| //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the X86-specific support for the FastISel class. Much |
| // of the target-specific code is generated by tablegen in the file |
| // X86GenFastISel.inc, which is #included here. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrBuilder.h" |
| #include "X86ISelLowering.h" |
| #include "X86RegisterInfo.h" |
| #include "X86Subtarget.h" |
| #include "X86TargetMachine.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Support/CallSite.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| |
| using namespace llvm; |
| |
| class X86FastISel : public FastISel { |
| /// Subtarget - Keep a pointer to the X86Subtarget around so that we can |
| /// make the right decision when generating code for different targets. |
| const X86Subtarget *Subtarget; |
| |
| /// StackPtr - Register used as the stack pointer. |
| /// |
| unsigned StackPtr; |
| |
| /// GlobalBaseReg - keeps track of the virtual register mapped onto global |
| /// base register. |
| unsigned GlobalBaseReg; |
| |
| /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 |
| /// floating point ops. |
| /// When SSE is available, use it for f32 operations. |
| /// When SSE2 is available, use it for f64 operations. |
| bool X86ScalarSSEf64; |
| bool X86ScalarSSEf32; |
| |
| public: |
| explicit X86FastISel(MachineFunction &mf, |
| MachineModuleInfo *mmi, |
| DenseMap<const Value *, unsigned> &vm, |
| DenseMap<const BasicBlock *, MachineBasicBlock *> &bm, |
| DenseMap<const AllocaInst *, int> &am) |
| : FastISel(mf, mmi, vm, bm, am) { |
| Subtarget = &TM.getSubtarget<X86Subtarget>(); |
| StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; |
| GlobalBaseReg = 0; |
| X86ScalarSSEf64 = Subtarget->hasSSE2(); |
| X86ScalarSSEf32 = Subtarget->hasSSE1(); |
| } |
| |
| virtual bool TargetSelectInstruction(Instruction *I); |
| |
| #include "X86GenFastISel.inc" |
| |
| private: |
| bool X86FastEmitLoad(MVT VT, const X86AddressMode &AM, unsigned &RR); |
| |
| bool X86FastEmitStore(MVT VT, unsigned Val, |
| const X86AddressMode &AM); |
| |
| bool X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT, unsigned Src, MVT SrcVT, |
| unsigned &ResultReg); |
| |
| bool X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall); |
| |
| bool X86SelectLoad(Instruction *I); |
| |
| bool X86SelectStore(Instruction *I); |
| |
| bool X86SelectCmp(Instruction *I); |
| |
| bool X86SelectZExt(Instruction *I); |
| |
| bool X86SelectBranch(Instruction *I); |
| |
| bool X86SelectShift(Instruction *I); |
| |
| bool X86SelectSelect(Instruction *I); |
| |
| bool X86SelectTrunc(Instruction *I); |
| |
| bool X86SelectFPExt(Instruction *I); |
| bool X86SelectFPTrunc(Instruction *I); |
| |
| bool X86SelectCall(Instruction *I); |
| |
| CCAssignFn *CCAssignFnForCall(unsigned CC, bool isTailCall = false); |
| |
| unsigned getGlobalBaseReg(); |
| |
| const X86InstrInfo *getInstrInfo() const { |
| return static_cast<const X86InstrInfo *>(TM.getInstrInfo()); |
| } |
| |
| unsigned TargetMaterializeConstant(Constant *C); |
| |
| unsigned TargetMaterializeAlloca(AllocaInst *C); |
| |
| /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is |
| /// computed in an SSE register, not on the X87 floating point stack. |
| bool isScalarFPTypeInSSEReg(MVT VT) const { |
| return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 |
| (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 |
| } |
| |
| }; |
| |
| static bool isTypeLegal(const Type *Ty, const TargetLowering &TLI, MVT &VT, |
| bool AllowI1 = false) { |
| VT = MVT::getMVT(Ty, /*HandleUnknown=*/true); |
| if (VT == MVT::Other || !VT.isSimple()) |
| // Unhandled type. Halt "fast" selection and bail. |
| return false; |
| if (VT == MVT::iPTR) |
| // Use pointer type. |
| VT = TLI.getPointerTy(); |
| // We only handle legal types. For example, on x86-32 the instruction |
| // selector contains all of the 64-bit instructions from x86-64, |
| // under the assumption that i64 won't be used if the target doesn't |
| // support it. |
| return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); |
| } |
| |
| /// getGlobalBaseReg - Return the the global base register. Output |
| /// instructions required to initialize the global base register, if necessary. |
| /// |
| unsigned X86FastISel::getGlobalBaseReg() { |
| assert(!Subtarget->is64Bit() && "X86-64 PIC uses RIP relative addressing"); |
| if (!GlobalBaseReg) |
| GlobalBaseReg = getInstrInfo()->initializeGlobalBaseReg(MBB->getParent()); |
| return GlobalBaseReg; |
| } |
| |
| #include "X86GenCallingConv.inc" |
| |
| /// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling |
| /// convention. |
| CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) { |
| if (Subtarget->is64Bit()) { |
| if (Subtarget->isTargetWin64()) |
| return CC_X86_Win64_C; |
| else if (CC == CallingConv::Fast && isTaillCall) |
| return CC_X86_64_TailCall; |
| else |
| return CC_X86_64_C; |
| } |
| |
| if (CC == CallingConv::X86_FastCall) |
| return CC_X86_32_FastCall; |
| else if (CC == CallingConv::Fast) |
| return CC_X86_32_FastCC; |
| else |
| return CC_X86_32_C; |
| } |
| |
| /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. |
| /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. |
| /// Return true and the result register by reference if it is possible. |
| bool X86FastISel::X86FastEmitLoad(MVT VT, const X86AddressMode &AM, |
| unsigned &ResultReg) { |
| // Get opcode and regclass of the output for the given load instruction. |
| unsigned Opc = 0; |
| const TargetRegisterClass *RC = NULL; |
| switch (VT.getSimpleVT()) { |
| default: return false; |
| case MVT::i8: |
| Opc = X86::MOV8rm; |
| RC = X86::GR8RegisterClass; |
| break; |
| case MVT::i16: |
| Opc = X86::MOV16rm; |
| RC = X86::GR16RegisterClass; |
| break; |
| case MVT::i32: |
| Opc = X86::MOV32rm; |
| RC = X86::GR32RegisterClass; |
| break; |
| case MVT::i64: |
| // Must be in x86-64 mode. |
| Opc = X86::MOV64rm; |
| RC = X86::GR64RegisterClass; |
| break; |
| case MVT::f32: |
| if (Subtarget->hasSSE1()) { |
| Opc = X86::MOVSSrm; |
| RC = X86::FR32RegisterClass; |
| } else { |
| Opc = X86::LD_Fp32m; |
| RC = X86::RFP32RegisterClass; |
| } |
| break; |
| case MVT::f64: |
| if (Subtarget->hasSSE2()) { |
| Opc = X86::MOVSDrm; |
| RC = X86::FR64RegisterClass; |
| } else { |
| Opc = X86::LD_Fp64m; |
| RC = X86::RFP64RegisterClass; |
| } |
| break; |
| case MVT::f80: |
| Opc = X86::LD_Fp80m; |
| RC = X86::RFP80RegisterClass; |
| break; |
| } |
| |
| ResultReg = createResultReg(RC); |
| addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM); |
| return true; |
| } |
| |
| /// X86FastEmitStore - Emit a machine instruction to store a value Val of |
| /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr |
| /// and a displacement offset, or a GlobalAddress, |
| /// i.e. V. Return true if it is possible. |
| bool |
| X86FastISel::X86FastEmitStore(MVT VT, unsigned Val, |
| const X86AddressMode &AM) { |
| // Get opcode and regclass of the output for the given store instruction. |
| unsigned Opc = 0; |
| const TargetRegisterClass *RC = NULL; |
| switch (VT.getSimpleVT()) { |
| default: return false; |
| case MVT::i8: |
| Opc = X86::MOV8mr; |
| RC = X86::GR8RegisterClass; |
| break; |
| case MVT::i16: |
| Opc = X86::MOV16mr; |
| RC = X86::GR16RegisterClass; |
| break; |
| case MVT::i32: |
| Opc = X86::MOV32mr; |
| RC = X86::GR32RegisterClass; |
| break; |
| case MVT::i64: |
| // Must be in x86-64 mode. |
| Opc = X86::MOV64mr; |
| RC = X86::GR64RegisterClass; |
| break; |
| case MVT::f32: |
| if (Subtarget->hasSSE1()) { |
| Opc = X86::MOVSSmr; |
| RC = X86::FR32RegisterClass; |
| } else { |
| Opc = X86::ST_Fp32m; |
| RC = X86::RFP32RegisterClass; |
| } |
| break; |
| case MVT::f64: |
| if (Subtarget->hasSSE2()) { |
| Opc = X86::MOVSDmr; |
| RC = X86::FR64RegisterClass; |
| } else { |
| Opc = X86::ST_Fp64m; |
| RC = X86::RFP64RegisterClass; |
| } |
| break; |
| case MVT::f80: |
| Opc = X86::ST_FP80m; |
| RC = X86::RFP80RegisterClass; |
| break; |
| } |
| |
| addFullAddress(BuildMI(MBB, TII.get(Opc)), AM).addReg(Val); |
| return true; |
| } |
| |
| /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of |
| /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. |
| /// ISD::SIGN_EXTEND). |
| bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT, |
| unsigned Src, MVT SrcVT, |
| unsigned &ResultReg) { |
| unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src); |
| |
| if (RR != 0) { |
| ResultReg = RR; |
| return true; |
| } else |
| return false; |
| } |
| |
| /// X86SelectAddress - Attempt to fill in an address from the given value. |
| /// |
| bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) { |
| User *U; |
| unsigned Opcode = Instruction::UserOp1; |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| Opcode = I->getOpcode(); |
| U = I; |
| } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { |
| Opcode = C->getOpcode(); |
| U = C; |
| } |
| |
| switch (Opcode) { |
| default: break; |
| case Instruction::BitCast: |
| // Look past bitcasts. |
| return X86SelectAddress(U->getOperand(0), AM, isCall); |
| |
| case Instruction::IntToPtr: |
| // Look past no-op inttoptrs. |
| if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) |
| return X86SelectAddress(U->getOperand(0), AM, isCall); |
| |
| case Instruction::PtrToInt: |
| // Look past no-op ptrtoints. |
| if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) |
| return X86SelectAddress(U->getOperand(0), AM, isCall); |
| |
| case Instruction::Alloca: { |
| if (isCall) break; |
| // Do static allocas. |
| const AllocaInst *A = cast<AllocaInst>(V); |
| DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A); |
| if (SI == StaticAllocaMap.end()) |
| return false; |
| AM.BaseType = X86AddressMode::FrameIndexBase; |
| AM.Base.FrameIndex = SI->second; |
| return true; |
| } |
| |
| case Instruction::Add: { |
| if (isCall) break; |
| // Adds of constants are common and easy enough. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { |
| AM.Disp += CI->getZExtValue(); |
| return X86SelectAddress(U->getOperand(0), AM, isCall); |
| } |
| break; |
| } |
| |
| case Instruction::GetElementPtr: { |
| if (isCall) break; |
| // Pattern-match simple GEPs. |
| uint64_t Disp = AM.Disp; |
| unsigned IndexReg = AM.IndexReg; |
| unsigned Scale = AM.Scale; |
| gep_type_iterator GTI = gep_type_begin(U); |
| // Look at all but the last index. Constants can be folded, |
| // and one dynamic index can be handled, if the scale is supported. |
| for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); |
| i != e; ++i, ++GTI) { |
| Value *Op = *i; |
| if (const StructType *STy = dyn_cast<StructType>(*GTI)) { |
| const StructLayout *SL = TD.getStructLayout(STy); |
| unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); |
| Disp += SL->getElementOffset(Idx); |
| } else { |
| uint64_t S = TD.getABITypeSize(GTI.getIndexedType()); |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { |
| // Constant-offset addressing. |
| Disp += CI->getZExtValue() * S; |
| } else if (IndexReg == 0 && |
| (S == 1 || S == 2 || S == 4 || S == 8)) { |
| // Scaled-index addressing. |
| Scale = S; |
| IndexReg = getRegForValue(Op); |
| if (IndexReg == 0) |
| return false; |
| } else |
| // Unsupported. |
| goto unsupported_gep; |
| } |
| } |
| // Ok, the GEP indices were covered by constant-offset and scaled-index |
| // addressing. Update the address state and move on to examining the base. |
| AM.IndexReg = IndexReg; |
| AM.Scale = Scale; |
| AM.Disp = Disp; |
| return X86SelectAddress(U->getOperand(0), AM, isCall); |
| unsupported_gep: |
| // Ok, the GEP indices weren't all covered. |
| break; |
| } |
| } |
| |
| // Handle constant address. |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| // Can't handle alternate code models yet. |
| if (TM.getCodeModel() != CodeModel::Default && |
| TM.getCodeModel() != CodeModel::Small) |
| return false; |
| |
| // Set up the basic address. |
| AM.GV = GV; |
| if (!isCall && |
| TM.getRelocationModel() == Reloc::PIC_ && |
| !Subtarget->is64Bit()) |
| AM.Base.Reg = getGlobalBaseReg(); |
| |
| // Emit an extra load if the ABI requires it. |
| if (Subtarget->GVRequiresExtraLoad(GV, TM, isCall)) { |
| // Check to see if we've already materialized this |
| // value in a register in this block. |
| if (unsigned Reg = LocalValueMap[V]) { |
| AM.Base.Reg = Reg; |
| AM.GV = 0; |
| return true; |
| } |
| // Issue load from stub if necessary. |
| unsigned Opc = 0; |
| const TargetRegisterClass *RC = NULL; |
| if (TLI.getPointerTy() == MVT::i32) { |
| Opc = X86::MOV32rm; |
| RC = X86::GR32RegisterClass; |
| } else { |
| Opc = X86::MOV64rm; |
| RC = X86::GR64RegisterClass; |
| } |
| unsigned ResultReg = createResultReg(RC); |
| addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM); |
| AM.Base.Reg = ResultReg; |
| AM.GV = 0; |
| // Prevent loading GV stub multiple times in same MBB. |
| LocalValueMap[V] = AM.Base.Reg; |
| } |
| return true; |
| } |
| |
| // If all else fails, just materialize the value in a register. |
| AM.Base.Reg = getRegForValue(V); |
| return AM.Base.Reg != 0; |
| } |
| |
| /// X86SelectStore - Select and emit code to implement store instructions. |
| bool X86FastISel::X86SelectStore(Instruction* I) { |
| MVT VT; |
| if (!isTypeLegal(I->getOperand(0)->getType(), TLI, VT)) |
| return false; |
| unsigned Val = getRegForValue(I->getOperand(0)); |
| if (Val == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| X86AddressMode AM; |
| if (!X86SelectAddress(I->getOperand(1), AM, false)) |
| return false; |
| |
| return X86FastEmitStore(VT, Val, AM); |
| } |
| |
| /// X86SelectLoad - Select and emit code to implement load instructions. |
| /// |
| bool X86FastISel::X86SelectLoad(Instruction *I) { |
| MVT VT; |
| if (!isTypeLegal(I->getType(), TLI, VT)) |
| return false; |
| |
| X86AddressMode AM; |
| if (!X86SelectAddress(I->getOperand(0), AM, false)) |
| return false; |
| |
| unsigned ResultReg = 0; |
| if (X86FastEmitLoad(VT, AM, ResultReg)) { |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| return false; |
| } |
| |
| bool X86FastISel::X86SelectCmp(Instruction *I) { |
| CmpInst *CI = cast<CmpInst>(I); |
| |
| MVT VT = TLI.getValueType(I->getOperand(0)->getType()); |
| if (!TLI.isTypeLegal(VT)) |
| return false; |
| |
| unsigned Op0Reg = getRegForValue(CI->getOperand(0)); |
| if (Op0Reg == 0) return false; |
| unsigned Op1Reg = getRegForValue(CI->getOperand(1)); |
| if (Op1Reg == 0) return false; |
| |
| unsigned Opc; |
| switch (VT.getSimpleVT()) { |
| case MVT::i8: Opc = X86::CMP8rr; break; |
| case MVT::i16: Opc = X86::CMP16rr; break; |
| case MVT::i32: Opc = X86::CMP32rr; break; |
| case MVT::i64: Opc = X86::CMP64rr; break; |
| case MVT::f32: Opc = X86::UCOMISSrr; break; |
| case MVT::f64: Opc = X86::UCOMISDrr; break; |
| default: return false; |
| } |
| |
| unsigned ResultReg = createResultReg(&X86::GR8RegClass); |
| switch (CI->getPredicate()) { |
| case CmpInst::FCMP_OEQ: { |
| unsigned EReg = createResultReg(&X86::GR8RegClass); |
| unsigned NPReg = createResultReg(&X86::GR8RegClass); |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETEr), EReg); |
| BuildMI(MBB, TII.get(X86::SETNPr), NPReg); |
| BuildMI(MBB, TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg); |
| break; |
| } |
| case CmpInst::FCMP_UNE: { |
| unsigned NEReg = createResultReg(&X86::GR8RegClass); |
| unsigned PReg = createResultReg(&X86::GR8RegClass); |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETNEr), NEReg); |
| BuildMI(MBB, TII.get(X86::SETPr), PReg); |
| BuildMI(MBB, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg); |
| break; |
| } |
| case CmpInst::FCMP_OGT: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETAr), ResultReg); |
| break; |
| case CmpInst::FCMP_OGE: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETAEr), ResultReg); |
| break; |
| case CmpInst::FCMP_OLT: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg); |
| BuildMI(MBB, TII.get(X86::SETAr), ResultReg); |
| break; |
| case CmpInst::FCMP_OLE: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg); |
| BuildMI(MBB, TII.get(X86::SETAEr), ResultReg); |
| break; |
| case CmpInst::FCMP_ONE: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETNEr), ResultReg); |
| break; |
| case CmpInst::FCMP_ORD: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETNPr), ResultReg); |
| break; |
| case CmpInst::FCMP_UNO: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETPr), ResultReg); |
| break; |
| case CmpInst::FCMP_UEQ: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETEr), ResultReg); |
| break; |
| case CmpInst::FCMP_UGT: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg); |
| BuildMI(MBB, TII.get(X86::SETBr), ResultReg); |
| break; |
| case CmpInst::FCMP_UGE: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg); |
| BuildMI(MBB, TII.get(X86::SETBEr), ResultReg); |
| break; |
| case CmpInst::FCMP_ULT: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETBr), ResultReg); |
| break; |
| case CmpInst::FCMP_ULE: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETBEr), ResultReg); |
| break; |
| case CmpInst::ICMP_EQ: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETEr), ResultReg); |
| break; |
| case CmpInst::ICMP_NE: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETNEr), ResultReg); |
| break; |
| case CmpInst::ICMP_UGT: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETAr), ResultReg); |
| break; |
| case CmpInst::ICMP_UGE: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETAEr), ResultReg); |
| break; |
| case CmpInst::ICMP_ULT: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETBr), ResultReg); |
| break; |
| case CmpInst::ICMP_ULE: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETBEr), ResultReg); |
| break; |
| case CmpInst::ICMP_SGT: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETGr), ResultReg); |
| break; |
| case CmpInst::ICMP_SGE: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETGEr), ResultReg); |
| break; |
| case CmpInst::ICMP_SLT: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETLr), ResultReg); |
| break; |
| case CmpInst::ICMP_SLE: |
| BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg); |
| BuildMI(MBB, TII.get(X86::SETLEr), ResultReg); |
| break; |
| default: |
| return false; |
| } |
| |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectZExt(Instruction *I) { |
| // Special-case hack: The only i1 values we know how to produce currently |
| // set the upper bits of an i8 value to zero. |
| if (I->getType() == Type::Int8Ty && |
| I->getOperand(0)->getType() == Type::Int1Ty) { |
| unsigned ResultReg = getRegForValue(I->getOperand(0)); |
| if (ResultReg == 0) return false; |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool X86FastISel::X86SelectBranch(Instruction *I) { |
| BranchInst *BI = cast<BranchInst>(I); |
| // Unconditional branches are selected by tablegen-generated code. |
| unsigned OpReg = getRegForValue(BI->getCondition()); |
| if (OpReg == 0) return false; |
| MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)]; |
| MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)]; |
| |
| BuildMI(MBB, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg); |
| BuildMI(MBB, TII.get(X86::JNE)).addMBB(TrueMBB); |
| BuildMI(MBB, TII.get(X86::JMP)).addMBB(FalseMBB); |
| |
| MBB->addSuccessor(TrueMBB); |
| MBB->addSuccessor(FalseMBB); |
| |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectShift(Instruction *I) { |
| unsigned CReg = 0, OpReg = 0, OpImm = 0; |
| const TargetRegisterClass *RC = NULL; |
| if (I->getType() == Type::Int8Ty) { |
| CReg = X86::CL; |
| RC = &X86::GR8RegClass; |
| switch (I->getOpcode()) { |
| case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break; |
| case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break; |
| case Instruction::Shl: OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break; |
| default: return false; |
| } |
| } else if (I->getType() == Type::Int16Ty) { |
| CReg = X86::CX; |
| RC = &X86::GR16RegClass; |
| switch (I->getOpcode()) { |
| case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break; |
| case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break; |
| case Instruction::Shl: OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break; |
| default: return false; |
| } |
| } else if (I->getType() == Type::Int32Ty) { |
| CReg = X86::ECX; |
| RC = &X86::GR32RegClass; |
| switch (I->getOpcode()) { |
| case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break; |
| case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break; |
| case Instruction::Shl: OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break; |
| default: return false; |
| } |
| } else if (I->getType() == Type::Int64Ty) { |
| CReg = X86::RCX; |
| RC = &X86::GR64RegClass; |
| switch (I->getOpcode()) { |
| case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break; |
| case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break; |
| case Instruction::Shl: OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break; |
| default: return false; |
| } |
| } else { |
| return false; |
| } |
| |
| MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true); |
| if (VT == MVT::Other || !TLI.isTypeLegal(VT)) |
| return false; |
| |
| unsigned Op0Reg = getRegForValue(I->getOperand(0)); |
| if (Op0Reg == 0) return false; |
| |
| // Fold immediate in shl(x,3). |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| unsigned ResultReg = createResultReg(RC); |
| BuildMI(MBB, TII.get(OpImm), |
| ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue()); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| unsigned Op1Reg = getRegForValue(I->getOperand(1)); |
| if (Op1Reg == 0) return false; |
| TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC); |
| unsigned ResultReg = createResultReg(RC); |
| BuildMI(MBB, TII.get(OpReg), ResultReg).addReg(Op0Reg); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectSelect(Instruction *I) { |
| const Type *Ty = I->getType(); |
| if (isa<PointerType>(Ty)) |
| Ty = TD.getIntPtrType(); |
| |
| unsigned Opc = 0; |
| const TargetRegisterClass *RC = NULL; |
| if (Ty == Type::Int16Ty) { |
| Opc = X86::CMOVE16rr; |
| RC = &X86::GR16RegClass; |
| } else if (Ty == Type::Int32Ty) { |
| Opc = X86::CMOVE32rr; |
| RC = &X86::GR32RegClass; |
| } else if (Ty == Type::Int64Ty) { |
| Opc = X86::CMOVE64rr; |
| RC = &X86::GR64RegClass; |
| } else { |
| return false; |
| } |
| |
| MVT VT = MVT::getMVT(Ty, /*HandleUnknown=*/true); |
| if (VT == MVT::Other || !TLI.isTypeLegal(VT)) |
| return false; |
| |
| unsigned Op0Reg = getRegForValue(I->getOperand(0)); |
| if (Op0Reg == 0) return false; |
| unsigned Op1Reg = getRegForValue(I->getOperand(1)); |
| if (Op1Reg == 0) return false; |
| unsigned Op2Reg = getRegForValue(I->getOperand(2)); |
| if (Op2Reg == 0) return false; |
| |
| BuildMI(MBB, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg); |
| unsigned ResultReg = createResultReg(RC); |
| BuildMI(MBB, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectFPExt(Instruction *I) { |
| if (Subtarget->hasSSE2()) { |
| if (I->getType() == Type::DoubleTy) { |
| Value *V = I->getOperand(0); |
| if (V->getType() == Type::FloatTy) { |
| unsigned OpReg = getRegForValue(V); |
| if (OpReg == 0) return false; |
| unsigned ResultReg = createResultReg(X86::FR64RegisterClass); |
| BuildMI(MBB, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool X86FastISel::X86SelectFPTrunc(Instruction *I) { |
| if (Subtarget->hasSSE2()) { |
| if (I->getType() == Type::FloatTy) { |
| Value *V = I->getOperand(0); |
| if (V->getType() == Type::DoubleTy) { |
| unsigned OpReg = getRegForValue(V); |
| if (OpReg == 0) return false; |
| unsigned ResultReg = createResultReg(X86::FR32RegisterClass); |
| BuildMI(MBB, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool X86FastISel::X86SelectTrunc(Instruction *I) { |
| if (Subtarget->is64Bit()) |
| // All other cases should be handled by the tblgen generated code. |
| return false; |
| MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); |
| MVT DstVT = TLI.getValueType(I->getType()); |
| if (DstVT != MVT::i8) |
| // All other cases should be handled by the tblgen generated code. |
| return false; |
| if (SrcVT != MVT::i16 && SrcVT != MVT::i32) |
| // All other cases should be handled by the tblgen generated code. |
| return false; |
| |
| unsigned InputReg = getRegForValue(I->getOperand(0)); |
| if (!InputReg) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| // First issue a copy to GR16_ or GR32_. |
| unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16to16_ : X86::MOV32to32_; |
| const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16) |
| ? X86::GR16_RegisterClass : X86::GR32_RegisterClass; |
| unsigned CopyReg = createResultReg(CopyRC); |
| BuildMI(MBB, TII.get(CopyOpc), CopyReg).addReg(InputReg); |
| |
| // Then issue an extract_subreg. |
| unsigned ResultReg = FastEmitInst_extractsubreg(CopyReg,1); // x86_subreg_8bit |
| if (!ResultReg) |
| return false; |
| |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectCall(Instruction *I) { |
| CallInst *CI = cast<CallInst>(I); |
| Value *Callee = I->getOperand(0); |
| |
| // Can't handle inline asm yet. |
| if (isa<InlineAsm>(Callee)) |
| return false; |
| |
| // FIXME: Handle some intrinsics. |
| if (Function *F = CI->getCalledFunction()) { |
| if (F->isDeclaration() &&F->getIntrinsicID()) |
| return false; |
| } |
| |
| // Handle only C and fastcc calling conventions for now. |
| CallSite CS(CI); |
| unsigned CC = CS.getCallingConv(); |
| if (CC != CallingConv::C && |
| CC != CallingConv::Fast && |
| CC != CallingConv::X86_FastCall) |
| return false; |
| |
| // Let SDISel handle vararg functions. |
| const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); |
| const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); |
| if (FTy->isVarArg()) |
| return false; |
| |
| // Handle *simple* calls for now. |
| const Type *RetTy = CS.getType(); |
| MVT RetVT; |
| if (RetTy == Type::VoidTy) |
| RetVT = MVT::isVoid; |
| else if (!isTypeLegal(RetTy, TLI, RetVT, true)) |
| return false; |
| |
| // Materialize callee address in a register. FIXME: GV address can be |
| // handled with a CALLpcrel32 instead. |
| X86AddressMode CalleeAM; |
| if (!X86SelectAddress(Callee, CalleeAM, true)) |
| return false; |
| unsigned CalleeOp = 0; |
| GlobalValue *GV = 0; |
| if (CalleeAM.Base.Reg != 0) { |
| assert(CalleeAM.GV == 0); |
| CalleeOp = CalleeAM.Base.Reg; |
| } else if (CalleeAM.GV != 0) { |
| assert(CalleeAM.GV != 0); |
| GV = CalleeAM.GV; |
| } else |
| return false; |
| |
| // Allow calls which produce i1 results. |
| bool AndToI1 = false; |
| if (RetVT == MVT::i1) { |
| RetVT = MVT::i8; |
| AndToI1 = true; |
| } |
| |
| // Deal with call operands first. |
| SmallVector<unsigned, 4> Args; |
| SmallVector<MVT, 4> ArgVTs; |
| SmallVector<ISD::ArgFlagsTy, 4> ArgFlags; |
| Args.reserve(CS.arg_size()); |
| ArgVTs.reserve(CS.arg_size()); |
| ArgFlags.reserve(CS.arg_size()); |
| for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); |
| i != e; ++i) { |
| unsigned Arg = getRegForValue(*i); |
| if (Arg == 0) |
| return false; |
| ISD::ArgFlagsTy Flags; |
| unsigned AttrInd = i - CS.arg_begin() + 1; |
| if (CS.paramHasAttr(AttrInd, ParamAttr::SExt)) |
| Flags.setSExt(); |
| if (CS.paramHasAttr(AttrInd, ParamAttr::ZExt)) |
| Flags.setZExt(); |
| |
| // FIXME: Only handle *easy* calls for now. |
| if (CS.paramHasAttr(AttrInd, ParamAttr::InReg) || |
| CS.paramHasAttr(AttrInd, ParamAttr::StructRet) || |
| CS.paramHasAttr(AttrInd, ParamAttr::Nest) || |
| CS.paramHasAttr(AttrInd, ParamAttr::ByVal)) |
| return false; |
| |
| const Type *ArgTy = (*i)->getType(); |
| MVT ArgVT; |
| if (!isTypeLegal(ArgTy, TLI, ArgVT)) |
| return false; |
| unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); |
| Flags.setOrigAlign(OriginalAlignment); |
| |
| Args.push_back(Arg); |
| ArgVTs.push_back(ArgVT); |
| ArgFlags.push_back(Flags); |
| } |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CC, false, TM, ArgLocs); |
| CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC)); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| |
| // Issue CALLSEQ_START |
| BuildMI(MBB, TII.get(X86::ADJCALLSTACKDOWN)).addImm(NumBytes); |
| |
| // Process argumenet: walk the register/memloc assignments, inserting |
| // copies / loads. |
| SmallVector<unsigned, 4> RegArgs; |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| unsigned Arg = Args[VA.getValNo()]; |
| MVT ArgVT = ArgVTs[VA.getValNo()]; |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: assert(0 && "Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: { |
| bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), |
| Arg, ArgVT, Arg); |
| assert(Emitted && "Failed to emit a sext!"); |
| ArgVT = VA.getLocVT(); |
| break; |
| } |
| case CCValAssign::ZExt: { |
| bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), |
| Arg, ArgVT, Arg); |
| assert(Emitted && "Failed to emit a zext!"); |
| ArgVT = VA.getLocVT(); |
| break; |
| } |
| case CCValAssign::AExt: { |
| bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), |
| Arg, ArgVT, Arg); |
| if (!Emitted) |
| Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), |
| Arg, ArgVT, Arg); |
| if (!Emitted) |
| Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), |
| Arg, ArgVT, Arg); |
| |
| assert(Emitted && "Failed to emit a aext!"); |
| ArgVT = VA.getLocVT(); |
| break; |
| } |
| } |
| |
| if (VA.isRegLoc()) { |
| TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT); |
| bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(), |
| Arg, RC, RC); |
| assert(Emitted && "Failed to emit a copy instruction!"); |
| RegArgs.push_back(VA.getLocReg()); |
| } else { |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| X86AddressMode AM; |
| AM.Base.Reg = StackPtr; |
| AM.Disp = LocMemOffset; |
| X86FastEmitStore(ArgVT, Arg, AM); |
| } |
| } |
| |
| // ELF / PIC requires GOT in the EBX register before function calls via PLT |
| // GOT pointer. |
| if (!Subtarget->is64Bit() && |
| TM.getRelocationModel() == Reloc::PIC_ && |
| Subtarget->isPICStyleGOT()) { |
| TargetRegisterClass *RC = X86::GR32RegisterClass; |
| unsigned Base = getGlobalBaseReg(); |
| bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC); |
| assert(Emitted && "Failed to emit a copy instruction!"); |
| } |
| |
| // Issue the call. |
| unsigned CallOpc = CalleeOp |
| ? (Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r) |
| : (Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32); |
| MachineInstrBuilder MIB = CalleeOp |
| ? BuildMI(MBB, TII.get(CallOpc)).addReg(CalleeOp) |
| : BuildMI(MBB, TII.get(CallOpc)).addGlobalAddress(GV); |
| |
| // Add an implicit use GOT pointer in EBX. |
| if (!Subtarget->is64Bit() && |
| TM.getRelocationModel() == Reloc::PIC_ && |
| Subtarget->isPICStyleGOT()) |
| MIB.addReg(X86::EBX); |
| |
| // Add implicit physical register uses to the call. |
| while (!RegArgs.empty()) { |
| MIB.addReg(RegArgs.back()); |
| RegArgs.pop_back(); |
| } |
| |
| // Issue CALLSEQ_END |
| BuildMI(MBB, TII.get(X86::ADJCALLSTACKUP)).addImm(NumBytes).addImm(0); |
| |
| // Now handle call return value (if any). |
| if (RetVT.getSimpleVT() != MVT::isVoid) { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CC, false, TM, RVLocs); |
| CCInfo.AnalyzeCallResult(RetVT, RetCC_X86); |
| |
| // Copy all of the result registers out of their specified physreg. |
| assert(RVLocs.size() == 1 && "Can't handle multi-value calls!"); |
| MVT CopyVT = RVLocs[0].getValVT(); |
| TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); |
| TargetRegisterClass *SrcRC = DstRC; |
| |
| // If this is a call to a function that returns an fp value on the x87 fp |
| // stack, but where we prefer to use the value in xmm registers, copy it |
| // out as F80 and use a truncate to move it from fp stack reg to xmm reg. |
| if ((RVLocs[0].getLocReg() == X86::ST0 || |
| RVLocs[0].getLocReg() == X86::ST1) && |
| isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) { |
| CopyVT = MVT::f80; |
| SrcRC = X86::RSTRegisterClass; |
| DstRC = X86::RFP80RegisterClass; |
| } |
| |
| unsigned ResultReg = createResultReg(DstRC); |
| bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, |
| RVLocs[0].getLocReg(), DstRC, SrcRC); |
| assert(Emitted && "Failed to emit a copy instruction!"); |
| if (CopyVT != RVLocs[0].getValVT()) { |
| // Round the F80 the right size, which also moves to the appropriate xmm |
| // register. This is accomplished by storing the F80 value in memory and |
| // then loading it back. Ewww... |
| MVT ResVT = RVLocs[0].getValVT(); |
| unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; |
| unsigned MemSize = ResVT.getSizeInBits()/8; |
| int FI = MFI.CreateStackObject(MemSize, MemSize); |
| addFrameReference(BuildMI(MBB, TII.get(Opc)), FI).addReg(ResultReg); |
| DstRC = ResVT == MVT::f32 |
| ? X86::FR32RegisterClass : X86::FR64RegisterClass; |
| Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm; |
| ResultReg = createResultReg(DstRC); |
| addFrameReference(BuildMI(MBB, TII.get(Opc), ResultReg), FI); |
| } |
| |
| if (AndToI1) { |
| // Mask out all but lowest bit for some call which produces an i1. |
| unsigned AndResult = createResultReg(X86::GR8RegisterClass); |
| BuildMI(MBB, TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1); |
| ResultReg = AndResult; |
| } |
| |
| UpdateValueMap(I, ResultReg); |
| } |
| |
| return true; |
| } |
| |
| |
| bool |
| X86FastISel::TargetSelectInstruction(Instruction *I) { |
| switch (I->getOpcode()) { |
| default: break; |
| case Instruction::Load: |
| return X86SelectLoad(I); |
| case Instruction::Store: |
| return X86SelectStore(I); |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| return X86SelectCmp(I); |
| case Instruction::ZExt: |
| return X86SelectZExt(I); |
| case Instruction::Br: |
| return X86SelectBranch(I); |
| case Instruction::Call: |
| return X86SelectCall(I); |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::Shl: |
| return X86SelectShift(I); |
| case Instruction::Select: |
| return X86SelectSelect(I); |
| case Instruction::Trunc: |
| return X86SelectTrunc(I); |
| case Instruction::FPExt: |
| return X86SelectFPExt(I); |
| case Instruction::FPTrunc: |
| return X86SelectFPTrunc(I); |
| } |
| |
| return false; |
| } |
| |
| unsigned X86FastISel::TargetMaterializeConstant(Constant *C) { |
| MVT VT; |
| if (!isTypeLegal(C->getType(), TLI, VT)) |
| return false; |
| |
| // Get opcode and regclass of the output for the given load instruction. |
| unsigned Opc = 0; |
| const TargetRegisterClass *RC = NULL; |
| switch (VT.getSimpleVT()) { |
| default: return false; |
| case MVT::i8: |
| Opc = X86::MOV8rm; |
| RC = X86::GR8RegisterClass; |
| break; |
| case MVT::i16: |
| Opc = X86::MOV16rm; |
| RC = X86::GR16RegisterClass; |
| break; |
| case MVT::i32: |
| Opc = X86::MOV32rm; |
| RC = X86::GR32RegisterClass; |
| break; |
| case MVT::i64: |
| // Must be in x86-64 mode. |
| Opc = X86::MOV64rm; |
| RC = X86::GR64RegisterClass; |
| break; |
| case MVT::f32: |
| if (Subtarget->hasSSE1()) { |
| Opc = X86::MOVSSrm; |
| RC = X86::FR32RegisterClass; |
| } else { |
| Opc = X86::LD_Fp32m; |
| RC = X86::RFP32RegisterClass; |
| } |
| break; |
| case MVT::f64: |
| if (Subtarget->hasSSE2()) { |
| Opc = X86::MOVSDrm; |
| RC = X86::FR64RegisterClass; |
| } else { |
| Opc = X86::LD_Fp64m; |
| RC = X86::RFP64RegisterClass; |
| } |
| break; |
| case MVT::f80: |
| Opc = X86::LD_Fp80m; |
| RC = X86::RFP80RegisterClass; |
| break; |
| } |
| |
| // Materialize addresses with LEA instructions. |
| if (isa<GlobalValue>(C)) { |
| X86AddressMode AM; |
| if (X86SelectAddress(C, AM, false)) { |
| if (TLI.getPointerTy() == MVT::i32) |
| Opc = X86::LEA32r; |
| else |
| Opc = X86::LEA64r; |
| unsigned ResultReg = createResultReg(RC); |
| addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM); |
| return ResultReg; |
| } |
| return 0; |
| } |
| |
| // MachineConstantPool wants an explicit alignment. |
| unsigned Align = TD.getPreferredTypeAlignmentShift(C->getType()); |
| if (Align == 0) { |
| // Alignment of vector types. FIXME! |
| Align = TD.getABITypeSize(C->getType()); |
| Align = Log2_64(Align); |
| } |
| |
| unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align); |
| unsigned ResultReg = createResultReg(RC); |
| addConstantPoolReference(BuildMI(MBB, TII.get(Opc), ResultReg), MCPOffset); |
| return ResultReg; |
| } |
| |
| unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) { |
| X86AddressMode AM; |
| if (!X86SelectAddress(C, AM, false)) |
| return 0; |
| unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; |
| TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy()); |
| unsigned ResultReg = createResultReg(RC); |
| addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM); |
| return ResultReg; |
| } |
| |
| namespace llvm { |
| llvm::FastISel *X86::createFastISel(MachineFunction &mf, |
| MachineModuleInfo *mmi, |
| DenseMap<const Value *, unsigned> &vm, |
| DenseMap<const BasicBlock *, MachineBasicBlock *> &bm, |
| DenseMap<const AllocaInst *, int> &am) { |
| return new X86FastISel(mf, mmi, vm, bm, am); |
| } |
| } |