| //===-- WriteInst.cpp - Functions for writing instructions -------*- C++ -*--=// |
| // |
| // This file implements the routines for encoding instruction opcodes to a |
| // bytecode stream. |
| // |
| // Note that the performance of this library is not terribly important, because |
| // it shouldn't be used by JIT type applications... so it is not a huge focus |
| // at least. :) |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "WriterInternals.h" |
| #include "llvm/Module.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "Support/Statistic.h" |
| #include <algorithm> |
| |
| static Statistic<> |
| NumInstrs("bytecodewriter", "Number of instructions"); |
| |
| typedef unsigned char uchar; |
| |
| // outputInstructionFormat0 - Output those wierd instructions that have a large |
| // number of operands or have large operands themselves... |
| // |
| // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>] |
| // |
| static void outputInstructionFormat0(const Instruction *I, unsigned Opcode, |
| const SlotCalculator &Table, |
| unsigned Type, std::deque<uchar> &Out) { |
| // Opcode must have top two bits clear... |
| output_vbr(Opcode << 2, Out); // Instruction Opcode ID |
| output_vbr(Type, Out); // Result type |
| |
| unsigned NumArgs = I->getNumOperands(); |
| output_vbr(NumArgs + (isa<CastInst>(I) || isa<VarArgInst>(I)), Out); |
| |
| for (unsigned i = 0; i < NumArgs; ++i) { |
| int Slot = Table.getValSlot(I->getOperand(i)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr((unsigned)Slot, Out); |
| } |
| |
| if (isa<CastInst>(I) || isa<VarArgInst>(I)) { |
| int Slot = Table.getValSlot(I->getType()); |
| assert(Slot != -1 && "Cast/VarArg return type unknown?"); |
| output_vbr((unsigned)Slot, Out); |
| } |
| |
| align32(Out); // We must maintain correct alignment! |
| } |
| |
| |
| // outputInstrVarArgsCall - Output the absurdly annoying varargs function calls. |
| // This are more annoying than most because the signature of the call does not |
| // tell us anything about the types of the arguments in the varargs portion. |
| // Because of this, we encode (as type 0) all of the argument types explicitly |
| // before the argument value. This really sucks, but you shouldn't be using |
| // varargs functions in your code! *death to printf*! |
| // |
| // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>] |
| // |
| static void outputInstrVarArgsCall(const Instruction *I, unsigned Opcode, |
| const SlotCalculator &Table, unsigned Type, |
| std::deque<uchar> &Out) { |
| assert(isa<CallInst>(I) || isa<InvokeInst>(I)); |
| // Opcode must have top two bits clear... |
| output_vbr(Opcode << 2, Out); // Instruction Opcode ID |
| output_vbr(Type, Out); // Result type (varargs type) |
| |
| unsigned NumArgs = I->getNumOperands(); |
| output_vbr(NumArgs*2, Out); |
| // TODO: Don't need to emit types for the fixed types of the varargs function |
| // prototype... |
| |
| // The type for the function has already been emitted in the type field of the |
| // instruction. Just emit the slot # now. |
| int Slot = Table.getValSlot(I->getOperand(0)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr((unsigned)Slot, Out); |
| |
| // Output a dummy field to fill Arg#2 in the reader that is currently unused |
| // for varargs calls. This is a gross hack to make the code simpler, but we |
| // aren't really doing very small bytecode for varargs calls anyways. |
| // FIXME in the future: Smaller bytecode for varargs calls |
| output_vbr(0, Out); |
| |
| for (unsigned i = 1; i < NumArgs; ++i) { |
| // Output Arg Type ID |
| Slot = Table.getValSlot(I->getOperand(i)->getType()); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr((unsigned)Slot, Out); |
| |
| // Output arg ID itself |
| Slot = Table.getValSlot(I->getOperand(i)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr((unsigned)Slot, Out); |
| } |
| align32(Out); // We must maintain correct alignment! |
| } |
| |
| |
| // outputInstructionFormat1 - Output one operand instructions, knowing that no |
| // operand index is >= 2^12. |
| // |
| static void outputInstructionFormat1(const Instruction *I, unsigned Opcode, |
| const SlotCalculator &Table, int *Slots, |
| unsigned Type, std::deque<uchar> &Out) { |
| // bits Instruction format: |
| // -------------------------- |
| // 01-00: Opcode type, fixed to 1. |
| // 07-02: Opcode |
| // 19-08: Resulting type plane |
| // 31-20: Operand #1 (if set to (2^12-1), then zero operands) |
| // |
| unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20); |
| // cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl; |
| output(Bits, Out); |
| } |
| |
| |
| // outputInstructionFormat2 - Output two operand instructions, knowing that no |
| // operand index is >= 2^8. |
| // |
| static void outputInstructionFormat2(const Instruction *I, unsigned Opcode, |
| const SlotCalculator &Table, int *Slots, |
| unsigned Type, std::deque<uchar> &Out) { |
| // bits Instruction format: |
| // -------------------------- |
| // 01-00: Opcode type, fixed to 2. |
| // 07-02: Opcode |
| // 15-08: Resulting type plane |
| // 23-16: Operand #1 |
| // 31-24: Operand #2 |
| // |
| unsigned Bits = 2 | (Opcode << 2) | (Type << 8) | |
| (Slots[0] << 16) | (Slots[1] << 24); |
| // cerr << "2 " << IType << " " << Type << " " << Slots[0] << " " |
| // << Slots[1] << endl; |
| output(Bits, Out); |
| } |
| |
| |
| // outputInstructionFormat3 - Output three operand instructions, knowing that no |
| // operand index is >= 2^6. |
| // |
| static void outputInstructionFormat3(const Instruction *I, unsigned Opcode, |
| const SlotCalculator &Table, int *Slots, |
| unsigned Type, std::deque<uchar> &Out) { |
| // bits Instruction format: |
| // -------------------------- |
| // 01-00: Opcode type, fixed to 3. |
| // 07-02: Opcode |
| // 13-08: Resulting type plane |
| // 19-14: Operand #1 |
| // 25-20: Operand #2 |
| // 31-26: Operand #3 |
| // |
| unsigned Bits = 3 | (Opcode << 2) | (Type << 8) | |
| (Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26); |
| //cerr << "3 " << IType << " " << Type << " " << Slots[0] << " " |
| // << Slots[1] << " " << Slots[2] << endl; |
| output(Bits, Out); |
| } |
| |
| void BytecodeWriter::processInstruction(const Instruction &I) { |
| assert(I.getOpcode() < 62 && "Opcode too big???"); |
| unsigned Opcode = I.getOpcode(); |
| |
| // Encode 'volatile load' as 62 and 'volatile store' as 63. |
| if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) |
| Opcode = 62; |
| if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) |
| Opcode = 63; |
| |
| unsigned NumOperands = I.getNumOperands(); |
| int MaxOpSlot = 0; |
| int Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands |
| |
| for (unsigned i = 0; i < NumOperands; ++i) { |
| const Value *Def = I.getOperand(i); |
| int slot = Table.getValSlot(Def); |
| assert(slot != -1 && "Broken bytecode!"); |
| if (slot > MaxOpSlot) MaxOpSlot = slot; |
| if (i < 3) Slots[i] = slot; |
| } |
| |
| // Figure out which type to encode with the instruction. Typically we want |
| // the type of the first parameter, as opposed to the type of the instruction |
| // (for example, with setcc, we always know it returns bool, but the type of |
| // the first param is actually interesting). But if we have no arguments |
| // we take the type of the instruction itself. |
| // |
| const Type *Ty; |
| switch (I.getOpcode()) { |
| case Instruction::Malloc: |
| case Instruction::Alloca: |
| Ty = I.getType(); // Malloc & Alloca ALWAYS want to encode the return type |
| break; |
| case Instruction::Store: |
| Ty = I.getOperand(1)->getType(); // Encode the pointer type... |
| assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?"); |
| break; |
| default: // Otherwise use the default behavior... |
| Ty = NumOperands ? I.getOperand(0)->getType() : I.getType(); |
| break; |
| } |
| |
| unsigned Type; |
| int Slot = Table.getValSlot(Ty); |
| assert(Slot != -1 && "Type not available!!?!"); |
| Type = (unsigned)Slot; |
| |
| // Make sure that we take the type number into consideration. We don't want |
| // to overflow the field size for the instruction format we select. |
| // |
| if (Slot > MaxOpSlot) MaxOpSlot = Slot; |
| |
| // Handle the special case for cast... |
| if (isa<CastInst>(I) || isa<VarArgInst>(I)) { |
| // Cast has to encode the destination type as the second argument in the |
| // packet, or else we won't know what type to cast to! |
| Slots[1] = Table.getValSlot(I.getType()); |
| assert(Slots[1] != -1 && "Cast return type unknown?"); |
| if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1]; |
| NumOperands++; |
| } else if (const CallInst *CI = dyn_cast<CallInst>(&I)){// Handle VarArg calls |
| const PointerType *Ty = cast<PointerType>(CI->getCalledValue()->getType()); |
| if (cast<FunctionType>(Ty->getElementType())->isVarArg()) { |
| outputInstrVarArgsCall(CI, Opcode, Table, Type, Out); |
| return; |
| } |
| } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {// ... & Invokes |
| const PointerType *Ty = cast<PointerType>(II->getCalledValue()->getType()); |
| if (cast<FunctionType>(Ty->getElementType())->isVarArg()) { |
| outputInstrVarArgsCall(II, Opcode, Table, Type, Out); |
| return; |
| } |
| } |
| |
| ++NumInstrs; |
| |
| // Decide which instruction encoding to use. This is determined primarily by |
| // the number of operands, and secondarily by whether or not the max operand |
| // will fit into the instruction encoding. More operands == fewer bits per |
| // operand. |
| // |
| switch (NumOperands) { |
| case 0: |
| case 1: |
| if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops |
| outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out); |
| return; |
| } |
| break; |
| |
| case 2: |
| if (MaxOpSlot < (1 << 8)) { |
| outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out); |
| return; |
| } |
| break; |
| |
| case 3: |
| if (MaxOpSlot < (1 << 6)) { |
| outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out); |
| return; |
| } |
| break; |
| } |
| |
| // If we weren't handled before here, we either have a large number of |
| // operands or a large operand index that we are referring to. |
| outputInstructionFormat0(&I, Opcode, Table, Type, Out); |
| } |