern fragments into it. |
| I->InlinePatternFragments(); |
| |
| // Infer as many types as possible. If we cannot infer all of them, we can |
| // never do anything with this instruction pattern: report it to the user. |
| if (!I->InferAllTypes()) { |
| I->dump(); |
| I->error("Could not infer all types in pattern!"); |
| } |
| |
| // InstInputs - Keep track of all of the inputs of the instruction, along |
| // with the record they are declared as. |
| std::map<std::string, TreePatternNode*> InstInputs; |
| |
| // InstResults - Keep track of all the virtual registers that are 'set' |
| // in the instruction, including what reg class they are. |
| std::map<std::string, Record*> InstResults; |
| |
| // Verify that the top-level forms in the instruction are of void type, and |
| // fill in the InstResults map. |
| for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { |
| TreePatternNode *Pat = I->getTree(j); |
| if (Pat->getType() != MVT::isVoid) { |
| I->dump(); |
| I->error("Top-level forms in instruction pattern should have" |
| " void types"); |
| } |
| |
| // Find inputs and outputs, and verify the structure of the uses/defs. |
| FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults); |
| } |
| |
| // Now that we have inputs and outputs of the pattern, inspect the operands |
| // list for the instruction. This determines the order that operands are |
| // added to the machine instruction the node corresponds to. |
| unsigned NumResults = InstResults.size(); |
| |
| // Parse the operands list from the (ops) list, validating it. |
| std::vector<std::string> &Args = I->getArgList(); |
| assert(Args.empty() && "Args list should still be empty here!"); |
| CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName()); |
| |
| // Check that all of the results occur first in the list. |
| for (unsigned i = 0; i != NumResults; ++i) { |
| if (i == CGI.OperandList.size()) |
| I->error("'" + InstResults.begin()->first + |
| "' set but does not appear in operand list!"); |
| |
| const std::string &OpName = CGI.OperandList[i].Name; |
| if (OpName.empty()) |
| I->error("Operand #" + utostr(i) + " in operands list has no name!"); |
| |
| // Check that it exists in InstResults. |
| Record *R = InstResults[OpName]; |
| if (R == 0) |
| I->error("Operand $" + OpName + " should be a set destination: all " |
| "outputs must occur before inputs in operand list!"); |
| |
| if (CGI.OperandList[i].Rec != R) |
| I->error("Operand $" + OpName + " class mismatch!"); |
| |
| // Okay, this one checks out. |
| InstResults.erase(OpName); |
| } |
| |
| // Loop over the inputs next. |
| for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { |
| const std::string &OpName = CGI.OperandList[i].Name; |
| if (OpName.empty()) |
| I->error("Operand #" + utostr(i) + " in operands list has no name!"); |
| |
| if (!InstInputs.count(OpName)) |
| I->error("Operand $" + OpName + |
| " does not appear in the instruction pattern"); |
| TreePatternNode *InVal = InstInputs[OpName]; |
| if (CGI.OperandList[i].Ty != InVal->getType()) |
| I->error("Operand $" + OpName + |
| "'s type disagrees between the operand and pattern"); |
| } |
| |
| unsigned NumOperands = CGI.OperandList.size()-NumResults; |
| |
| DEBUG(I->dump()); |
| Instructions.push_back(DAGInstruction(I, NumResults, NumOperands)); |
| } |
| |
| // If we can, convert the instructions to be patterns that are matched! |
| for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { |
| TreePattern *I = Instructions[i].getPattern(); |
| |
| if (I->getNumTrees() != 1) { |
| std::cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!"; |
| continue; |
| } |
| TreePatternNode *Pattern = I->getTree(0); |
| if (Pattern->getOperator()->getName() != "set") |
| continue; // Not a set (store or something?) |
| |
| if (Pattern->getNumChildren() != 2) |
| continue; // Not a set of a single value (not handled so far) |
| |
| TreePatternNode *SrcPattern = Pattern->getChild(1)->clone(); |
| TreePatternNode *DstPattern = SrcPattern->clone(); // FIXME: WRONG |
| PatternsToMatch.push_back(std::make_pair(SrcPattern, DstPattern)); |
| DEBUG(std::cerr << "PATTERN TO MATCH: "; SrcPattern->dump(); |
| std::cerr << "\nRESULT DAG : "; |
| DstPattern->dump(); std::cerr << "\n"); |
| } |
| } |
| |
| void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { |
| // Emit boilerplate. |
| OS << "// The main instruction selector code.\n" |
| << "SDOperand SelectCode(SDOperand Op) {\n" |
| << " SDNode *N = Op.Val;\n" |
| << " if (N->getOpcode() >= ISD::BUILTIN_OP_END &&\n" |
| << " N->getOpcode() < PPCISD::FIRST_NUMBER)\n" |
| << " return Op; // Already selected.\n\n" |
| << " switch (N->getOpcode()) {\n" |
| << " default: break;\n" |
| << " case ISD::EntryToken: // These leaves remain the same.\n" |
| << " return Op;\n" |
| << " case ISD::AssertSext:\n" |
| << " case ISD::AssertZext:\n" |
| << " return Select(N->getOperand(0));\n"; |
| |
| |
| |
| OS << " } // end of big switch.\n\n" |
| << " std::cerr << \"Cannot yet select: \";\n" |
| << " N->dump();\n" |
| << " std::cerr << '\\n';\n" |
| << " abort();\n" |
| << "}\n"; |
| } |
| |
| void DAGISelEmitter::run(std::ostream &OS) { |
| EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() + |
| " target", OS); |
| |
| OS << "// *** NOTE: This file is #included into the middle of the target\n" |
| << "// *** instruction selector class. These functions are really " |
| << "methods.\n\n"; |
| ParseNodeInfo(); |
| ParseNodeTransforms(OS); |
| ParseAndResolvePatternFragments(OS); |
| ParseAndResolveInstructions(); |
| |
| // TODO: convert some instructions to expanders if needed or something. |
| |
| EmitInstructionSelector(OS); |
| |
| for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(), |
| E = PatternFragments.end(); I != E; ++I) |
| delete I->second; |
| PatternFragments.clear(); |
| |
| Instructions.clear(); |
| } |