| //===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the default implementation of the Alias Analysis interface |
| // that simply implements a few identities (two different globals cannot alias, |
| // etc), but otherwise does no analysis. |
| // |
| // FIXME: This could be extended for a very simple form of mod/ref information. |
| // If a pointer is locally allocated (either malloc or alloca) and never passed |
| // into a call or stored to memory, then we know that calls will not mod/ref the |
| // memory. This can be important for tailcallelim, and can support CSE of loads |
| // and dead store elimination across calls. This is particularly important for |
| // stack allocated arrays. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/iOther.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| using namespace llvm; |
| |
| // Make sure that anything that uses AliasAnalysis pulls in this file... |
| void llvm::BasicAAStub() {} |
| |
| namespace { |
| /// NoAA - This class implements the -no-aa pass, which always returns "I |
| /// don't know" for alias queries. NoAA is unlike other alias analysis |
| /// implementations, in that it does not chain to a previous analysis. As |
| /// such it doesn't follow many of the rules that other alias analyses must. |
| /// |
| struct NoAA : public ImmutablePass, public AliasAnalysis { |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<TargetData>(); |
| } |
| |
| virtual void initializePass() { |
| TD = &getAnalysis<TargetData>(); |
| } |
| |
| virtual AliasResult alias(const Value *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size) { |
| return MayAlias; |
| } |
| |
| virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { } |
| virtual bool pointsToConstantMemory(const Value *P) { return false; } |
| virtual bool doesNotAccessMemory(Function *F) { return false; } |
| virtual bool onlyReadsMemory(Function *F) { return false; } |
| virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) { |
| return ModRef; |
| } |
| virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) { |
| return ModRef; |
| } |
| virtual bool hasNoModRefInfoForCalls() const { return true; } |
| |
| virtual void deleteValue(Value *V) {} |
| virtual void copyValue(Value *From, Value *To) {} |
| }; |
| |
| // Register this pass... |
| RegisterOpt<NoAA> |
| U("no-aa", "No Alias Analysis (always returns 'may' alias)"); |
| |
| // Declare that we implement the AliasAnalysis interface |
| RegisterAnalysisGroup<AliasAnalysis, NoAA> V; |
| } // End of anonymous namespace |
| |
| |
| namespace { |
| /// BasicAliasAnalysis - This is the default alias analysis implementation. |
| /// Because it doesn't chain to a previous alias analysis (like -no-aa), it |
| /// derives from the NoAA class. |
| struct BasicAliasAnalysis : public NoAA { |
| AliasResult alias(const Value *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size); |
| |
| ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size); |
| |
| /// hasNoModRefInfoForCalls - We have no way to test one call against |
| /// another, unless they are pure or const. |
| virtual bool hasNoModRefInfoForCalls() const { return true; } |
| |
| /// pointsToConstantMemory - Chase pointers until we find a (constant |
| /// global) or not. |
| bool pointsToConstantMemory(const Value *P); |
| |
| virtual bool doesNotAccessMemory(Function *F); |
| virtual bool onlyReadsMemory(Function *F); |
| |
| private: |
| // CheckGEPInstructions - Check two GEP instructions with known |
| // must-aliasing base pointers. This checks to see if the index expressions |
| // preclude the pointers from aliasing... |
| AliasResult |
| CheckGEPInstructions(const Type* BasePtr1Ty, std::vector<Value*> &GEP1Ops, |
| unsigned G1Size, |
| const Type *BasePtr2Ty, std::vector<Value*> &GEP2Ops, |
| unsigned G2Size); |
| }; |
| |
| // Register this pass... |
| RegisterOpt<BasicAliasAnalysis> |
| X("basicaa", "Basic Alias Analysis (default AA impl)"); |
| |
| // Declare that we implement the AliasAnalysis interface |
| RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y; |
| } // End of anonymous namespace |
| |
| // hasUniqueAddress - Return true if the specified value points to something |
| // with a unique, discernable, address. |
| static inline bool hasUniqueAddress(const Value *V) { |
| return isa<GlobalValue>(V) || isa<AllocationInst>(V); |
| } |
| |
| // getUnderlyingObject - This traverses the use chain to figure out what object |
| // the specified value points to. If the value points to, or is derived from, a |
| // unique object or an argument, return it. |
| static const Value *getUnderlyingObject(const Value *V) { |
| if (!isa<PointerType>(V->getType())) return 0; |
| |
| // If we are at some type of object... return it. |
| if (hasUniqueAddress(V) || isa<Argument>(V)) return V; |
| |
| // Traverse through different addressing mechanisms... |
| if (const Instruction *I = dyn_cast<Instruction>(V)) { |
| if (isa<CastInst>(I) || isa<GetElementPtrInst>(I)) |
| return getUnderlyingObject(I->getOperand(0)); |
| } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { |
| if (CE->getOpcode() == Instruction::Cast || |
| CE->getOpcode() == Instruction::GetElementPtr) |
| return getUnderlyingObject(CE->getOperand(0)); |
| } else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) { |
| return CPR->getValue(); |
| } |
| return 0; |
| } |
| |
| static const User *isGEP(const Value *V) { |
| if (isa<GetElementPtrInst>(V) || |
| (isa<ConstantExpr>(V) && |
| cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr)) |
| return cast<User>(V); |
| return 0; |
| } |
| |
| static const Value *GetGEPOperands(const Value *V, std::vector<Value*> &GEPOps){ |
| assert(GEPOps.empty() && "Expect empty list to populate!"); |
| GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1, |
| cast<User>(V)->op_end()); |
| |
| // Accumulate all of the chained indexes into the operand array |
| V = cast<User>(V)->getOperand(0); |
| |
| while (const User *G = isGEP(V)) { |
| if (!isa<Constant>(GEPOps[0]) || |
| !cast<Constant>(GEPOps[0])->isNullValue()) |
| break; // Don't handle folding arbitrary pointer offsets yet... |
| GEPOps.erase(GEPOps.begin()); // Drop the zero index |
| GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end()); |
| V = G->getOperand(0); |
| } |
| return V; |
| } |
| |
| /// pointsToConstantMemory - Chase pointers until we find a (constant |
| /// global) or not. |
| bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) { |
| if (const Value *V = getUnderlyingObject(P)) |
| if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) |
| return GV->isConstant(); |
| return false; |
| } |
| |
| static bool AddressMightEscape(const Value *V) { |
| for (Value::use_const_iterator UI = V->use_begin(), E = V->use_end(); |
| UI != E; ++UI) { |
| const Instruction *I = cast<Instruction>(*UI); |
| switch (I->getOpcode()) { |
| case Instruction::Load: break; |
| case Instruction::Store: |
| if (I->getOperand(0) == V) |
| return true; // Escapes if the pointer is stored. |
| break; |
| case Instruction::GetElementPtr: |
| if (AddressMightEscape(I)) return true; |
| break; |
| case Instruction::Cast: |
| if (!isa<PointerType>(I->getType())) |
| return true; |
| if (AddressMightEscape(I)) return true; |
| break; |
| default: |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // getModRefInfo - Check to see if the specified callsite can clobber the |
| // specified memory object. Since we only look at local properties of this |
| // function, we really can't say much about this query. We do, however, use |
| // simple "address taken" analysis on local objects. |
| // |
| AliasAnalysis::ModRefResult |
| BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) { |
| if (!isa<Constant>(P) && !isa<GlobalValue>(P)) |
| if (const AllocationInst *AI = |
| dyn_cast_or_null<AllocationInst>(getUnderlyingObject(P))) { |
| // Okay, the pointer is to a stack allocated object. If we can prove that |
| // the pointer never "escapes", then we know the call cannot clobber it, |
| // because it simply can't get its address. |
| if (!AddressMightEscape(AI)) |
| return NoModRef; |
| } |
| |
| // The AliasAnalysis base class has some smarts, lets use them. |
| return AliasAnalysis::getModRefInfo(CS, P, Size); |
| } |
| |
| // alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such |
| // as array references. Note that this function is heavily tail recursive. |
| // Hopefully we have a smart C++ compiler. :) |
| // |
| AliasAnalysis::AliasResult |
| BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size) { |
| // Strip off any constant expression casts if they exist |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1)) |
| if (CE->getOpcode() == Instruction::Cast) |
| V1 = CE->getOperand(0); |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2)) |
| if (CE->getOpcode() == Instruction::Cast) |
| V2 = CE->getOperand(0); |
| |
| // Strip off constant pointer refs if they exist |
| if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1)) |
| V1 = CPR->getValue(); |
| if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2)) |
| V2 = CPR->getValue(); |
| |
| // Are we checking for alias of the same value? |
| if (V1 == V2) return MustAlias; |
| |
| if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) && |
| V1->getType() != Type::LongTy && V2->getType() != Type::LongTy) |
| return NoAlias; // Scalars cannot alias each other |
| |
| // Strip off cast instructions... |
| if (const Instruction *I = dyn_cast<CastInst>(V1)) |
| return alias(I->getOperand(0), V1Size, V2, V2Size); |
| if (const Instruction *I = dyn_cast<CastInst>(V2)) |
| return alias(V1, V1Size, I->getOperand(0), V2Size); |
| |
| // Figure out what objects these things are pointing to if we can... |
| const Value *O1 = getUnderlyingObject(V1); |
| const Value *O2 = getUnderlyingObject(V2); |
| |
| // Pointing at a discernible object? |
| if (O1 && O2) { |
| if (isa<Argument>(O1)) { |
| // Incoming argument cannot alias locally allocated object! |
| if (isa<AllocationInst>(O2)) return NoAlias; |
| // Otherwise, nothing is known... |
| } else if (isa<Argument>(O2)) { |
| // Incoming argument cannot alias locally allocated object! |
| if (isa<AllocationInst>(O1)) return NoAlias; |
| // Otherwise, nothing is known... |
| } else { |
| // If they are two different objects, we know that we have no alias... |
| if (O1 != O2) return NoAlias; |
| } |
| |
| // If they are the same object, they we can look at the indexes. If they |
| // index off of the object is the same for both pointers, they must alias. |
| // If they are provably different, they must not alias. Otherwise, we can't |
| // tell anything. |
| } else if (O1 && !isa<Argument>(O1) && isa<ConstantPointerNull>(V2)) { |
| return NoAlias; // Unique values don't alias null |
| } else if (O2 && !isa<Argument>(O2) && isa<ConstantPointerNull>(V1)) { |
| return NoAlias; // Unique values don't alias null |
| } |
| |
| // If we have two gep instructions with must-alias'ing base pointers, figure |
| // out if the indexes to the GEP tell us anything about the derived pointer. |
| // Note that we also handle chains of getelementptr instructions as well as |
| // constant expression getelementptrs here. |
| // |
| if (isGEP(V1) && isGEP(V2)) { |
| // Drill down into the first non-gep value, to test for must-aliasing of |
| // the base pointers. |
| const Value *BasePtr1 = V1, *BasePtr2 = V2; |
| do { |
| BasePtr1 = cast<User>(BasePtr1)->getOperand(0); |
| } while (isGEP(BasePtr1) && |
| cast<User>(BasePtr1)->getOperand(1) == |
| Constant::getNullValue(cast<User>(BasePtr1)->getOperand(1)->getType())); |
| do { |
| BasePtr2 = cast<User>(BasePtr2)->getOperand(0); |
| } while (isGEP(BasePtr2) && |
| cast<User>(BasePtr2)->getOperand(1) == |
| Constant::getNullValue(cast<User>(BasePtr2)->getOperand(1)->getType())); |
| |
| // Do the base pointers alias? |
| AliasResult BaseAlias = alias(BasePtr1, V1Size, BasePtr2, V2Size); |
| if (BaseAlias == NoAlias) return NoAlias; |
| if (BaseAlias == MustAlias) { |
| // If the base pointers alias each other exactly, check to see if we can |
| // figure out anything about the resultant pointers, to try to prove |
| // non-aliasing. |
| |
| // Collect all of the chained GEP operands together into one simple place |
| std::vector<Value*> GEP1Ops, GEP2Ops; |
| BasePtr1 = GetGEPOperands(V1, GEP1Ops); |
| BasePtr2 = GetGEPOperands(V2, GEP2Ops); |
| |
| AliasResult GAlias = |
| CheckGEPInstructions(BasePtr1->getType(), GEP1Ops, V1Size, |
| BasePtr2->getType(), GEP2Ops, V2Size); |
| if (GAlias != MayAlias) |
| return GAlias; |
| } |
| } |
| |
| // Check to see if these two pointers are related by a getelementptr |
| // instruction. If one pointer is a GEP with a non-zero index of the other |
| // pointer, we know they cannot alias. |
| // |
| if (isGEP(V2)) { |
| std::swap(V1, V2); |
| std::swap(V1Size, V2Size); |
| } |
| |
| if (V1Size != ~0U && V2Size != ~0U) |
| if (const User *GEP = isGEP(V1)) { |
| std::vector<Value*> GEPOperands; |
| const Value *BasePtr = GetGEPOperands(V1, GEPOperands); |
| |
| AliasResult R = alias(BasePtr, V1Size, V2, V2Size); |
| if (R == MustAlias) { |
| // If there is at least one non-zero constant index, we know they cannot |
| // alias. |
| bool ConstantFound = false; |
| bool AllZerosFound = true; |
| for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i) |
| if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) { |
| if (!C->isNullValue()) { |
| ConstantFound = true; |
| AllZerosFound = false; |
| break; |
| } |
| } else { |
| AllZerosFound = false; |
| } |
| |
| // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases |
| // the ptr, the end result is a must alias also. |
| if (AllZerosFound) |
| return MustAlias; |
| |
| if (ConstantFound) { |
| if (V2Size <= 1 && V1Size <= 1) // Just pointer check? |
| return NoAlias; |
| |
| // Otherwise we have to check to see that the distance is more than |
| // the size of the argument... build an index vector that is equal to |
| // the arguments provided, except substitute 0's for any variable |
| // indexes we find... |
| for (unsigned i = 0; i != GEPOperands.size(); ++i) |
| if (!isa<Constant>(GEPOperands[i]) || |
| isa<ConstantExpr>(GEPOperands[i])) |
| GEPOperands[i] =Constant::getNullValue(GEPOperands[i]->getType()); |
| int64_t Offset = getTargetData().getIndexedOffset(BasePtr->getType(), |
| GEPOperands); |
| if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size) |
| return NoAlias; |
| } |
| } |
| } |
| |
| return MayAlias; |
| } |
| |
| static bool ValuesEqual(Value *V1, Value *V2) { |
| if (V1->getType() == V2->getType()) |
| return V1 == V2; |
| if (Constant *C1 = dyn_cast<Constant>(V1)) |
| if (Constant *C2 = dyn_cast<Constant>(V2)) { |
| // Sign extend the constants to long types. |
| C1 = ConstantExpr::getSignExtend(C1, Type::LongTy); |
| C2 = ConstantExpr::getSignExtend(C2, Type::LongTy); |
| return C1 == C2; |
| } |
| return false; |
| } |
| |
| /// CheckGEPInstructions - Check two GEP instructions with known must-aliasing |
| /// base pointers. This checks to see if the index expressions preclude the |
| /// pointers from aliasing... |
| AliasAnalysis::AliasResult BasicAliasAnalysis:: |
| CheckGEPInstructions(const Type* BasePtr1Ty, std::vector<Value*> &GEP1Ops, |
| unsigned G1S, |
| const Type *BasePtr2Ty, std::vector<Value*> &GEP2Ops, |
| unsigned G2S) { |
| // We currently can't handle the case when the base pointers have different |
| // primitive types. Since this is uncommon anyway, we are happy being |
| // extremely conservative. |
| if (BasePtr1Ty != BasePtr2Ty) |
| return MayAlias; |
| |
| const Type *GEPPointerTy = BasePtr1Ty; |
| |
| // Find the (possibly empty) initial sequence of equal values... which are not |
| // necessarily constants. |
| unsigned NumGEP1Operands = GEP1Ops.size(), NumGEP2Operands = GEP2Ops.size(); |
| unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands); |
| unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands); |
| unsigned UnequalOper = 0; |
| while (UnequalOper != MinOperands && |
| ValuesEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) { |
| // Advance through the type as we go... |
| ++UnequalOper; |
| if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty)) |
| BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]); |
| else { |
| // If all operands equal each other, then the derived pointers must |
| // alias each other... |
| BasePtr1Ty = 0; |
| assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands && |
| "Ran out of type nesting, but not out of operands?"); |
| return MustAlias; |
| } |
| } |
| |
| // If we have seen all constant operands, and run out of indexes on one of the |
| // getelementptrs, check to see if the tail of the leftover one is all zeros. |
| // If so, return mustalias. |
| if (UnequalOper == MinOperands) { |
| if (GEP1Ops.size() < GEP2Ops.size()) std::swap(GEP1Ops, GEP2Ops); |
| |
| bool AllAreZeros = true; |
| for (unsigned i = UnequalOper; i != MaxOperands; ++i) |
| if (!isa<Constant>(GEP1Ops[i]) || |
| !cast<Constant>(GEP1Ops[i])->isNullValue()) { |
| AllAreZeros = false; |
| break; |
| } |
| if (AllAreZeros) return MustAlias; |
| } |
| |
| |
| // So now we know that the indexes derived from the base pointers, |
| // which are known to alias, are different. We can still determine a |
| // no-alias result if there are differing constant pairs in the index |
| // chain. For example: |
| // A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S)) |
| // |
| unsigned SizeMax = std::max(G1S, G2S); |
| if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work... |
| |
| // Scan for the first operand that is constant and unequal in the |
| // two getelementptrs... |
| unsigned FirstConstantOper = UnequalOper; |
| for (; FirstConstantOper != MinOperands; ++FirstConstantOper) { |
| const Value *G1Oper = GEP1Ops[FirstConstantOper]; |
| const Value *G2Oper = GEP2Ops[FirstConstantOper]; |
| |
| if (G1Oper != G2Oper) // Found non-equal constant indexes... |
| if (Constant *G1OC = dyn_cast<Constant>(const_cast<Value*>(G1Oper))) |
| if (Constant *G2OC = dyn_cast<Constant>(const_cast<Value*>(G2Oper))) { |
| if (G1OC->getType() != G2OC->getType()) { |
| // Sign extend both operands to long. |
| G1OC = ConstantExpr::getSignExtend(G1OC, Type::LongTy); |
| G2OC = ConstantExpr::getSignExtend(G2OC, Type::LongTy); |
| GEP1Ops[FirstConstantOper] = G1OC; |
| GEP2Ops[FirstConstantOper] = G2OC; |
| } |
| |
| if (G1OC != G2OC) { |
| // Make sure they are comparable (ie, not constant expressions)... |
| // and make sure the GEP with the smaller leading constant is GEP1. |
| Constant *Compare = ConstantExpr::getSetGT(G1OC, G2OC); |
| if (ConstantBool *CV = dyn_cast<ConstantBool>(Compare)) { |
| if (CV->getValue()) // If they are comparable and G2 > G1 |
| std::swap(GEP1Ops, GEP2Ops); // Make GEP1 < GEP2 |
| break; |
| } |
| } |
| } |
| BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper); |
| } |
| |
| // No shared constant operands, and we ran out of common operands. At this |
| // point, the GEP instructions have run through all of their operands, and we |
| // haven't found evidence that there are any deltas between the GEP's. |
| // However, one GEP may have more operands than the other. If this is the |
| // case, there may still be hope. Check this now. |
| if (FirstConstantOper == MinOperands) { |
| // Make GEP1Ops be the longer one if there is a longer one. |
| if (GEP1Ops.size() < GEP2Ops.size()) |
| std::swap(GEP1Ops, GEP2Ops); |
| |
| // Is there anything to check? |
| if (GEP1Ops.size() > MinOperands) { |
| for (unsigned i = FirstConstantOper; i != MaxOperands; ++i) |
| if (isa<Constant>(GEP1Ops[i]) && !isa<ConstantExpr>(GEP1Ops[i]) && |
| !cast<Constant>(GEP1Ops[i])->isNullValue()) { |
| // Yup, there's a constant in the tail. Set all variables to |
| // constants in the GEP instruction to make it suiteable for |
| // TargetData::getIndexedOffset. |
| for (i = 0; i != MaxOperands; ++i) |
| if (!isa<Constant>(GEP1Ops[i]) || isa<ConstantExpr>(GEP1Ops[i])) |
| GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType()); |
| // Okay, now get the offset. This is the relative offset for the full |
| // instruction. |
| const TargetData &TD = getTargetData(); |
| int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops); |
| |
| // Now crop off any constants from the end... |
| GEP1Ops.resize(MinOperands); |
| int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops); |
| |
| // If the tail provided a bit enough offset, return noalias! |
| if ((uint64_t)(Offset2-Offset1) >= SizeMax) |
| return NoAlias; |
| } |
| } |
| |
| // Couldn't find anything useful. |
| return MayAlias; |
| } |
| |
| // If there are non-equal constants arguments, then we can figure |
| // out a minimum known delta between the two index expressions... at |
| // this point we know that the first constant index of GEP1 is less |
| // than the first constant index of GEP2. |
| |
| // Advance BasePtr[12]Ty over this first differing constant operand. |
| BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(GEP2Ops[FirstConstantOper]); |
| BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(GEP1Ops[FirstConstantOper]); |
| |
| // We are going to be using TargetData::getIndexedOffset to determine the |
| // offset that each of the GEP's is reaching. To do this, we have to convert |
| // all variable references to constant references. To do this, we convert the |
| // initial equal sequence of variables into constant zeros to start with. |
| for (unsigned i = 0; i != FirstConstantOper; ++i) { |
| if (!isa<Constant>(GEP1Ops[i]) || isa<ConstantExpr>(GEP1Ops[i]) || |
| !isa<Constant>(GEP2Ops[i]) || isa<ConstantExpr>(GEP2Ops[i])) |
| GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::UIntTy); |
| } |
| |
| // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok |
| |
| // Loop over the rest of the operands... |
| for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) { |
| const Value *Op1 = i < GEP1Ops.size() ? GEP1Ops[i] : 0; |
| const Value *Op2 = i < GEP2Ops.size() ? GEP2Ops[i] : 0; |
| // If they are equal, use a zero index... |
| if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) { |
| if (!isa<Constant>(Op1) || isa<ConstantExpr>(Op1)) |
| GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType()); |
| // Otherwise, just keep the constants we have. |
| } else { |
| if (Op1) { |
| if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { |
| // If this is an array index, make sure the array element is in range. |
| if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) |
| if (Op1C->getRawValue() >= AT->getNumElements()) |
| return MayAlias; // Be conservative with out-of-range accesses |
| |
| } else { |
| // GEP1 is known to produce a value less than GEP2. To be |
| // conservatively correct, we must assume the largest possible |
| // constant is used in this position. This cannot be the initial |
| // index to the GEP instructions (because we know we have at least one |
| // element before this one with the different constant arguments), so |
| // we know that the current index must be into either a struct or |
| // array. Because we know it's not constant, this cannot be a |
| // structure index. Because of this, we can calculate the maximum |
| // value possible. |
| // |
| if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) |
| GEP1Ops[i] = ConstantSInt::get(Type::LongTy,AT->getNumElements()-1); |
| } |
| } |
| |
| if (Op2) { |
| if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) { |
| // If this is an array index, make sure the array element is in range. |
| if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) |
| if (Op2C->getRawValue() >= AT->getNumElements()) |
| return MayAlias; // Be conservative with out-of-range accesses |
| } else { // Conservatively assume the minimum value for this index |
| GEP2Ops[i] = Constant::getNullValue(Op2->getType()); |
| } |
| } |
| } |
| |
| if (BasePtr1Ty && Op1) { |
| if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty)) |
| BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]); |
| else |
| BasePtr1Ty = 0; |
| } |
| |
| if (BasePtr2Ty && Op2) { |
| if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty)) |
| BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]); |
| else |
| BasePtr2Ty = 0; |
| } |
| } |
| |
| int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops); |
| int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops); |
| assert(Offset1 < Offset2 &&"There is at least one different constant here!"); |
| |
| if ((uint64_t)(Offset2-Offset1) >= SizeMax) { |
| //std::cerr << "Determined that these two GEP's don't alias [" |
| // << SizeMax << " bytes]: \n" << *GEP1 << *GEP2; |
| return NoAlias; |
| } |
| return MayAlias; |
| } |
| |
| namespace { |
| struct StringCompare { |
| bool operator()(const char *LHS, const char *RHS) { |
| return strcmp(LHS, RHS) < 0; |
| } |
| }; |
| } |
| |
| // Note that this list cannot contain libm functions (such as acos and sqrt) |
| // that set errno on a domain or other error. |
| static const char *DoesntAccessMemoryTable[] = { |
| // LLVM intrinsics: |
| "llvm.frameaddress", "llvm.returnaddress", "llvm.readport", "llvm.isunordered", |
| |
| "abs", "labs", "llabs", "imaxabs", "fabs", "fabsf", "fabsl", |
| "trunc", "truncf", "truncl", "ldexp", |
| |
| "atan", "atanf", "atanl", "atan2", "atan2f", "atan2l", |
| "cbrt", |
| "cos", "cosf", "cosl", "cosh", "coshf", "coshl", |
| "exp", "expf", "expl", |
| "hypot", |
| "sin", "sinf", "sinl", "sinh", "sinhf", "sinhl", |
| "tan", "tanf", "tanl", "tanh", "tanhf", "tanhl", |
| |
| // ctype.h |
| "isalnum", "isalpha", "iscntrl", "isdigit", "isgraph", "islower", "isprint" |
| "ispunct", "isspace", "isupper", "isxdigit", "tolower", "toupper", |
| |
| // wctype.h" |
| "iswalnum", "iswalpha", "iswcntrl", "iswdigit", "iswgraph", "iswlower", |
| "iswprint", "iswpunct", "iswspace", "iswupper", "iswxdigit", |
| |
| "iswctype", "towctrans", "towlower", "towupper", |
| |
| "btowc", "wctob", |
| |
| "isinf", "isnan", "finite", |
| |
| // C99 math functions |
| "copysign", "copysignf", "copysignd", |
| "nexttoward", "nexttowardf", "nexttowardd", |
| "nextafter", "nextafterf", "nextafterd", |
| |
| // glibc functions: |
| "__fpclassify", "__fpclassifyf", "__fpclassifyl", |
| "__signbit", "__signbitf", "__signbitl", |
| }; |
| |
| static const unsigned DAMTableSize = |
| sizeof(DoesntAccessMemoryTable)/sizeof(DoesntAccessMemoryTable[0]); |
| |
| /// doesNotAccessMemory - Return true if we know that the function does not |
| /// access memory at all. Since basicaa does no analysis, we can only do simple |
| /// things here. In particular, if we have an external function with the name |
| /// of a standard C library function, we are allowed to assume it will be |
| /// resolved by libc, so we can hardcode some entries in here. |
| bool BasicAliasAnalysis::doesNotAccessMemory(Function *F) { |
| if (!F->isExternal()) return false; |
| |
| static bool Initialized = false; |
| if (!Initialized) { |
| // Sort the table the first time through. |
| std::sort(DoesntAccessMemoryTable, DoesntAccessMemoryTable+DAMTableSize, |
| StringCompare()); |
| Initialized = true; |
| } |
| |
| const char **Ptr = std::lower_bound(DoesntAccessMemoryTable, |
| DoesntAccessMemoryTable+DAMTableSize, |
| F->getName().c_str(), StringCompare()); |
| return Ptr != DoesntAccessMemoryTable+DAMTableSize && *Ptr == F->getName(); |
| } |
| |
| |
| static const char *OnlyReadsMemoryTable[] = { |
| "atoi", "atol", "atof", "atoll", "atoq", "a64l", |
| "bcmp", "memcmp", "memchr", "memrchr", "wmemcmp", "wmemchr", |
| |
| // Strings |
| "strcmp", "strcasecmp", "strcoll", "strncmp", "strncasecmp", |
| "strchr", "strcspn", "strlen", "strpbrk", "strrchr", "strspn", "strstr", |
| "index", "rindex", |
| |
| // Wide char strings |
| "wcschr", "wcscmp", "wcscoll", "wcscspn", "wcslen", "wcsncmp", "wcspbrk", |
| "wcsrchr", "wcsspn", "wcsstr", |
| |
| // glibc |
| "alphasort", "alphasort64", "versionsort", "versionsort64", |
| |
| // C99 |
| "nan", "nanf", "nand", |
| |
| // File I/O |
| "feof", "ferror", "fileno", |
| "feof_unlocked", "ferror_unlocked", "fileno_unlocked" |
| }; |
| |
| static const unsigned ORMTableSize = |
| sizeof(OnlyReadsMemoryTable)/sizeof(OnlyReadsMemoryTable[0]); |
| |
| bool BasicAliasAnalysis::onlyReadsMemory(Function *F) { |
| if (doesNotAccessMemory(F)) return true; |
| if (!F->isExternal()) return false; |
| |
| static bool Initialized = false; |
| if (!Initialized) { |
| // Sort the table the first time through. |
| std::sort(OnlyReadsMemoryTable, OnlyReadsMemoryTable+ORMTableSize, |
| StringCompare()); |
| Initialized = true; |
| } |
| |
| const char **Ptr = std::lower_bound(OnlyReadsMemoryTable, |
| OnlyReadsMemoryTable+ORMTableSize, |
| F->getName().c_str(), StringCompare()); |
| return Ptr != OnlyReadsMemoryTable+ORMTableSize && *Ptr == F->getName(); |
| } |
| |
| |