| //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the implementation of the scalar evolution expander, |
| // which is used to generate the code corresponding to a given scalar evolution |
| // expression. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| using namespace llvm; |
| |
| Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) { |
| const Type *Ty = S->getType(); |
| int FirstOp = 0; // Set if we should emit a subtract. |
| if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0))) |
| if (SC->getValue()->isAllOnesValue()) |
| FirstOp = 1; |
| |
| int i = S->getNumOperands()-2; |
| Value *V = expandInTy(S->getOperand(i+1), Ty); |
| |
| // Emit a bunch of multiply instructions |
| for (; i >= FirstOp; --i) |
| V = BinaryOperator::createMul(V, expandInTy(S->getOperand(i), Ty), |
| "tmp.", InsertPt); |
| // -1 * ... ---> 0 - ... |
| if (FirstOp == 1) |
| V = BinaryOperator::createNeg(V, "tmp.", InsertPt); |
| return V; |
| } |
| |
| Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) { |
| const Type *Ty = S->getType(); |
| const Loop *L = S->getLoop(); |
| // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F} |
| assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!"); |
| |
| // {X,+,F} --> X + {0,+,F} |
| if (!isa<SCEVConstant>(S->getStart()) || |
| !cast<SCEVConstant>(S->getStart())->getValue()->isNullValue()) { |
| Value *Start = expandInTy(S->getStart(), Ty); |
| std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end()); |
| NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty); |
| Value *Rest = expandInTy(SCEVAddRecExpr::get(NewOps, L), Ty); |
| |
| // FIXME: look for an existing add to use. |
| return BinaryOperator::createAdd(Rest, Start, "tmp.", InsertPt); |
| } |
| |
| // {0,+,1} --> Insert a canonical induction variable into the loop! |
| if (S->getNumOperands() == 2 && |
| S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) { |
| // Create and insert the PHI node for the induction variable in the |
| // specified loop. |
| BasicBlock *Header = L->getHeader(); |
| PHINode *PN = new PHINode(Ty, "indvar", Header->begin()); |
| PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader()); |
| |
| pred_iterator HPI = pred_begin(Header); |
| assert(HPI != pred_end(Header) && "Loop with zero preds???"); |
| if (!L->contains(*HPI)) ++HPI; |
| assert(HPI != pred_end(Header) && L->contains(*HPI) && |
| "No backedge in loop?"); |
| |
| // Insert a unit add instruction right before the terminator corresponding |
| // to the back-edge. |
| Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0) |
| : ConstantInt::get(Ty, 1); |
| Instruction *Add = BinaryOperator::createAdd(PN, One, "indvar.next", |
| (*HPI)->getTerminator()); |
| |
| pred_iterator PI = pred_begin(Header); |
| if (*PI == L->getLoopPreheader()) |
| ++PI; |
| PN->addIncoming(Add, *PI); |
| return PN; |
| } |
| |
| // Get the canonical induction variable I for this loop. |
| Value *I = getOrInsertCanonicalInductionVariable(L, Ty); |
| |
| if (S->getNumOperands() == 2) { // {0,+,F} --> i*F |
| Value *F = expandInTy(S->getOperand(1), Ty); |
| return BinaryOperator::createMul(I, F, "tmp.", InsertPt); |
| } |
| |
| // If this is a chain of recurrences, turn it into a closed form, using the |
| // folders, then expandCodeFor the closed form. This allows the folders to |
| // simplify the expression without having to build a bunch of special code |
| // into this folder. |
| SCEVHandle IH = SCEVUnknown::get(I); // Get I as a "symbolic" SCEV. |
| |
| SCEVHandle V = S->evaluateAtIteration(IH); |
| //std::cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; |
| |
| return expandInTy(V, Ty); |
| } |