| //===-- TargetData.cpp - Data size & alignment routines --------------------==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines target properties related to datatype size/offset/alignment |
| // information. |
| // |
| // This structure should be created once, filled in if the defaults are not |
| // correct and then passed around by const&. None of the members functions |
| // require modification to the object. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Module.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include <algorithm> |
| #include <cstdlib> |
| #include <sstream> |
| using namespace llvm; |
| |
| // Handle the Pass registration stuff necessary to use TargetData's. |
| namespace { |
| // Register the default SparcV9 implementation... |
| RegisterPass<TargetData> X("targetdata", "Target Data Layout"); |
| } |
| char TargetData::ID = 0; |
| |
| //===----------------------------------------------------------------------===// |
| // Support for StructLayout |
| //===----------------------------------------------------------------------===// |
| |
| StructLayout::StructLayout(const StructType *ST, const TargetData &TD) { |
| StructAlignment = 0; |
| StructSize = 0; |
| NumElements = ST->getNumElements(); |
| |
| // Loop over each of the elements, placing them in memory... |
| for (unsigned i = 0, e = NumElements; i != e; ++i) { |
| const Type *Ty = ST->getElementType(i); |
| unsigned TyAlign = ST->isPacked() ? |
| 1 : TD.getABITypeAlignment(Ty); |
| uint64_t TySize = ST->isPacked() ? |
| TD.getTypeStoreSize(Ty) : TD.getABITypeSize(Ty); |
| |
| // Add padding if necessary to align the data element properly... |
| StructSize = (StructSize + TyAlign - 1)/TyAlign * TyAlign; |
| |
| // Keep track of maximum alignment constraint |
| StructAlignment = std::max(TyAlign, StructAlignment); |
| |
| MemberOffsets[i] = StructSize; |
| StructSize += TySize; // Consume space for this data item |
| } |
| |
| // Empty structures have alignment of 1 byte. |
| if (StructAlignment == 0) StructAlignment = 1; |
| |
| // Add padding to the end of the struct so that it could be put in an array |
| // and all array elements would be aligned correctly. |
| if (StructSize % StructAlignment != 0) |
| StructSize = (StructSize/StructAlignment + 1) * StructAlignment; |
| } |
| |
| |
| /// getElementContainingOffset - Given a valid offset into the structure, |
| /// return the structure index that contains it. |
| unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { |
| const uint64_t *SI = |
| std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset); |
| assert(SI != &MemberOffsets[0] && "Offset not in structure type!"); |
| --SI; |
| assert(*SI <= Offset && "upper_bound didn't work"); |
| assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) && |
| (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) && |
| "Upper bound didn't work!"); |
| |
| // Multiple fields can have the same offset if any of them are zero sized. |
| // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop |
| // at the i32 element, because it is the last element at that offset. This is |
| // the right one to return, because anything after it will have a higher |
| // offset, implying that this element is non-empty. |
| return SI-&MemberOffsets[0]; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TargetAlignElem, TargetAlign support |
| //===----------------------------------------------------------------------===// |
| |
| TargetAlignElem |
| TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align, |
| unsigned char pref_align, uint32_t bit_width) { |
| TargetAlignElem retval; |
| retval.AlignType = align_type; |
| retval.ABIAlign = abi_align; |
| retval.PrefAlign = pref_align; |
| retval.TypeBitWidth = bit_width; |
| return retval; |
| } |
| |
| bool |
| TargetAlignElem::operator==(const TargetAlignElem &rhs) const { |
| return (AlignType == rhs.AlignType |
| && ABIAlign == rhs.ABIAlign |
| && PrefAlign == rhs.PrefAlign |
| && TypeBitWidth == rhs.TypeBitWidth); |
| } |
| |
| std::ostream & |
| TargetAlignElem::dump(std::ostream &os) const { |
| return os << AlignType |
| << TypeBitWidth |
| << ":" << (int) (ABIAlign * 8) |
| << ":" << (int) (PrefAlign * 8); |
| } |
| |
| const TargetAlignElem TargetData::InvalidAlignmentElem = |
| TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0); |
| |
| //===----------------------------------------------------------------------===// |
| // TargetData Class Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /*! |
| A TargetDescription string consists of a sequence of hyphen-delimited |
| specifiers for target endianness, pointer size and alignments, and various |
| primitive type sizes and alignments. A typical string looks something like: |
| <br><br> |
| "E-p:32:32:32-i1:8:8-i8:8:8-i32:32:32-i64:32:64-f32:32:32-f64:32:64" |
| <br><br> |
| (note: this string is not fully specified and is only an example.) |
| \p |
| Alignments come in two flavors: ABI and preferred. ABI alignment (abi_align, |
| below) dictates how a type will be aligned within an aggregate and when used |
| as an argument. Preferred alignment (pref_align, below) determines a type's |
| alignment when emitted as a global. |
| \p |
| Specifier string details: |
| <br><br> |
| <i>[E|e]</i>: Endianness. "E" specifies a big-endian target data model, "e" |
| specifies a little-endian target data model. |
| <br><br> |
| <i>p:@verbatim<size>:<abi_align>:<pref_align>@endverbatim</i>: Pointer size, |
| ABI and preferred alignment. |
| <br><br> |
| <i>@verbatim<type><size>:<abi_align>:<pref_align>@endverbatim</i>: Numeric type alignment. Type is |
| one of <i>i|f|v|a</i>, corresponding to integer, floating point, vector (aka |
| packed) or aggregate. Size indicates the size, e.g., 32 or 64 bits. |
| \p |
| The default string, fully specified is: |
| <br><br> |
| "E-p:64:64:64-a0:0:0-f32:32:32-f64:0:64" |
| "-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:0:64" |
| "-v64:64:64-v128:128:128" |
| <br><br> |
| Note that in the case of aggregates, 0 is the default ABI and preferred |
| alignment. This is a special case, where the aggregate's computed worst-case |
| alignment will be used. |
| */ |
| void TargetData::init(const std::string &TargetDescription) { |
| std::string temp = TargetDescription; |
| |
| LittleEndian = false; |
| PointerMemSize = 8; |
| PointerABIAlign = 8; |
| PointerPrefAlign = PointerABIAlign; |
| |
| // Default alignments |
| setAlignment(INTEGER_ALIGN, 1, 1, 1); // Bool |
| setAlignment(INTEGER_ALIGN, 1, 1, 8); // Byte |
| setAlignment(INTEGER_ALIGN, 2, 2, 16); // short |
| setAlignment(INTEGER_ALIGN, 4, 4, 32); // int |
| setAlignment(INTEGER_ALIGN, 4, 8, 64); // long |
| setAlignment(FLOAT_ALIGN, 4, 4, 32); // float |
| setAlignment(FLOAT_ALIGN, 8, 8, 64); // double |
| setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32 |
| setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ... |
| setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct, union, class, ... |
| |
| while (!temp.empty()) { |
| std::string token = getToken(temp, "-"); |
| std::string arg0 = getToken(token, ":"); |
| const char *p = arg0.c_str(); |
| switch(*p) { |
| case 'E': |
| LittleEndian = false; |
| break; |
| case 'e': |
| LittleEndian = true; |
| break; |
| case 'p': |
| PointerMemSize = atoi(getToken(token,":").c_str()) / 8; |
| PointerABIAlign = atoi(getToken(token,":").c_str()) / 8; |
| PointerPrefAlign = atoi(getToken(token,":").c_str()) / 8; |
| if (PointerPrefAlign == 0) |
| PointerPrefAlign = PointerABIAlign; |
| break; |
| case 'i': |
| case 'v': |
| case 'f': |
| case 'a': |
| case 's': { |
| AlignTypeEnum align_type = STACK_ALIGN; // Dummy init, silence warning |
| switch(*p) { |
| case 'i': align_type = INTEGER_ALIGN; break; |
| case 'v': align_type = VECTOR_ALIGN; break; |
| case 'f': align_type = FLOAT_ALIGN; break; |
| case 'a': align_type = AGGREGATE_ALIGN; break; |
| case 's': align_type = STACK_ALIGN; break; |
| } |
| uint32_t size = (uint32_t) atoi(++p); |
| unsigned char abi_align = atoi(getToken(token, ":").c_str()) / 8; |
| unsigned char pref_align = atoi(getToken(token, ":").c_str()) / 8; |
| if (pref_align == 0) |
| pref_align = abi_align; |
| setAlignment(align_type, abi_align, pref_align, size); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| } |
| |
| TargetData::TargetData(const Module *M) |
| : ImmutablePass((intptr_t)&ID) { |
| init(M->getDataLayout()); |
| } |
| |
| void |
| TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, |
| unsigned char pref_align, uint32_t bit_width) { |
| for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { |
| if (Alignments[i].AlignType == align_type && |
| Alignments[i].TypeBitWidth == bit_width) { |
| // Update the abi, preferred alignments. |
| Alignments[i].ABIAlign = abi_align; |
| Alignments[i].PrefAlign = pref_align; |
| return; |
| } |
| } |
| |
| Alignments.push_back(TargetAlignElem::get(align_type, abi_align, |
| pref_align, bit_width)); |
| } |
| |
| /// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or |
| /// preferred if ABIInfo = false) the target wants for the specified datatype. |
| unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, |
| uint32_t BitWidth, bool ABIInfo) const { |
| // Check to see if we have an exact match and remember the best match we see. |
| int BestMatchIdx = -1; |
| int LargestInt = -1; |
| for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { |
| if (Alignments[i].AlignType == AlignType && |
| Alignments[i].TypeBitWidth == BitWidth) |
| return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign; |
| |
| // The best match so far depends on what we're looking for. |
| if (AlignType == VECTOR_ALIGN && Alignments[i].AlignType == VECTOR_ALIGN) { |
| // If this is a specification for a smaller vector type, we will fall back |
| // to it. This happens because <128 x double> can be implemented in terms |
| // of 64 <2 x double>. |
| if (Alignments[i].TypeBitWidth < BitWidth) { |
| // Verify that we pick the biggest of the fallbacks. |
| if (BestMatchIdx == -1 || |
| Alignments[BestMatchIdx].TypeBitWidth < Alignments[i].TypeBitWidth) |
| BestMatchIdx = i; |
| } |
| } else if (AlignType == INTEGER_ALIGN && |
| Alignments[i].AlignType == INTEGER_ALIGN) { |
| // The "best match" for integers is the smallest size that is larger than |
| // the BitWidth requested. |
| if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || |
| Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth)) |
| BestMatchIdx = i; |
| // However, if there isn't one that's larger, then we must use the |
| // largest one we have (see below) |
| if (LargestInt == -1 || |
| Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth) |
| LargestInt = i; |
| } |
| } |
| |
| // For integers, if we didn't find a best match, use the largest one found. |
| if (BestMatchIdx == -1) |
| BestMatchIdx = LargestInt; |
| |
| // Okay, we didn't find an exact solution. Fall back here depending on what |
| // is being looked for. |
| assert(BestMatchIdx != -1 && "Didn't find alignment info for this datatype!"); |
| |
| // Since we got a "best match" index, just return it. |
| return ABIInfo ? Alignments[BestMatchIdx].ABIAlign |
| : Alignments[BestMatchIdx].PrefAlign; |
| } |
| |
| /// LayoutInfo - The lazy cache of structure layout information maintained by |
| /// TargetData. Note that the struct types must have been free'd before |
| /// llvm_shutdown is called (and thus this is deallocated) because all the |
| /// targets with cached elements should have been destroyed. |
| /// |
| typedef std::pair<const TargetData*,const StructType*> LayoutKey; |
| |
| struct DenseMapLayoutKeyInfo { |
| static inline LayoutKey getEmptyKey() { return LayoutKey(0, 0); } |
| static inline LayoutKey getTombstoneKey() { |
| return LayoutKey((TargetData*)(intptr_t)-1, 0); |
| } |
| static unsigned getHashValue(const LayoutKey &Val) { |
| return DenseMapInfo<void*>::getHashValue(Val.first) ^ |
| DenseMapInfo<void*>::getHashValue(Val.second); |
| } |
| static bool isEqual(const LayoutKey &LHS, const LayoutKey &RHS) { |
| return LHS == RHS; |
| } |
| |
| static bool isPod() { return true; } |
| }; |
| |
| typedef DenseMap<LayoutKey, StructLayout*, DenseMapLayoutKeyInfo> LayoutInfoTy; |
| static ManagedStatic<LayoutInfoTy> LayoutInfo; |
| |
| |
| TargetData::~TargetData() { |
| if (LayoutInfo.isConstructed()) { |
| // Remove any layouts for this TD. |
| LayoutInfoTy &TheMap = *LayoutInfo; |
| for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end(); |
| I != E; ) { |
| if (I->first.first == this) { |
| I->second->~StructLayout(); |
| free(I->second); |
| TheMap.erase(I++); |
| } else { |
| ++I; |
| } |
| } |
| } |
| } |
| |
| const StructLayout *TargetData::getStructLayout(const StructType *Ty) const { |
| LayoutInfoTy &TheMap = *LayoutInfo; |
| |
| StructLayout *&SL = TheMap[LayoutKey(this, Ty)]; |
| if (SL) return SL; |
| |
| // Otherwise, create the struct layout. Because it is variable length, we |
| // malloc it, then use placement new. |
| int NumElts = Ty->getNumElements(); |
| StructLayout *L = |
| (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1)*sizeof(uint64_t)); |
| |
| // Set SL before calling StructLayout's ctor. The ctor could cause other |
| // entries to be added to TheMap, invalidating our reference. |
| SL = L; |
| |
| new (L) StructLayout(Ty, *this); |
| return L; |
| } |
| |
| /// InvalidateStructLayoutInfo - TargetData speculatively caches StructLayout |
| /// objects. If a TargetData object is alive when types are being refined and |
| /// removed, this method must be called whenever a StructType is removed to |
| /// avoid a dangling pointer in this cache. |
| void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const { |
| if (!LayoutInfo.isConstructed()) return; // No cache. |
| |
| LayoutInfoTy::iterator I = LayoutInfo->find(LayoutKey(this, Ty)); |
| if (I != LayoutInfo->end()) { |
| I->second->~StructLayout(); |
| free(I->second); |
| LayoutInfo->erase(I); |
| } |
| } |
| |
| |
| std::string TargetData::getStringRepresentation() const { |
| std::string repr; |
| repr.append(LittleEndian ? "e" : "E"); |
| repr.append("-p:").append(itostr((int64_t) (PointerMemSize * 8))). |
| append(":").append(itostr((int64_t) (PointerABIAlign * 8))). |
| append(":").append(itostr((int64_t) (PointerPrefAlign * 8))); |
| for (align_const_iterator I = Alignments.begin(); |
| I != Alignments.end(); |
| ++I) { |
| repr.append("-").append(1, (char) I->AlignType). |
| append(utostr((int64_t) I->TypeBitWidth)). |
| append(":").append(utostr((uint64_t) (I->ABIAlign * 8))). |
| append(":").append(utostr((uint64_t) (I->PrefAlign * 8))); |
| } |
| return repr; |
| } |
| |
| |
| uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { |
| assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); |
| switch (Ty->getTypeID()) { |
| case Type::LabelTyID: |
| case Type::PointerTyID: |
| return getPointerSizeInBits(); |
| case Type::ArrayTyID: { |
| const ArrayType *ATy = cast<ArrayType>(Ty); |
| return getABITypeSizeInBits(ATy->getElementType())*ATy->getNumElements(); |
| } |
| case Type::StructTyID: { |
| // Get the layout annotation... which is lazily created on demand. |
| const StructLayout *Layout = getStructLayout(cast<StructType>(Ty)); |
| return Layout->getSizeInBits(); |
| } |
| case Type::IntegerTyID: |
| return cast<IntegerType>(Ty)->getBitWidth(); |
| case Type::VoidTyID: |
| return 8; |
| case Type::FloatTyID: |
| return 32; |
| case Type::DoubleTyID: |
| return 64; |
| case Type::PPC_FP128TyID: |
| case Type::FP128TyID: |
| return 128; |
| // In memory objects this is always aligned to a higher boundary, but |
| // only 80 bits contain information. |
| case Type::X86_FP80TyID: |
| return 80; |
| case Type::VectorTyID: { |
| const VectorType *PTy = cast<VectorType>(Ty); |
| return PTy->getBitWidth(); |
| } |
| default: |
| assert(0 && "TargetData::getTypeSizeInBits(): Unsupported type"); |
| break; |
| } |
| return 0; |
| } |
| |
| /*! |
| \param abi_or_pref Flag that determines which alignment is returned. true |
| returns the ABI alignment, false returns the preferred alignment. |
| \param Ty The underlying type for which alignment is determined. |
| |
| Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref |
| == false) for the requested type \a Ty. |
| */ |
| unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { |
| int AlignType = -1; |
| |
| assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); |
| switch (Ty->getTypeID()) { |
| /* Early escape for the non-numeric types */ |
| case Type::LabelTyID: |
| case Type::PointerTyID: |
| return (abi_or_pref |
| ? getPointerABIAlignment() |
| : getPointerPrefAlignment()); |
| case Type::ArrayTyID: |
| return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref); |
| |
| case Type::StructTyID: { |
| // Packed structure types always have an ABI alignment of one. |
| if (cast<StructType>(Ty)->isPacked() && abi_or_pref) |
| return 1; |
| |
| // Get the layout annotation... which is lazily created on demand. |
| const StructLayout *Layout = getStructLayout(cast<StructType>(Ty)); |
| unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref); |
| return std::max(Align, (unsigned)Layout->getAlignment()); |
| } |
| case Type::IntegerTyID: |
| case Type::VoidTyID: |
| AlignType = INTEGER_ALIGN; |
| break; |
| case Type::FloatTyID: |
| case Type::DoubleTyID: |
| // PPC_FP128TyID and FP128TyID have different data contents, but the |
| // same size and alignment, so they look the same here. |
| case Type::PPC_FP128TyID: |
| case Type::FP128TyID: |
| case Type::X86_FP80TyID: |
| AlignType = FLOAT_ALIGN; |
| break; |
| case Type::VectorTyID: { |
| const VectorType *VTy = cast<VectorType>(Ty); |
| // Degenerate vectors are assumed to be scalar-ized |
| if (VTy->getNumElements() == 1) |
| return getAlignment(VTy->getElementType(), abi_or_pref); |
| else |
| AlignType = VECTOR_ALIGN; |
| break; |
| } |
| default: |
| assert(0 && "Bad type for getAlignment!!!"); |
| break; |
| } |
| |
| return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty), |
| abi_or_pref); |
| } |
| |
| unsigned char TargetData::getABITypeAlignment(const Type *Ty) const { |
| return getAlignment(Ty, true); |
| } |
| |
| unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const { |
| for (unsigned i = 0, e = Alignments.size(); i != e; ++i) |
| if (Alignments[i].AlignType == STACK_ALIGN) |
| return Alignments[i].ABIAlign; |
| |
| return getABITypeAlignment(Ty); |
| } |
| |
| unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const { |
| return getAlignment(Ty, false); |
| } |
| |
| unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const { |
| unsigned Align = (unsigned) getPrefTypeAlignment(Ty); |
| assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); |
| return Log2_32(Align); |
| } |
| |
| /// getIntPtrType - Return an unsigned integer type that is the same size or |
| /// greater to the host pointer size. |
| const Type *TargetData::getIntPtrType() const { |
| return IntegerType::get(getPointerSizeInBits()); |
| } |
| |
| |
| uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, |
| unsigned NumIndices) const { |
| const Type *Ty = ptrTy; |
| assert(isa<PointerType>(Ty) && "Illegal argument for getIndexedOffset()"); |
| uint64_t Result = 0; |
| |
| generic_gep_type_iterator<Value* const*> |
| TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices); |
| for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) { |
| if (const StructType *STy = dyn_cast<StructType>(*TI)) { |
| assert(Indices[CurIDX]->getType() == Type::Int32Ty && |
| "Illegal struct idx"); |
| unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue(); |
| |
| // Get structure layout information... |
| const StructLayout *Layout = getStructLayout(STy); |
| |
| // Add in the offset, as calculated by the structure layout info... |
| Result += Layout->getElementOffset(FieldNo); |
| |
| // Update Ty to refer to current element |
| Ty = STy->getElementType(FieldNo); |
| } else { |
| // Update Ty to refer to current element |
| Ty = cast<SequentialType>(Ty)->getElementType(); |
| |
| // Get the array index and the size of each array element. |
| int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue(); |
| Result += arrayIdx * (int64_t)getABITypeSize(Ty); |
| } |
| } |
| |
| return Result; |
| } |
| |
| /// getPreferredAlignmentLog - Return the preferred alignment of the |
| /// specified global, returned in log form. This includes an explicitly |
| /// requested alignment (if the global has one). |
| unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const { |
| const Type *ElemType = GV->getType()->getElementType(); |
| unsigned Alignment = getPreferredTypeAlignmentShift(ElemType); |
| if (GV->getAlignment() > (1U << Alignment)) |
| Alignment = Log2_32(GV->getAlignment()); |
| |
| if (GV->hasInitializer()) { |
| if (Alignment < 4) { |
| // If the global is not external, see if it is large. If so, give it a |
| // larger alignment. |
| if (getTypeSizeInBits(ElemType) > 128) |
| Alignment = 4; // 16-byte alignment. |
| } |
| } |
| return Alignment; |
| } |