| //===- Expressions.cpp - Expression Analysis Utilities ----------------------=// |
| // |
| // This file defines a package of expression analysis utilties: |
| // |
| // ClassifyExpression: Analyze an expression to determine the complexity of the |
| // expression, and which other variables it depends on. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/Expressions.h" |
| #include "llvm/Optimizations/ConstantHandling.h" |
| #include "llvm/ConstantPool.h" |
| #include "llvm/Method.h" |
| #include "llvm/BasicBlock.h" |
| |
| using namespace opt; // Get all the constant handling stuff |
| |
| // getIntegralConstant - Wrapper around the ConstPoolInt member of the same |
| // name. This method first checks to see if the desired constant is already in |
| // the constant pool. If it is, it is quickly recycled, otherwise a new one |
| // is allocated and added to the constant pool. |
| // |
| static ConstPoolInt *getIntegralConstant(ConstantPool &CP, unsigned char V, |
| const Type *Ty) { |
| // FIXME: Lookup prexisting constant in table! |
| |
| ConstPoolInt *CPI = ConstPoolInt::get(Ty, V); |
| CP.insert(CPI); |
| return CPI; |
| } |
| |
| static ConstPoolUInt *getUnsignedConstant(ConstantPool &CP, uint64_t V) { |
| // FIXME: Lookup prexisting constant in table! |
| |
| ConstPoolUInt *CPUI = new ConstPoolUInt(Type::ULongTy, V); |
| CP.insert(CPUI); |
| return CPUI; |
| } |
| |
| |
| // Add - Helper function to make later code simpler. Basically it just adds |
| // the two constants together, inserts the result into the constant pool, and |
| // returns it. Of course life is not simple, and this is no exception. Factors |
| // that complicate matters: |
| // 1. Either argument may be null. If this is the case, the null argument is |
| // treated as either 0 (if DefOne = false) or 1 (if DefOne = true) |
| // 2. Types get in the way. We want to do arithmetic operations without |
| // regard for the underlying types. It is assumed that the constants are |
| // integral constants. The new value takes the type of the left argument. |
| // 3. If DefOne is true, a null return value indicates a value of 1, if DefOne |
| // is false, a null return value indicates a value of 0. |
| // |
| inline const ConstPoolInt *Add(ConstantPool &CP, const ConstPoolInt *Arg1, |
| const ConstPoolInt *Arg2, bool DefOne = false) { |
| if (DefOne == false) { // Handle degenerate cases first... |
| if (Arg1 == 0) return Arg2; // Also handles case of Arg1 == Arg2 == 0 |
| if (Arg2 == 0) return Arg1; |
| } else { // These aren't degenerate... :( |
| if (Arg1 == 0 && Arg2 == 0) return getIntegralConstant(CP, 2, Type::UIntTy); |
| if (Arg1 == 0) Arg1 = getIntegralConstant(CP, 1, Arg2->getType()); |
| if (Arg2 == 0) Arg2 = getIntegralConstant(CP, 1, Arg2->getType()); |
| } |
| |
| assert(Arg1 && Arg2 && "No null arguments should exist now!"); |
| |
| // FIXME: Make types compatible! |
| |
| // Actually perform the computation now! |
| ConstPoolVal *Result = *Arg1 + *Arg2; |
| assert(Result && Result->getType()->isIntegral() && "Couldn't perform add!"); |
| ConstPoolInt *ResultI = (ConstPoolInt*)Result; |
| |
| // Check to see if the result is one of the special cases that we want to |
| // recognize... |
| if (ResultI->equals(DefOne ? 1 : 0)) { |
| // Yes it is, simply delete the constant and return null. |
| delete ResultI; |
| return 0; |
| } |
| |
| CP.insert(ResultI); |
| return ResultI; |
| } |
| |
| |
| ExprAnalysisResult ExprAnalysisResult::operator+(const ConstPoolInt *NewOff) { |
| if (NewOff == 0) return *this; // No change! |
| |
| ConstantPool &CP = (ConstantPool&)NewOff->getParent()->getConstantPool(); |
| return ExprAnalysisResult(Scale, Var, Add(CP, Offset, NewOff)); |
| } |
| |
| |
| // Mult - Helper function to make later code simpler. Basically it just |
| // multiplies the two constants together, inserts the result into the constant |
| // pool, and returns it. Of course life is not simple, and this is no |
| // exception. Factors that complicate matters: |
| // 1. Either argument may be null. If this is the case, the null argument is |
| // treated as either 0 (if DefOne = false) or 1 (if DefOne = true) |
| // 2. Types get in the way. We want to do arithmetic operations without |
| // regard for the underlying types. It is assumed that the constants are |
| // integral constants. |
| // 3. If DefOne is true, a null return value indicates a value of 1, if DefOne |
| // is false, a null return value indicates a value of 0. |
| // |
| inline const ConstPoolInt *Mult(ConstantPool &CP, const ConstPoolInt *Arg1, |
| const ConstPoolInt *Arg2, bool DefOne = false) { |
| if (DefOne == false) { // Handle degenerate cases first... |
| if (Arg1 == 0 || Arg2 == 0) return 0; // 0 * x == 0 |
| } else { // These aren't degenerate... :( |
| if (Arg1 == 0) return Arg2; // Also handles case of Arg1 == Arg2 == 0 |
| if (Arg2 == 0) return Arg1; |
| } |
| assert(Arg1 && Arg2 && "No null arguments should exist now!"); |
| |
| // FIXME: Make types compatible! |
| |
| // Actually perform the computation now! |
| ConstPoolVal *Result = *Arg1 * *Arg2; |
| assert(Result && Result->getType()->isIntegral() && "Couldn't perform mult!"); |
| ConstPoolInt *ResultI = (ConstPoolInt*)Result; |
| |
| // Check to see if the result is one of the special cases that we want to |
| // recognize... |
| if (ResultI->equals(DefOne ? 1 : 0)) { |
| // Yes it is, simply delete the constant and return null. |
| delete ResultI; |
| return 0; |
| } |
| |
| CP.insert(ResultI); |
| return ResultI; |
| } |
| |
| |
| // ClassifyExpression: Analyze an expression to determine the complexity of the |
| // expression, and which other values it depends on. |
| // |
| // Note that this analysis cannot get into infinite loops because it treats PHI |
| // nodes as being an unknown linear expression. |
| // |
| ExprAnalysisResult ClassifyExpression(Value *Expr) { |
| assert(Expr != 0 && "Can't classify a null expression!"); |
| switch (Expr->getValueType()) { |
| case Value::InstructionVal: break; // Instruction... hmmm... investigate. |
| case Value::TypeVal: case Value::BasicBlockVal: |
| case Value::MethodVal: case Value::ModuleVal: |
| assert(0 && "Unexpected expression type to classify!"); |
| case Value::MethodArgumentVal: // Method arg: nothing known, return var |
| return Expr; |
| case Value::ConstantVal: // Constant value, just return constant |
| ConstPoolVal *CPV = Expr->castConstantAsserting(); |
| if (CPV->getType()->isIntegral()) { // It's an integral constant! |
| ConstPoolInt *CPI = (ConstPoolInt*)Expr; |
| return ExprAnalysisResult(CPI->equals(0) ? 0 : (ConstPoolInt*)Expr); |
| } |
| return Expr; |
| } |
| |
| Instruction *I = Expr->castInstructionAsserting(); |
| ConstantPool &CP = I->getParent()->getParent()->getConstantPool(); |
| |
| switch (I->getOpcode()) { // Handle each instruction type seperately |
| case Instruction::Add: { |
| ExprAnalysisResult LeftTy (ClassifyExpression(I->getOperand(0))); |
| ExprAnalysisResult RightTy(ClassifyExpression(I->getOperand(1))); |
| if (LeftTy.ExprType > RightTy.ExprType) |
| swap(LeftTy, RightTy); // Make left be simpler than right |
| |
| switch (LeftTy.ExprType) { |
| case ExprAnalysisResult::Constant: |
| return RightTy + LeftTy.Offset; |
| case ExprAnalysisResult::Linear: // RHS side must be linear or scaled |
| case ExprAnalysisResult::ScaledLinear: // RHS must be scaled |
| if (LeftTy.Var != RightTy.Var) // Are they the same variables? |
| return ExprAnalysisResult(I); // if not, we don't know anything! |
| |
| const ConstPoolInt *NewScale = Add(CP, LeftTy.Scale, RightTy.Scale,true); |
| const ConstPoolInt *NewOffset = Add(CP, LeftTy.Offset, RightTy.Offset); |
| return ExprAnalysisResult(NewScale, LeftTy.Var, NewOffset); |
| } |
| } // end case Instruction::Add |
| |
| case Instruction::Shl: { |
| ExprAnalysisResult RightTy(ClassifyExpression(I->getOperand(1))); |
| if (RightTy.ExprType != ExprAnalysisResult::Constant) |
| break; // TODO: Can get some info if it's (<unsigned> X + <offset>) |
| |
| ExprAnalysisResult LeftTy (ClassifyExpression(I->getOperand(0))); |
| if (RightTy.Offset == 0) return LeftTy; // shl x, 0 = x |
| assert(RightTy.Offset->getType() == Type::UByteTy && |
| "Shift amount must always be a unsigned byte!"); |
| uint64_t ShiftAmount = ((ConstPoolUInt*)RightTy.Offset)->getValue(); |
| ConstPoolUInt *Multiplier = getUnsignedConstant(CP, 1ULL << ShiftAmount); |
| |
| return ExprAnalysisResult(Mult(CP, LeftTy.Scale, Multiplier, true), |
| LeftTy.Var, |
| Mult(CP, LeftTy.Offset, Multiplier)); |
| } // end case Instruction::Shl |
| |
| // TODO: Handle CAST, SUB, MULT (at least!) |
| |
| } // end switch |
| |
| // Otherwise, I don't know anything about this value! |
| return ExprAnalysisResult(I); |
| } |