| //===- PostDominators.cpp - Post-Dominator Calculation --------------------===// |
| // |
| // This file implements the post-dominator construction algorithms. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" |
| #include "llvm/Support/CFG.h" |
| #include "Support/DepthFirstIterator.h" |
| #include "Support/SetOperations.h" |
| using std::set; |
| |
| //===----------------------------------------------------------------------===// |
| // PostDominatorSet Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static RegisterAnalysis<PostDominatorSet> |
| B("postdomset", "Post-Dominator Set Construction", true); |
| |
| // Postdominator set construction. This converts the specified function to only |
| // have a single exit node (return stmt), then calculates the post dominance |
| // sets for the function. |
| // |
| bool PostDominatorSet::runOnFunction(Function &F) { |
| Doms.clear(); // Reset from the last time we were run... |
| // Since we require that the unify all exit nodes pass has been run, we know |
| // that there can be at most one return instruction in the function left. |
| // Get it. |
| // |
| Root = getAnalysis<UnifyFunctionExitNodes>().getExitNode(); |
| |
| if (Root == 0) { // No exit node for the function? Postdomsets are all empty |
| for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) |
| Doms[FI] = DomSetType(); |
| return false; |
| } |
| |
| bool Changed; |
| do { |
| Changed = false; |
| |
| set<const BasicBlock*> Visited; |
| DomSetType WorkingSet; |
| idf_iterator<BasicBlock*> It = idf_begin(Root), End = idf_end(Root); |
| for ( ; It != End; ++It) { |
| BasicBlock *BB = *It; |
| succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB); |
| if (PI != PEnd) { // Is there SOME predecessor? |
| // Loop until we get to a successor that has had it's dom set filled |
| // in at least once. We are guaranteed to have this because we are |
| // traversing the graph in DFO and have handled start nodes specially. |
| // |
| while (Doms[*PI].size() == 0) ++PI; |
| WorkingSet = Doms[*PI]; |
| |
| for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets |
| DomSetType &PredSet = Doms[*PI]; |
| if (PredSet.size()) |
| set_intersect(WorkingSet, PredSet); |
| } |
| } |
| |
| WorkingSet.insert(BB); // A block always dominates itself |
| DomSetType &BBSet = Doms[BB]; |
| if (BBSet != WorkingSet) { |
| BBSet.swap(WorkingSet); // Constant time operation! |
| Changed = true; // The sets changed. |
| } |
| WorkingSet.clear(); // Clear out the set for next iteration |
| } |
| } while (Changed); |
| return false; |
| } |
| |
| // getAnalysisUsage - This obviously provides a post-dominator set, but it also |
| // requires the UnifyFunctionExitNodes pass. |
| // |
| void PostDominatorSet::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequired<UnifyFunctionExitNodes>(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ImmediatePostDominators Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static RegisterAnalysis<ImmediatePostDominators> |
| D("postidom", "Immediate Post-Dominators Construction", true); |
| |
| //===----------------------------------------------------------------------===// |
| // PostDominatorTree Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static RegisterAnalysis<PostDominatorTree> |
| F("postdomtree", "Post-Dominator Tree Construction", true); |
| |
| void PostDominatorTree::calculate(const PostDominatorSet &DS) { |
| Nodes[Root] = new Node(Root, 0); // Add a node for the root... |
| |
| if (Root) { |
| // Iterate over all nodes in depth first order... |
| for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root); |
| I != E; ++I) { |
| BasicBlock *BB = *I; |
| const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); |
| unsigned DomSetSize = Dominators.size(); |
| if (DomSetSize == 1) continue; // Root node... IDom = null |
| |
| // Loop over all dominators of this node. This corresponds to looping |
| // over nodes in the dominator chain, looking for a node whose dominator |
| // set is equal to the current nodes, except that the current node does |
| // not exist in it. This means that it is one level higher in the dom |
| // chain than the current node, and it is our idom! We know that we have |
| // already added a DominatorTree node for our idom, because the idom must |
| // be a predecessor in the depth first order that we are iterating through |
| // the function. |
| // |
| DominatorSet::DomSetType::const_iterator I = Dominators.begin(); |
| DominatorSet::DomSetType::const_iterator End = Dominators.end(); |
| for (; I != End; ++I) { // Iterate over dominators... |
| // All of our dominators should form a chain, where the number |
| // of elements in the dominator set indicates what level the |
| // node is at in the chain. We want the node immediately |
| // above us, so it will have an identical dominator set, |
| // except that BB will not dominate it... therefore it's |
| // dominator set size will be one less than BB's... |
| // |
| if (DS.getDominators(*I).size() == DomSetSize - 1) { |
| // We know that the immediate dominator should already have a node, |
| // because we are traversing the CFG in depth first order! |
| // |
| Node *IDomNode = Nodes[*I]; |
| assert(IDomNode && "No node for IDOM?"); |
| |
| // Add a new tree node for this BasicBlock, and link it as a child of |
| // IDomNode |
| Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PostDominanceFrontier Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static RegisterAnalysis<PostDominanceFrontier> |
| H("postdomfrontier", "Post-Dominance Frontier Construction", true); |
| |
| const DominanceFrontier::DomSetType & |
| PostDominanceFrontier::calculate(const PostDominatorTree &DT, |
| const DominatorTree::Node *Node) { |
| // Loop over CFG successors to calculate DFlocal[Node] |
| BasicBlock *BB = Node->getNode(); |
| DomSetType &S = Frontiers[BB]; // The new set to fill in... |
| if (!Root) return S; |
| |
| for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB); |
| SI != SE; ++SI) { |
| // Does Node immediately dominate this predeccessor? |
| if (DT[*SI]->getIDom() != Node) |
| S.insert(*SI); |
| } |
| |
| // At this point, S is DFlocal. Now we union in DFup's of our children... |
| // Loop through and visit the nodes that Node immediately dominates (Node's |
| // children in the IDomTree) |
| // |
| for (PostDominatorTree::Node::const_iterator |
| NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { |
| DominatorTree::Node *IDominee = *NI; |
| const DomSetType &ChildDF = calculate(DT, IDominee); |
| |
| DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); |
| for (; CDFI != CDFE; ++CDFI) { |
| if (!Node->dominates(DT[*CDFI])) |
| S.insert(*CDFI); |
| } |
| } |
| |
| return S; |
| } |