| //===- ReadConst.cpp - Code to constants and constant pools ---------------===// |
| // |
| // This file implements functionality to deserialize constants and entire |
| // constant pools. |
| // |
| // Note that this library should be as fast as possible, reentrant, and |
| // thread-safe!! |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ReaderInternals.h" |
| #include "llvm/Module.h" |
| #include "llvm/Constants.h" |
| #include <algorithm> |
| |
| const Type *BytecodeParser::parseTypeConstant(const unsigned char *&Buf, |
| const unsigned char *EndBuf) { |
| unsigned PrimType; |
| if (read_vbr(Buf, EndBuf, PrimType)) return 0; |
| |
| const Type *Val = 0; |
| if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType))) |
| return Val; |
| |
| switch (PrimType) { |
| case Type::FunctionTyID: { |
| unsigned Typ; |
| if (read_vbr(Buf, EndBuf, Typ)) return Val; |
| const Type *RetType = getType(Typ); |
| if (RetType == 0) return Val; |
| |
| unsigned NumParams; |
| if (read_vbr(Buf, EndBuf, NumParams)) return Val; |
| |
| std::vector<const Type*> Params; |
| while (NumParams--) { |
| if (read_vbr(Buf, EndBuf, Typ)) return Val; |
| const Type *Ty = getType(Typ); |
| if (Ty == 0) return Val; |
| Params.push_back(Ty); |
| } |
| |
| bool isVarArg = Params.size() && Params.back() == Type::VoidTy; |
| if (isVarArg) Params.pop_back(); |
| |
| return FunctionType::get(RetType, Params, isVarArg); |
| } |
| case Type::ArrayTyID: { |
| unsigned ElTyp; |
| if (read_vbr(Buf, EndBuf, ElTyp)) return Val; |
| const Type *ElementType = getType(ElTyp); |
| if (ElementType == 0) return Val; |
| |
| unsigned NumElements; |
| if (read_vbr(Buf, EndBuf, NumElements)) return Val; |
| |
| BCR_TRACE(5, "Array Type Constant #" << ElTyp << " size=" |
| << NumElements << "\n"); |
| return ArrayType::get(ElementType, NumElements); |
| } |
| case Type::StructTyID: { |
| unsigned Typ; |
| std::vector<const Type*> Elements; |
| |
| if (read_vbr(Buf, EndBuf, Typ)) return Val; |
| while (Typ) { // List is terminated by void/0 typeid |
| const Type *Ty = getType(Typ); |
| if (Ty == 0) return Val; |
| Elements.push_back(Ty); |
| |
| if (read_vbr(Buf, EndBuf, Typ)) return Val; |
| } |
| |
| return StructType::get(Elements); |
| } |
| case Type::PointerTyID: { |
| unsigned ElTyp; |
| if (read_vbr(Buf, EndBuf, ElTyp)) return Val; |
| BCR_TRACE(5, "Pointer Type Constant #" << ElTyp << "\n"); |
| const Type *ElementType = getType(ElTyp); |
| if (ElementType == 0) return Val; |
| return PointerType::get(ElementType); |
| } |
| |
| case Type::OpaqueTyID: { |
| return OpaqueType::get(); |
| } |
| |
| default: |
| std::cerr << __FILE__ << ":" << __LINE__ |
| << ": Don't know how to deserialize" |
| << " primitive Type " << PrimType << "\n"; |
| return Val; |
| } |
| } |
| |
| // refineAbstractType - The callback method is invoked when one of the |
| // elements of TypeValues becomes more concrete... |
| // |
| void BytecodeParser::refineAbstractType(const DerivedType *OldType, |
| const Type *NewType) { |
| TypeValuesListTy::iterator I = find(FunctionTypeValues.begin(), |
| FunctionTypeValues.end(), OldType); |
| if (I == FunctionTypeValues.end()) { |
| I = find(ModuleTypeValues.begin(), ModuleTypeValues.end(), OldType); |
| assert(I != ModuleTypeValues.end() && |
| "Can't refine a type I don't know about!"); |
| } |
| |
| I->removeUserFromConcrete(); |
| *I = NewType; // Update to point to new, more refined type. |
| } |
| |
| |
| |
| // parseTypeConstants - We have to use this weird code to handle recursive |
| // types. We know that recursive types will only reference the current slab of |
| // values in the type plane, but they can forward reference types before they |
| // have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might |
| // be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix |
| // this ugly problem, we pessimistically insert an opaque type for each type we |
| // are about to read. This means that forward references will resolve to |
| // something and when we reread the type later, we can replace the opaque type |
| // with a new resolved concrete type. |
| // |
| void debug_type_tables(); |
| bool BytecodeParser::parseTypeConstants(const unsigned char *&Buf, |
| const unsigned char *EndBuf, |
| TypeValuesListTy &Tab, |
| unsigned NumEntries) { |
| assert(Tab.size() == 0 && "should not have read type constants in before!"); |
| |
| // Insert a bunch of opaque types to be resolved later... |
| for (unsigned i = 0; i < NumEntries; ++i) |
| Tab.push_back(PATypeHandle(OpaqueType::get(), this)); |
| |
| // Loop through reading all of the types. Forward types will make use of the |
| // opaque types just inserted. |
| // |
| for (unsigned i = 0; i < NumEntries; ++i) { |
| const Type *NewTy = parseTypeConstant(Buf, EndBuf), *OldTy = Tab[i].get(); |
| if (NewTy == 0) return true; |
| BCR_TRACE(4, "#" << i << ": Read Type Constant: '" << NewTy << |
| "' Replacing: " << OldTy << "\n"); |
| |
| // Don't insertValue the new type... instead we want to replace the opaque |
| // type with the new concrete value... |
| // |
| |
| // Refine the abstract type to the new type. This causes all uses of the |
| // abstract type to use the newty. This also will cause the opaque type |
| // to be deleted... |
| // |
| ((DerivedType*)Tab[i].get())->refineAbstractTypeTo(NewTy); |
| |
| // This should have replace the old opaque type with the new type in the |
| // value table... or with a preexisting type that was already in the system |
| assert(Tab[i] != OldTy && "refineAbstractType didn't work!"); |
| } |
| |
| BCR_TRACE(5, "Resulting types:\n"); |
| for (unsigned i = 0; i < NumEntries; ++i) { |
| BCR_TRACE(5, (void*)Tab[i].get() << " - " << Tab[i].get() << "\n"); |
| } |
| debug_type_tables(); |
| return false; |
| } |
| |
| |
| bool BytecodeParser::parseConstantValue(const unsigned char *&Buf, |
| const unsigned char *EndBuf, |
| const Type *Ty, Constant *&V) { |
| |
| // We must check for a ConstantExpr before switching by type because |
| // a ConstantExpr can be of any type, and has no explicit value. |
| // |
| unsigned isExprNumArgs; // 0 if not expr; numArgs if is expr |
| if (read_vbr(Buf, EndBuf, isExprNumArgs)) return true; |
| if (isExprNumArgs) { |
| // FIXME: Encoding of constant exprs could be much more compact! |
| unsigned Opcode; |
| std::vector<Constant*> ArgVec; |
| ArgVec.reserve(isExprNumArgs); |
| if (read_vbr(Buf, EndBuf, Opcode)) return true; |
| |
| // Read the slot number and types of each of the arguments |
| for (unsigned i = 0; i != isExprNumArgs; ++i) { |
| unsigned ArgValSlot, ArgTypeSlot; |
| if (read_vbr(Buf, EndBuf, ArgValSlot)) return true; |
| if (read_vbr(Buf, EndBuf, ArgTypeSlot)) return true; |
| const Type *ArgTy = getType(ArgTypeSlot); |
| if (ArgTy == 0) return true; |
| |
| BCR_TRACE(4, "CE Arg " << i << ": Type: '" << ArgTy << "' slot: " |
| << ArgValSlot << "\n"); |
| |
| // Get the arg value from its slot if it exists, otherwise a placeholder |
| Constant *C = getConstantValue(ArgTy, ArgValSlot); |
| if (C == 0) return true; |
| ArgVec.push_back(C); |
| } |
| |
| // Construct a ConstantExpr of the appropriate kind |
| if (isExprNumArgs == 1) { // All one-operand expressions |
| assert(Opcode == Instruction::Cast); |
| V = ConstantExpr::getCast(ArgVec[0], Ty); |
| } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr |
| std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end()); |
| V = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList); |
| } else { // All other 2-operand expressions |
| V = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]); |
| } |
| return false; |
| } |
| |
| // Ok, not an ConstantExpr. We now know how to read the given type... |
| switch (Ty->getPrimitiveID()) { |
| case Type::BoolTyID: { |
| unsigned Val; |
| if (read_vbr(Buf, EndBuf, Val)) return true; |
| if (Val != 0 && Val != 1) return true; |
| V = ConstantBool::get(Val == 1); |
| break; |
| } |
| |
| case Type::UByteTyID: // Unsigned integer types... |
| case Type::UShortTyID: |
| case Type::UIntTyID: { |
| unsigned Val; |
| if (read_vbr(Buf, EndBuf, Val)) return true; |
| if (!ConstantUInt::isValueValidForType(Ty, Val)) return true; |
| V = ConstantUInt::get(Ty, Val); |
| break; |
| } |
| |
| case Type::ULongTyID: { |
| uint64_t Val; |
| if (read_vbr(Buf, EndBuf, Val)) return true; |
| V = ConstantUInt::get(Ty, Val); |
| break; |
| } |
| |
| case Type::SByteTyID: // Signed integer types... |
| case Type::ShortTyID: |
| case Type::IntTyID: { |
| case Type::LongTyID: |
| int64_t Val; |
| if (read_vbr(Buf, EndBuf, Val)) return true; |
| if (!ConstantSInt::isValueValidForType(Ty, Val)) return true; |
| V = ConstantSInt::get(Ty, Val); |
| break; |
| } |
| |
| case Type::FloatTyID: { |
| float F; |
| if (input_data(Buf, EndBuf, &F, &F+1)) return true; |
| V = ConstantFP::get(Ty, F); |
| break; |
| } |
| |
| case Type::DoubleTyID: { |
| double Val; |
| if (input_data(Buf, EndBuf, &Val, &Val+1)) return true; |
| V = ConstantFP::get(Ty, Val); |
| break; |
| } |
| |
| case Type::TypeTyID: |
| assert(0 && "Type constants should be handled separately!!!"); |
| abort(); |
| |
| case Type::ArrayTyID: { |
| const ArrayType *AT = cast<ArrayType>(Ty); |
| unsigned NumElements = AT->getNumElements(); |
| |
| std::vector<Constant*> Elements; |
| while (NumElements--) { // Read all of the elements of the constant. |
| unsigned Slot; |
| if (read_vbr(Buf, EndBuf, Slot)) return true; |
| Constant *C = getConstantValue(AT->getElementType(), Slot); |
| if (!C) return true; |
| Elements.push_back(C); |
| } |
| V = ConstantArray::get(AT, Elements); |
| break; |
| } |
| |
| case Type::StructTyID: { |
| const StructType *ST = cast<StructType>(Ty); |
| const StructType::ElementTypes &ET = ST->getElementTypes(); |
| |
| std::vector<Constant *> Elements; |
| for (unsigned i = 0; i < ET.size(); ++i) { |
| unsigned Slot; |
| if (read_vbr(Buf, EndBuf, Slot)) return true; |
| Constant *C = getConstantValue(ET[i], Slot); |
| if (!C) return true; |
| Elements.push_back(C); |
| } |
| |
| V = ConstantStruct::get(ST, Elements); |
| break; |
| } |
| |
| case Type::PointerTyID: { |
| const PointerType *PT = cast<PointerType>(Ty); |
| unsigned SubClass; |
| if (HasImplicitZeroInitializer) |
| SubClass = 1; |
| else |
| if (read_vbr(Buf, EndBuf, SubClass)) return true; |
| |
| switch (SubClass) { |
| case 0: // ConstantPointerNull value... |
| V = ConstantPointerNull::get(PT); |
| break; |
| |
| case 1: { // ConstantPointerRef value... |
| unsigned Slot; |
| if (read_vbr(Buf, EndBuf, Slot)) return true; |
| BCR_TRACE(4, "CPR: Type: '" << Ty << "' slot: " << Slot << "\n"); |
| |
| // Check to see if we have already read this global variable... |
| Value *Val = getValue(PT, Slot, false); |
| GlobalValue *GV; |
| if (Val) { |
| if (!(GV = dyn_cast<GlobalValue>(Val))) return true; |
| BCR_TRACE(5, "Value Found in ValueTable!\n"); |
| } else if (RevisionNum > 0) { |
| // Revision #0 could have forward references to globals that were weird. |
| // We got rid of this in subsequent revs. |
| return true; |
| } else { // Nope... find or create a forward ref. for it |
| GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PT, Slot)); |
| |
| if (I != GlobalRefs.end()) { |
| BCR_TRACE(5, "Previous forward ref found!\n"); |
| GV = cast<GlobalValue>(I->second); |
| } else { |
| BCR_TRACE(5, "Creating new forward ref to a global variable!\n"); |
| |
| // Create a placeholder for the global variable reference... |
| GlobalVariable *GVar = |
| new GlobalVariable(PT->getElementType(), false, |
| GlobalValue::InternalLinkage); |
| |
| // Keep track of the fact that we have a forward ref to recycle it |
| GlobalRefs.insert(std::make_pair(std::make_pair(PT, Slot), GVar)); |
| |
| // Must temporarily push this value into the module table... |
| TheModule->getGlobalList().push_back(GVar); |
| GV = GVar; |
| } |
| } |
| |
| V = ConstantPointerRef::get(GV); |
| break; |
| } |
| |
| default: |
| BCR_TRACE(5, "UNKNOWN Pointer Constant Type!\n"); |
| return true; |
| } |
| break; |
| } |
| |
| default: |
| std::cerr << __FILE__ << ":" << __LINE__ |
| << ": Don't know how to deserialize constant value of type '" |
| << Ty->getName() << "'\n"; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool BytecodeParser::ParseGlobalTypes(const unsigned char *&Buf, |
| const unsigned char *EndBuf) { |
| ValueTable T; |
| return ParseConstantPool(Buf, EndBuf, T, ModuleTypeValues); |
| } |
| |
| bool BytecodeParser::ParseConstantPool(const unsigned char *&Buf, |
| const unsigned char *EndBuf, |
| ValueTable &Tab, |
| TypeValuesListTy &TypeTab) { |
| while (Buf < EndBuf) { |
| unsigned NumEntries, Typ; |
| |
| if (read_vbr(Buf, EndBuf, NumEntries) || |
| read_vbr(Buf, EndBuf, Typ)) return true; |
| const Type *Ty = getType(Typ); |
| if (Ty == 0) return true; |
| BCR_TRACE(3, "Type: '" << Ty << "' NumEntries: " << NumEntries << "\n"); |
| |
| if (Typ == Type::TypeTyID) { |
| if (parseTypeConstants(Buf, EndBuf, TypeTab, NumEntries)) return true; |
| } else { |
| for (unsigned i = 0; i < NumEntries; ++i) { |
| Constant *C; |
| int Slot; |
| if (parseConstantValue(Buf, EndBuf, Ty, C)) return true; |
| assert(C && "parseConstantValue returned NULL!"); |
| BCR_TRACE(4, "Read Constant: '" << *C << "'\n"); |
| if ((Slot = insertValue(C, Tab)) == -1) return true; |
| |
| // If we are reading a function constant table, make sure that we adjust |
| // the slot number to be the real global constant number. |
| // |
| if (&Tab != &ModuleValues && Typ < ModuleValues.size()) |
| Slot += ModuleValues[Typ]->size(); |
| ResolveReferencesToValue(C, (unsigned)Slot); |
| } |
| } |
| } |
| |
| if (Buf > EndBuf) return true; |
| return false; |
| } |