| //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SelectionDAG::Legalize method. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/DwarfWriter.h" |
| #include "llvm/Analysis/DebugInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/Target/TargetFrameInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Target/TargetSubtarget.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include <map> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and |
| /// hacks on it until the target machine can handle it. This involves |
| /// eliminating value sizes the machine cannot handle (promoting small sizes to |
| /// large sizes or splitting up large values into small values) as well as |
| /// eliminating operations the machine cannot handle. |
| /// |
| /// This code also does a small amount of optimization and recognition of idioms |
| /// as part of its processing. For example, if a target does not support a |
| /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this |
| /// will attempt merge setcc and brc instructions into brcc's. |
| /// |
| namespace { |
| class VISIBILITY_HIDDEN SelectionDAGLegalize { |
| TargetLowering &TLI; |
| SelectionDAG &DAG; |
| bool TypesNeedLegalizing; |
| |
| // Libcall insertion helpers. |
| |
| /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been |
| /// legalized. We use this to ensure that calls are properly serialized |
| /// against each other, including inserted libcalls. |
| SDValue LastCALLSEQ_END; |
| |
| /// IsLegalizingCall - This member is used *only* for purposes of providing |
| /// helpful assertions that a libcall isn't created while another call is |
| /// being legalized (which could lead to non-serialized call sequences). |
| bool IsLegalizingCall; |
| |
| enum LegalizeAction { |
| Legal, // The target natively supports this operation. |
| Promote, // This operation should be executed in a larger type. |
| Expand // Try to expand this to other ops, otherwise use a libcall. |
| }; |
| |
| /// ValueTypeActions - This is a bitvector that contains two bits for each |
| /// value type, where the two bits correspond to the LegalizeAction enum. |
| /// This can be queried with "getTypeAction(VT)". |
| TargetLowering::ValueTypeActionImpl ValueTypeActions; |
| |
| /// LegalizedNodes - For nodes that are of legal width, and that have more |
| /// than one use, this map indicates what regularized operand to use. This |
| /// allows us to avoid legalizing the same thing more than once. |
| DenseMap<SDValue, SDValue> LegalizedNodes; |
| |
| /// PromotedNodes - For nodes that are below legal width, and that have more |
| /// than one use, this map indicates what promoted value to use. This allows |
| /// us to avoid promoting the same thing more than once. |
| DenseMap<SDValue, SDValue> PromotedNodes; |
| |
| /// ExpandedNodes - For nodes that need to be expanded this map indicates |
| /// which operands are the expanded version of the input. This allows |
| /// us to avoid expanding the same node more than once. |
| DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedNodes; |
| |
| /// SplitNodes - For vector nodes that need to be split, this map indicates |
| /// which operands are the split version of the input. This allows us |
| /// to avoid splitting the same node more than once. |
| std::map<SDValue, std::pair<SDValue, SDValue> > SplitNodes; |
| |
| /// ScalarizedNodes - For nodes that need to be converted from vector types to |
| /// scalar types, this contains the mapping of ones we have already |
| /// processed to the result. |
| std::map<SDValue, SDValue> ScalarizedNodes; |
| |
| /// WidenNodes - For nodes that need to be widened from one vector type to |
| /// another, this contains the mapping of those that we have already widen. |
| /// This allows us to avoid widening more than once. |
| std::map<SDValue, SDValue> WidenNodes; |
| |
| void AddLegalizedOperand(SDValue From, SDValue To) { |
| LegalizedNodes.insert(std::make_pair(From, To)); |
| // If someone requests legalization of the new node, return itself. |
| if (From != To) |
| LegalizedNodes.insert(std::make_pair(To, To)); |
| } |
| void AddPromotedOperand(SDValue From, SDValue To) { |
| bool isNew = PromotedNodes.insert(std::make_pair(From, To)).second; |
| assert(isNew && "Got into the map somehow?"); |
| isNew = isNew; |
| // If someone requests legalization of the new node, return itself. |
| LegalizedNodes.insert(std::make_pair(To, To)); |
| } |
| void AddWidenedOperand(SDValue From, SDValue To) { |
| bool isNew = WidenNodes.insert(std::make_pair(From, To)).second; |
| assert(isNew && "Got into the map somehow?"); |
| isNew = isNew; |
| // If someone requests legalization of the new node, return itself. |
| LegalizedNodes.insert(std::make_pair(To, To)); |
| } |
| |
| public: |
| explicit SelectionDAGLegalize(SelectionDAG &DAG, bool TypesNeedLegalizing); |
| |
| /// getTypeAction - Return how we should legalize values of this type, either |
| /// it is already legal or we need to expand it into multiple registers of |
| /// smaller integer type, or we need to promote it to a larger type. |
| LegalizeAction getTypeAction(MVT VT) const { |
| return (LegalizeAction)ValueTypeActions.getTypeAction(VT); |
| } |
| |
| /// isTypeLegal - Return true if this type is legal on this target. |
| /// |
| bool isTypeLegal(MVT VT) const { |
| return getTypeAction(VT) == Legal; |
| } |
| |
| void LegalizeDAG(); |
| |
| private: |
| /// HandleOp - Legalize, Promote, or Expand the specified operand as |
| /// appropriate for its type. |
| void HandleOp(SDValue Op); |
| |
| /// LegalizeOp - We know that the specified value has a legal type. |
| /// Recursively ensure that the operands have legal types, then return the |
| /// result. |
| SDValue LegalizeOp(SDValue O); |
| |
| /// UnrollVectorOp - We know that the given vector has a legal type, however |
| /// the operation it performs is not legal and is an operation that we have |
| /// no way of lowering. "Unroll" the vector, splitting out the scalars and |
| /// operating on each element individually. |
| SDValue UnrollVectorOp(SDValue O); |
| |
| /// PerformInsertVectorEltInMemory - Some target cannot handle a variable |
| /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it |
| /// is necessary to spill the vector being inserted into to memory, perform |
| /// the insert there, and then read the result back. |
| SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, |
| SDValue Idx); |
| |
| /// PromoteOp - Given an operation that produces a value in an invalid type, |
| /// promote it to compute the value into a larger type. The produced value |
| /// will have the correct bits for the low portion of the register, but no |
| /// guarantee is made about the top bits: it may be zero, sign-extended, or |
| /// garbage. |
| SDValue PromoteOp(SDValue O); |
| |
| /// ExpandOp - Expand the specified SDValue into its two component pieces |
| /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, |
| /// the LegalizedNodes map is filled in for any results that are not expanded, |
| /// the ExpandedNodes map is filled in for any results that are expanded, and |
| /// the Lo/Hi values are returned. This applies to integer types and Vector |
| /// types. |
| void ExpandOp(SDValue O, SDValue &Lo, SDValue &Hi); |
| |
| /// WidenVectorOp - Widen a vector operation to a wider type given by WidenVT |
| /// (e.g., v3i32 to v4i32). The produced value will have the correct value |
| /// for the existing elements but no guarantee is made about the new elements |
| /// at the end of the vector: it may be zero, ones, or garbage. This is useful |
| /// when we have an instruction operating on an illegal vector type and we |
| /// want to widen it to do the computation on a legal wider vector type. |
| SDValue WidenVectorOp(SDValue Op, MVT WidenVT); |
| |
| /// SplitVectorOp - Given an operand of vector type, break it down into |
| /// two smaller values. |
| void SplitVectorOp(SDValue O, SDValue &Lo, SDValue &Hi); |
| |
| /// ScalarizeVectorOp - Given an operand of single-element vector type |
| /// (e.g. v1f32), convert it into the equivalent operation that returns a |
| /// scalar (e.g. f32) value. |
| SDValue ScalarizeVectorOp(SDValue O); |
| |
| /// Useful 16 element vector type that is used to pass operands for widening. |
| typedef SmallVector<SDValue, 16> SDValueVector; |
| |
| /// LoadWidenVectorOp - Load a vector for a wider type. Returns true if |
| /// the LdChain contains a single load and false if it contains a token |
| /// factor for multiple loads. It takes |
| /// Result: location to return the result |
| /// LdChain: location to return the load chain |
| /// Op: load operation to widen |
| /// NVT: widen vector result type we want for the load |
| bool LoadWidenVectorOp(SDValue& Result, SDValue& LdChain, |
| SDValue Op, MVT NVT); |
| |
| /// Helper genWidenVectorLoads - Helper function to generate a set of |
| /// loads to load a vector with a resulting wider type. It takes |
| /// LdChain: list of chains for the load we have generated |
| /// Chain: incoming chain for the ld vector |
| /// BasePtr: base pointer to load from |
| /// SV: memory disambiguation source value |
| /// SVOffset: memory disambiugation offset |
| /// Alignment: alignment of the memory |
| /// isVolatile: volatile load |
| /// LdWidth: width of memory that we want to load |
| /// ResType: the wider result result type for the resulting loaded vector |
| SDValue genWidenVectorLoads(SDValueVector& LdChain, SDValue Chain, |
| SDValue BasePtr, const Value *SV, |
| int SVOffset, unsigned Alignment, |
| bool isVolatile, unsigned LdWidth, |
| MVT ResType); |
| |
| /// StoreWidenVectorOp - Stores a widen vector into non widen memory |
| /// location. It takes |
| /// ST: store node that we want to replace |
| /// Chain: incoming store chain |
| /// BasePtr: base address of where we want to store into |
| SDValue StoreWidenVectorOp(StoreSDNode *ST, SDValue Chain, |
| SDValue BasePtr); |
| |
| /// Helper genWidenVectorStores - Helper function to generate a set of |
| /// stores to store a widen vector into non widen memory |
| // It takes |
| // StChain: list of chains for the stores we have generated |
| // Chain: incoming chain for the ld vector |
| // BasePtr: base pointer to load from |
| // SV: memory disambiguation source value |
| // SVOffset: memory disambiugation offset |
| // Alignment: alignment of the memory |
| // isVolatile: volatile lod |
| // ValOp: value to store |
| // StWidth: width of memory that we want to store |
| void genWidenVectorStores(SDValueVector& StChain, SDValue Chain, |
| SDValue BasePtr, const Value *SV, |
| int SVOffset, unsigned Alignment, |
| bool isVolatile, SDValue ValOp, |
| unsigned StWidth); |
| |
| /// isShuffleLegal - Return non-null if a vector shuffle is legal with the |
| /// specified mask and type. Targets can specify exactly which masks they |
| /// support and the code generator is tasked with not creating illegal masks. |
| /// |
| /// Note that this will also return true for shuffles that are promoted to a |
| /// different type. |
| /// |
| /// If this is a legal shuffle, this method returns the (possibly promoted) |
| /// build_vector Mask. If it's not a legal shuffle, it returns null. |
| SDNode *isShuffleLegal(MVT VT, SDValue Mask) const; |
| |
| bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, |
| SmallPtrSet<SDNode*, 32> &NodesLeadingTo); |
| |
| void LegalizeSetCCOperands(SDValue &LHS, SDValue &RHS, SDValue &CC); |
| void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC); |
| void LegalizeSetCC(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC) { |
| LegalizeSetCCOperands(LHS, RHS, CC); |
| LegalizeSetCCCondCode(VT, LHS, RHS, CC); |
| } |
| |
| SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned, |
| SDValue &Hi); |
| SDValue ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source, DebugLoc dl); |
| |
| SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT); |
| SDValue ExpandBUILD_VECTOR(SDNode *Node); |
| SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); |
| SDValue LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, |
| SDValue Op, DebugLoc dl); |
| SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT, |
| DebugLoc dl); |
| SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned, |
| DebugLoc dl); |
| SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned, |
| DebugLoc dl); |
| |
| SDValue ExpandBSWAP(SDValue Op); |
| SDValue ExpandBitCount(unsigned Opc, SDValue Op); |
| bool ExpandShift(unsigned Opc, SDValue Op, SDValue Amt, |
| SDValue &Lo, SDValue &Hi); |
| void ExpandShiftParts(unsigned NodeOp, SDValue Op, SDValue Amt, |
| SDValue &Lo, SDValue &Hi); |
| |
| SDValue ExpandEXTRACT_SUBVECTOR(SDValue Op); |
| SDValue ExpandEXTRACT_VECTOR_ELT(SDValue Op); |
| }; |
| } |
| |
| /// isVectorShuffleLegal - Return true if a vector shuffle is legal with the |
| /// specified mask and type. Targets can specify exactly which masks they |
| /// support and the code generator is tasked with not creating illegal masks. |
| /// |
| /// Note that this will also return true for shuffles that are promoted to a |
| /// different type. |
| SDNode *SelectionDAGLegalize::isShuffleLegal(MVT VT, SDValue Mask) const { |
| switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { |
| default: return 0; |
| case TargetLowering::Legal: |
| case TargetLowering::Custom: |
| break; |
| case TargetLowering::Promote: { |
| // If this is promoted to a different type, convert the shuffle mask and |
| // ask if it is legal in the promoted type! |
| MVT NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT); |
| MVT EltVT = NVT.getVectorElementType(); |
| |
| // If we changed # elements, change the shuffle mask. |
| unsigned NumEltsGrowth = |
| NVT.getVectorNumElements() / VT.getVectorNumElements(); |
| assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); |
| if (NumEltsGrowth > 1) { |
| // Renumber the elements. |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) { |
| SDValue InOp = Mask.getOperand(i); |
| for (unsigned j = 0; j != NumEltsGrowth; ++j) { |
| if (InOp.getOpcode() == ISD::UNDEF) |
| Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); |
| else { |
| unsigned InEltNo = cast<ConstantSDNode>(InOp)->getZExtValue(); |
| Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, EltVT)); |
| } |
| } |
| } |
| Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size()); |
| } |
| VT = NVT; |
| break; |
| } |
| } |
| return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.getNode() : 0; |
| } |
| |
| SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag, bool types) |
| : TLI(dag.getTargetLoweringInfo()), DAG(dag), TypesNeedLegalizing(types), |
| ValueTypeActions(TLI.getValueTypeActions()) { |
| assert(MVT::LAST_VALUETYPE <= 32 && |
| "Too many value types for ValueTypeActions to hold!"); |
| } |
| |
| void SelectionDAGLegalize::LegalizeDAG() { |
| LastCALLSEQ_END = DAG.getEntryNode(); |
| IsLegalizingCall = false; |
| |
| // The legalize process is inherently a bottom-up recursive process (users |
| // legalize their uses before themselves). Given infinite stack space, we |
| // could just start legalizing on the root and traverse the whole graph. In |
| // practice however, this causes us to run out of stack space on large basic |
| // blocks. To avoid this problem, compute an ordering of the nodes where each |
| // node is only legalized after all of its operands are legalized. |
| DAG.AssignTopologicalOrder(); |
| for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), |
| E = prior(DAG.allnodes_end()); I != next(E); ++I) |
| HandleOp(SDValue(I, 0)); |
| |
| // Finally, it's possible the root changed. Get the new root. |
| SDValue OldRoot = DAG.getRoot(); |
| assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); |
| DAG.setRoot(LegalizedNodes[OldRoot]); |
| |
| ExpandedNodes.clear(); |
| LegalizedNodes.clear(); |
| PromotedNodes.clear(); |
| SplitNodes.clear(); |
| ScalarizedNodes.clear(); |
| WidenNodes.clear(); |
| |
| // Remove dead nodes now. |
| DAG.RemoveDeadNodes(); |
| } |
| |
| |
| /// FindCallEndFromCallStart - Given a chained node that is part of a call |
| /// sequence, find the CALLSEQ_END node that terminates the call sequence. |
| static SDNode *FindCallEndFromCallStart(SDNode *Node) { |
| if (Node->getOpcode() == ISD::CALLSEQ_END) |
| return Node; |
| if (Node->use_empty()) |
| return 0; // No CallSeqEnd |
| |
| // The chain is usually at the end. |
| SDValue TheChain(Node, Node->getNumValues()-1); |
| if (TheChain.getValueType() != MVT::Other) { |
| // Sometimes it's at the beginning. |
| TheChain = SDValue(Node, 0); |
| if (TheChain.getValueType() != MVT::Other) { |
| // Otherwise, hunt for it. |
| for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) |
| if (Node->getValueType(i) == MVT::Other) { |
| TheChain = SDValue(Node, i); |
| break; |
| } |
| |
| // Otherwise, we walked into a node without a chain. |
| if (TheChain.getValueType() != MVT::Other) |
| return 0; |
| } |
| } |
| |
| for (SDNode::use_iterator UI = Node->use_begin(), |
| E = Node->use_end(); UI != E; ++UI) { |
| |
| // Make sure to only follow users of our token chain. |
| SDNode *User = *UI; |
| for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) |
| if (User->getOperand(i) == TheChain) |
| if (SDNode *Result = FindCallEndFromCallStart(User)) |
| return Result; |
| } |
| return 0; |
| } |
| |
| /// FindCallStartFromCallEnd - Given a chained node that is part of a call |
| /// sequence, find the CALLSEQ_START node that initiates the call sequence. |
| static SDNode *FindCallStartFromCallEnd(SDNode *Node) { |
| assert(Node && "Didn't find callseq_start for a call??"); |
| if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; |
| |
| assert(Node->getOperand(0).getValueType() == MVT::Other && |
| "Node doesn't have a token chain argument!"); |
| return FindCallStartFromCallEnd(Node->getOperand(0).getNode()); |
| } |
| |
| /// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to |
| /// see if any uses can reach Dest. If no dest operands can get to dest, |
| /// legalize them, legalize ourself, and return false, otherwise, return true. |
| /// |
| /// Keep track of the nodes we fine that actually do lead to Dest in |
| /// NodesLeadingTo. This avoids retraversing them exponential number of times. |
| /// |
| bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, |
| SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { |
| if (N == Dest) return true; // N certainly leads to Dest :) |
| |
| // If we've already processed this node and it does lead to Dest, there is no |
| // need to reprocess it. |
| if (NodesLeadingTo.count(N)) return true; |
| |
| // If the first result of this node has been already legalized, then it cannot |
| // reach N. |
| switch (getTypeAction(N->getValueType(0))) { |
| case Legal: |
| if (LegalizedNodes.count(SDValue(N, 0))) return false; |
| break; |
| case Promote: |
| if (PromotedNodes.count(SDValue(N, 0))) return false; |
| break; |
| case Expand: |
| if (ExpandedNodes.count(SDValue(N, 0))) return false; |
| break; |
| } |
| |
| // Okay, this node has not already been legalized. Check and legalize all |
| // operands. If none lead to Dest, then we can legalize this node. |
| bool OperandsLeadToDest = false; |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| OperandsLeadToDest |= // If an operand leads to Dest, so do we. |
| LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo); |
| |
| if (OperandsLeadToDest) { |
| NodesLeadingTo.insert(N); |
| return true; |
| } |
| |
| // Okay, this node looks safe, legalize it and return false. |
| HandleOp(SDValue(N, 0)); |
| return false; |
| } |
| |
| /// HandleOp - Legalize, Promote, Widen, or Expand the specified operand as |
| /// appropriate for its type. |
| void SelectionDAGLegalize::HandleOp(SDValue Op) { |
| MVT VT = Op.getValueType(); |
| // If the type legalizer was run then we should never see any illegal result |
| // types here except for target constants (the type legalizer does not touch |
| // those) or for build vector used as a mask for a vector shuffle. |
| // FIXME: We can removed the BUILD_VECTOR case when we fix PR2957. |
| assert((TypesNeedLegalizing || getTypeAction(VT) == Legal || |
| Op.getOpcode() == ISD::TargetConstant || |
| Op.getOpcode() == ISD::BUILD_VECTOR) && |
| "Illegal type introduced after type legalization?"); |
| switch (getTypeAction(VT)) { |
| default: assert(0 && "Bad type action!"); |
| case Legal: (void)LegalizeOp(Op); break; |
| case Promote: |
| if (!VT.isVector()) { |
| (void)PromoteOp(Op); |
| break; |
| } |
| else { |
| // See if we can widen otherwise use Expand to either scalarize or split |
| MVT WidenVT = TLI.getWidenVectorType(VT); |
| if (WidenVT != MVT::Other) { |
| (void) WidenVectorOp(Op, WidenVT); |
| break; |
| } |
| // else fall thru to expand since we can't widen the vector |
| } |
| case Expand: |
| if (!VT.isVector()) { |
| // If this is an illegal scalar, expand it into its two component |
| // pieces. |
| SDValue X, Y; |
| if (Op.getOpcode() == ISD::TargetConstant) |
| break; // Allow illegal target nodes. |
| ExpandOp(Op, X, Y); |
| } else if (VT.getVectorNumElements() == 1) { |
| // If this is an illegal single element vector, convert it to a |
| // scalar operation. |
| (void)ScalarizeVectorOp(Op); |
| } else { |
| // This is an illegal multiple element vector. |
| // Split it in half and legalize both parts. |
| SDValue X, Y; |
| SplitVectorOp(Op, X, Y); |
| } |
| break; |
| } |
| } |
| |
| /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or |
| /// a load from the constant pool. |
| static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, |
| SelectionDAG &DAG, const TargetLowering &TLI) { |
| bool Extend = false; |
| |
| // If a FP immediate is precise when represented as a float and if the |
| // target can do an extending load from float to double, we put it into |
| // the constant pool as a float, even if it's is statically typed as a |
| // double. This shrinks FP constants and canonicalizes them for targets where |
| // an FP extending load is the same cost as a normal load (such as on the x87 |
| // fp stack or PPC FP unit). |
| MVT VT = CFP->getValueType(0); |
| ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); |
| if (!UseCP) { |
| if (VT!=MVT::f64 && VT!=MVT::f32) |
| assert(0 && "Invalid type expansion"); |
| return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), |
| (VT == MVT::f64) ? MVT::i64 : MVT::i32); |
| } |
| |
| MVT OrigVT = VT; |
| MVT SVT = VT; |
| while (SVT != MVT::f32) { |
| SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1); |
| if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) && |
| // Only do this if the target has a native EXTLOAD instruction from |
| // smaller type. |
| TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && |
| TLI.ShouldShrinkFPConstant(OrigVT)) { |
| const Type *SType = SVT.getTypeForMVT(); |
| LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); |
| VT = SVT; |
| Extend = true; |
| } |
| } |
| |
| SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); |
| unsigned Alignment = 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| if (Extend) |
| return DAG.getExtLoad(ISD::EXTLOAD, OrigVT, DAG.getEntryNode(), |
| CPIdx, PseudoSourceValue::getConstantPool(), |
| 0, VT, false, Alignment); |
| return DAG.getLoad(OrigVT, DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, false, Alignment); |
| } |
| |
| |
| /// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise |
| /// operations. |
| static |
| SDValue ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT NVT, |
| SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| MVT VT = Node->getValueType(0); |
| MVT SrcVT = Node->getOperand(1).getValueType(); |
| assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && |
| "fcopysign expansion only supported for f32 and f64"); |
| MVT SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; |
| |
| // First get the sign bit of second operand. |
| SDValue Mask1 = (SrcVT == MVT::f64) |
| ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) |
| : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); |
| Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1); |
| SDValue SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1)); |
| SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1); |
| // Shift right or sign-extend it if the two operands have different types. |
| int SizeDiff = SrcNVT.getSizeInBits() - NVT.getSizeInBits(); |
| if (SizeDiff > 0) { |
| SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit, |
| DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); |
| SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit); |
| } else if (SizeDiff < 0) { |
| SignBit = DAG.getNode(ISD::ZERO_EXTEND, NVT, SignBit); |
| SignBit = DAG.getNode(ISD::SHL, NVT, SignBit, |
| DAG.getConstant(-SizeDiff, TLI.getShiftAmountTy())); |
| } |
| |
| // Clear the sign bit of first operand. |
| SDValue Mask2 = (VT == MVT::f64) |
| ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) |
| : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); |
| Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2); |
| SDValue Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); |
| Result = DAG.getNode(ISD::AND, NVT, Result, Mask2); |
| |
| // Or the value with the sign bit. |
| Result = DAG.getNode(ISD::OR, NVT, Result, SignBit); |
| return Result; |
| } |
| |
| /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. |
| static |
| SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| SDValue Chain = ST->getChain(); |
| SDValue Ptr = ST->getBasePtr(); |
| SDValue Val = ST->getValue(); |
| MVT VT = Val.getValueType(); |
| int Alignment = ST->getAlignment(); |
| int SVOffset = ST->getSrcValueOffset(); |
| if (ST->getMemoryVT().isFloatingPoint() || |
| ST->getMemoryVT().isVector()) { |
| MVT intVT = MVT::getIntegerVT(VT.getSizeInBits()); |
| if (TLI.isTypeLegal(intVT)) { |
| // Expand to a bitconvert of the value to the integer type of the |
| // same size, then a (misaligned) int store. |
| // FIXME: Does not handle truncating floating point stores! |
| SDValue Result = DAG.getNode(ISD::BIT_CONVERT, intVT, Val); |
| return DAG.getStore(Chain, Result, Ptr, ST->getSrcValue(), |
| SVOffset, ST->isVolatile(), Alignment); |
| } else { |
| // Do a (aligned) store to a stack slot, then copy from the stack slot |
| // to the final destination using (unaligned) integer loads and stores. |
| MVT StoredVT = ST->getMemoryVT(); |
| MVT RegVT = |
| TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits())); |
| unsigned StoredBytes = StoredVT.getSizeInBits() / 8; |
| unsigned RegBytes = RegVT.getSizeInBits() / 8; |
| unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; |
| |
| // Make sure the stack slot is also aligned for the register type. |
| SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); |
| |
| // Perform the original store, only redirected to the stack slot. |
| SDValue Store = DAG.getTruncStore(Chain, Val, StackPtr, NULL, 0,StoredVT); |
| SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); |
| SmallVector<SDValue, 8> Stores; |
| unsigned Offset = 0; |
| |
| // Do all but one copies using the full register width. |
| for (unsigned i = 1; i < NumRegs; i++) { |
| // Load one integer register's worth from the stack slot. |
| SDValue Load = DAG.getLoad(RegVT, Store, StackPtr, NULL, 0); |
| // Store it to the final location. Remember the store. |
| Stores.push_back(DAG.getStore(Load.getValue(1), Load, Ptr, |
| ST->getSrcValue(), SVOffset + Offset, |
| ST->isVolatile(), |
| MinAlign(ST->getAlignment(), Offset))); |
| // Increment the pointers. |
| Offset += RegBytes; |
| StackPtr = DAG.getNode(ISD::ADD, StackPtr.getValueType(), StackPtr, |
| Increment); |
| Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, Increment); |
| } |
| |
| // The last store may be partial. Do a truncating store. On big-endian |
| // machines this requires an extending load from the stack slot to ensure |
| // that the bits are in the right place. |
| MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset)); |
| |
| // Load from the stack slot. |
| SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, Store, StackPtr, |
| NULL, 0, MemVT); |
| |
| Stores.push_back(DAG.getTruncStore(Load.getValue(1), Load, Ptr, |
| ST->getSrcValue(), SVOffset + Offset, |
| MemVT, ST->isVolatile(), |
| MinAlign(ST->getAlignment(), Offset))); |
| // The order of the stores doesn't matter - say it with a TokenFactor. |
| return DAG.getNode(ISD::TokenFactor, MVT::Other, &Stores[0], |
| Stores.size()); |
| } |
| } |
| assert(ST->getMemoryVT().isInteger() && |
| !ST->getMemoryVT().isVector() && |
| "Unaligned store of unknown type."); |
| // Get the half-size VT |
| MVT NewStoredVT = |
| (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1); |
| int NumBits = NewStoredVT.getSizeInBits(); |
| int IncrementSize = NumBits / 8; |
| |
| // Divide the stored value in two parts. |
| SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); |
| SDValue Lo = Val; |
| SDValue Hi = DAG.getNode(ISD::SRL, VT, Val, ShiftAmount); |
| |
| // Store the two parts |
| SDValue Store1, Store2; |
| Store1 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Lo:Hi, Ptr, |
| ST->getSrcValue(), SVOffset, NewStoredVT, |
| ST->isVolatile(), Alignment); |
| Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, |
| DAG.getConstant(IncrementSize, TLI.getPointerTy())); |
| Alignment = MinAlign(Alignment, IncrementSize); |
| Store2 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Hi:Lo, Ptr, |
| ST->getSrcValue(), SVOffset + IncrementSize, |
| NewStoredVT, ST->isVolatile(), Alignment); |
| |
| return DAG.getNode(ISD::TokenFactor, MVT::Other, Store1, Store2); |
| } |
| |
| /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. |
| static |
| SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| int SVOffset = LD->getSrcValueOffset(); |
| SDValue Chain = LD->getChain(); |
| SDValue Ptr = LD->getBasePtr(); |
| MVT VT = LD->getValueType(0); |
| MVT LoadedVT = LD->getMemoryVT(); |
| if (VT.isFloatingPoint() || VT.isVector()) { |
| MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits()); |
| if (TLI.isTypeLegal(intVT)) { |
| // Expand to a (misaligned) integer load of the same size, |
| // then bitconvert to floating point or vector. |
| SDValue newLoad = DAG.getLoad(intVT, Chain, Ptr, LD->getSrcValue(), |
| SVOffset, LD->isVolatile(), |
| LD->getAlignment()); |
| SDValue Result = DAG.getNode(ISD::BIT_CONVERT, LoadedVT, newLoad); |
| if (VT.isFloatingPoint() && LoadedVT != VT) |
| Result = DAG.getNode(ISD::FP_EXTEND, VT, Result); |
| |
| SDValue Ops[] = { Result, Chain }; |
| return DAG.getMergeValues(Ops, 2); |
| } else { |
| // Copy the value to a (aligned) stack slot using (unaligned) integer |
| // loads and stores, then do a (aligned) load from the stack slot. |
| MVT RegVT = TLI.getRegisterType(intVT); |
| unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; |
| unsigned RegBytes = RegVT.getSizeInBits() / 8; |
| unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; |
| |
| // Make sure the stack slot is also aligned for the register type. |
| SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); |
| |
| SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); |
| SmallVector<SDValue, 8> Stores; |
| SDValue StackPtr = StackBase; |
| unsigned Offset = 0; |
| |
| // Do all but one copies using the full register width. |
| for (unsigned i = 1; i < NumRegs; i++) { |
| // Load one integer register's worth from the original location. |
| SDValue Load = DAG.getLoad(RegVT, Chain, Ptr, LD->getSrcValue(), |
| SVOffset + Offset, LD->isVolatile(), |
| MinAlign(LD->getAlignment(), Offset)); |
| // Follow the load with a store to the stack slot. Remember the store. |
| Stores.push_back(DAG.getStore(Load.getValue(1), Load, StackPtr, |
| NULL, 0)); |
| // Increment the pointers. |
| Offset += RegBytes; |
| Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, Increment); |
| StackPtr = DAG.getNode(ISD::ADD, StackPtr.getValueType(), StackPtr, |
| Increment); |
| } |
| |
| // The last copy may be partial. Do an extending load. |
| MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset)); |
| SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, Chain, Ptr, |
| LD->getSrcValue(), SVOffset + Offset, |
| MemVT, LD->isVolatile(), |
| MinAlign(LD->getAlignment(), Offset)); |
| // Follow the load with a store to the stack slot. Remember the store. |
| // On big-endian machines this requires a truncating store to ensure |
| // that the bits end up in the right place. |
| Stores.push_back(DAG.getTruncStore(Load.getValue(1), Load, StackPtr, |
| NULL, 0, MemVT)); |
| |
| // The order of the stores doesn't matter - say it with a TokenFactor. |
| SDValue TF = DAG.getNode(ISD::TokenFactor, MVT::Other, &Stores[0], |
| Stores.size()); |
| |
| // Finally, perform the original load only redirected to the stack slot. |
| Load = DAG.getExtLoad(LD->getExtensionType(), VT, TF, StackBase, |
| NULL, 0, LoadedVT); |
| |
| // Callers expect a MERGE_VALUES node. |
| SDValue Ops[] = { Load, TF }; |
| return DAG.getMergeValues(Ops, 2); |
| } |
| } |
| assert(LoadedVT.isInteger() && !LoadedVT.isVector() && |
| "Unaligned load of unsupported type."); |
| |
| // Compute the new VT that is half the size of the old one. This is an |
| // integer MVT. |
| unsigned NumBits = LoadedVT.getSizeInBits(); |
| MVT NewLoadedVT; |
| NewLoadedVT = MVT::getIntegerVT(NumBits/2); |
| NumBits >>= 1; |
| |
| unsigned Alignment = LD->getAlignment(); |
| unsigned IncrementSize = NumBits / 8; |
| ISD::LoadExtType HiExtType = LD->getExtensionType(); |
| |
| // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. |
| if (HiExtType == ISD::NON_EXTLOAD) |
| HiExtType = ISD::ZEXTLOAD; |
| |
| // Load the value in two parts |
| SDValue Lo, Hi; |
| if (TLI.isLittleEndian()) { |
| Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), |
| SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); |
| Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, |
| DAG.getConstant(IncrementSize, TLI.getPointerTy())); |
| Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), |
| SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), |
| MinAlign(Alignment, IncrementSize)); |
| } else { |
| Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset, |
| NewLoadedVT,LD->isVolatile(), Alignment); |
| Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, |
| DAG.getConstant(IncrementSize, TLI.getPointerTy())); |
| Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), |
| SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), |
| MinAlign(Alignment, IncrementSize)); |
| } |
| |
| // aggregate the two parts |
| SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); |
| SDValue Result = DAG.getNode(ISD::SHL, VT, Hi, ShiftAmount); |
| Result = DAG.getNode(ISD::OR, VT, Result, Lo); |
| |
| SDValue TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), |
| Hi.getValue(1)); |
| |
| SDValue Ops[] = { Result, TF }; |
| return DAG.getMergeValues(Ops, 2); |
| } |
| |
| /// UnrollVectorOp - We know that the given vector has a legal type, however |
| /// the operation it performs is not legal and is an operation that we have |
| /// no way of lowering. "Unroll" the vector, splitting out the scalars and |
| /// operating on each element individually. |
| SDValue SelectionDAGLegalize::UnrollVectorOp(SDValue Op) { |
| MVT VT = Op.getValueType(); |
| assert(isTypeLegal(VT) && |
| "Caller should expand or promote operands that are not legal!"); |
| assert(Op.getNode()->getNumValues() == 1 && |
| "Can't unroll a vector with multiple results!"); |
| unsigned NE = VT.getVectorNumElements(); |
| MVT EltVT = VT.getVectorElementType(); |
| |
| SmallVector<SDValue, 8> Scalars; |
| SmallVector<SDValue, 4> Operands(Op.getNumOperands()); |
| for (unsigned i = 0; i != NE; ++i) { |
| for (unsigned j = 0; j != Op.getNumOperands(); ++j) { |
| SDValue Operand = Op.getOperand(j); |
| MVT OperandVT = Operand.getValueType(); |
| if (OperandVT.isVector()) { |
| // A vector operand; extract a single element. |
| MVT OperandEltVT = OperandVT.getVectorElementType(); |
| Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, |
| OperandEltVT, |
| Operand, |
| DAG.getConstant(i, MVT::i32)); |
| } else { |
| // A scalar operand; just use it as is. |
| Operands[j] = Operand; |
| } |
| } |
| |
| switch (Op.getOpcode()) { |
| default: |
| Scalars.push_back(DAG.getNode(Op.getOpcode(), EltVT, |
| &Operands[0], Operands.size())); |
| break; |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::ROTL: |
| case ISD::ROTR: |
| Scalars.push_back(DAG.getNode(Op.getOpcode(), EltVT, Operands[0], |
| DAG.getShiftAmountOperand(Operands[1]))); |
| break; |
| } |
| } |
| |
| return DAG.getNode(ISD::BUILD_VECTOR, VT, &Scalars[0], Scalars.size()); |
| } |
| |
| /// GetFPLibCall - Return the right libcall for the given floating point type. |
| static RTLIB::Libcall GetFPLibCall(MVT VT, |
| RTLIB::Libcall Call_F32, |
| RTLIB::Libcall Call_F64, |
| RTLIB::Libcall Call_F80, |
| RTLIB::Libcall Call_PPCF128) { |
| return |
| VT == MVT::f32 ? Call_F32 : |
| VT == MVT::f64 ? Call_F64 : |
| VT == MVT::f80 ? Call_F80 : |
| VT == MVT::ppcf128 ? Call_PPCF128 : |
| RTLIB::UNKNOWN_LIBCALL; |
| } |
| |
| /// PerformInsertVectorEltInMemory - Some target cannot handle a variable |
| /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it |
| /// is necessary to spill the vector being inserted into to memory, perform |
| /// the insert there, and then read the result back. |
| SDValue SelectionDAGLegalize:: |
| PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx) { |
| SDValue Tmp1 = Vec; |
| SDValue Tmp2 = Val; |
| SDValue Tmp3 = Idx; |
| |
| // If the target doesn't support this, we have to spill the input vector |
| // to a temporary stack slot, update the element, then reload it. This is |
| // badness. We could also load the value into a vector register (either |
| // with a "move to register" or "extload into register" instruction, then |
| // permute it into place, if the idx is a constant and if the idx is |
| // supported by the target. |
| MVT VT = Tmp1.getValueType(); |
| MVT EltVT = VT.getVectorElementType(); |
| MVT IdxVT = Tmp3.getValueType(); |
| MVT PtrVT = TLI.getPointerTy(); |
| SDValue StackPtr = DAG.CreateStackTemporary(VT); |
| |
| int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); |
| |
| // Store the vector. |
| SDValue Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr, |
| PseudoSourceValue::getFixedStack(SPFI), 0); |
| |
| // Truncate or zero extend offset to target pointer type. |
| unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; |
| Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3); |
| // Add the offset to the index. |
| unsigned EltSize = EltVT.getSizeInBits()/8; |
| Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); |
| SDValue StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr); |
| // Store the scalar value. |
| Ch = DAG.getTruncStore(Ch, Tmp2, StackPtr2, |
| PseudoSourceValue::getFixedStack(SPFI), 0, EltVT); |
| // Load the updated vector. |
| return DAG.getLoad(VT, Ch, StackPtr, |
| PseudoSourceValue::getFixedStack(SPFI), 0); |
| } |
| |
| |
| /// LegalizeOp - We know that the specified value has a legal type, and |
| /// that its operands are legal. Now ensure that the operation itself |
| /// is legal, recursively ensuring that the operands' operations remain |
| /// legal. |
| SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) { |
| if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. |
| return Op; |
| |
| assert(isTypeLegal(Op.getValueType()) && |
| "Caller should expand or promote operands that are not legal!"); |
| SDNode *Node = Op.getNode(); |
| DebugLoc dl = Node->getDebugLoc(); |
| |
| // If this operation defines any values that cannot be represented in a |
| // register on this target, make sure to expand or promote them. |
| if (Node->getNumValues() > 1) { |
| for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) |
| if (getTypeAction(Node->getValueType(i)) != Legal) { |
| HandleOp(Op.getValue(i)); |
| assert(LegalizedNodes.count(Op) && |
| "Handling didn't add legal operands!"); |
| return LegalizedNodes[Op]; |
| } |
| } |
| |
| // Note that LegalizeOp may be reentered even from single-use nodes, which |
| // means that we always must cache transformed nodes. |
| DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); |
| if (I != LegalizedNodes.end()) return I->second; |
| |
| SDValue Tmp1, Tmp2, Tmp3, Tmp4; |
| SDValue Result = Op; |
| bool isCustom = false; |
| |
| switch (Node->getOpcode()) { |
| case ISD::FrameIndex: |
| case ISD::EntryToken: |
| case ISD::Register: |
| case ISD::BasicBlock: |
| case ISD::TargetFrameIndex: |
| case ISD::TargetJumpTable: |
| case ISD::TargetConstant: |
| case ISD::TargetConstantFP: |
| case ISD::TargetConstantPool: |
| case ISD::TargetGlobalAddress: |
| case ISD::TargetGlobalTLSAddress: |
| case ISD::TargetExternalSymbol: |
| case ISD::VALUETYPE: |
| case ISD::SRCVALUE: |
| case ISD::MEMOPERAND: |
| case ISD::CONDCODE: |
| case ISD::ARG_FLAGS: |
| // Primitives must all be legal. |
| assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && |
| "This must be legal!"); |
| break; |
| default: |
| if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { |
| // If this is a target node, legalize it by legalizing the operands then |
| // passing it through. |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) |
| Ops.push_back(LegalizeOp(Node->getOperand(i))); |
| |
| Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); |
| |
| for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) |
| AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); |
| return Result.getValue(Op.getResNo()); |
| } |
| // Otherwise this is an unhandled builtin node. splat. |
| #ifndef NDEBUG |
| cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; |
| #endif |
| assert(0 && "Do not know how to legalize this operator!"); |
| abort(); |
| case ISD::GLOBAL_OFFSET_TABLE: |
| case ISD::GlobalAddress: |
| case ISD::GlobalTLSAddress: |
| case ISD::ExternalSymbol: |
| case ISD::ConstantPool: |
| case ISD::JumpTable: // Nothing to do. |
| switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Op, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| // FALLTHROUGH if the target doesn't want to lower this op after all. |
| case TargetLowering::Legal: |
| break; |
| } |
| break; |
| case ISD::FRAMEADDR: |
| case ISD::RETURNADDR: |
| // The only option for these nodes is to custom lower them. If the target |
| // does not custom lower them, then return zero. |
| Tmp1 = TLI.LowerOperation(Op, DAG); |
| if (Tmp1.getNode()) |
| Result = Tmp1; |
| else |
| Result = DAG.getConstant(0, TLI.getPointerTy()); |
| break; |
| case ISD::FRAME_TO_ARGS_OFFSET: { |
| MVT VT = Node->getValueType(0); |
| switch (TLI.getOperationAction(Node->getOpcode(), VT)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Custom: |
| Result = TLI.LowerOperation(Op, DAG); |
| if (Result.getNode()) break; |
| // Fall Thru |
| case TargetLowering::Legal: |
| Result = DAG.getConstant(0, VT); |
| break; |
| } |
| } |
| break; |
| case ISD::EXCEPTIONADDR: { |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| MVT VT = Node->getValueType(0); |
| switch (TLI.getOperationAction(Node->getOpcode(), VT)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Expand: { |
| unsigned Reg = TLI.getExceptionAddressRegister(); |
| Result = DAG.getCopyFromReg(Tmp1, Reg, VT); |
| } |
| break; |
| case TargetLowering::Custom: |
| Result = TLI.LowerOperation(Op, DAG); |
| if (Result.getNode()) break; |
| // Fall Thru |
| case TargetLowering::Legal: { |
| SDValue Ops[] = { DAG.getConstant(0, VT), Tmp1 }; |
| Result = DAG.getMergeValues(Ops, 2); |
| break; |
| } |
| } |
| } |
| if (Result.getNode()->getNumValues() == 1) break; |
| |
| assert(Result.getNode()->getNumValues() == 2 && |
| "Cannot return more than two values!"); |
| |
| // Since we produced two values, make sure to remember that we |
| // legalized both of them. |
| Tmp1 = LegalizeOp(Result); |
| Tmp2 = LegalizeOp(Result.getValue(1)); |
| AddLegalizedOperand(Op.getValue(0), Tmp1); |
| AddLegalizedOperand(Op.getValue(1), Tmp2); |
| return Op.getResNo() ? Tmp2 : Tmp1; |
| case ISD::EHSELECTION: { |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| Tmp2 = LegalizeOp(Node->getOperand(1)); |
| MVT VT = Node->getValueType(0); |
| switch (TLI.getOperationAction(Node->getOpcode(), VT)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Expand: { |
| unsigned Reg = TLI.getExceptionSelectorRegister(); |
| Result = DAG.getCopyFromReg(Tmp2, Reg, VT); |
| } |
| break; |
| case TargetLowering::Custom: |
| Result = TLI.LowerOperation(Op, DAG); |
| if (Result.getNode()) break; |
| // Fall Thru |
| case TargetLowering::Legal: { |
| SDValue Ops[] = { DAG.getConstant(0, VT), Tmp2 }; |
| Result = DAG.getMergeValues(Ops, 2); |
| break; |
| } |
| } |
| } |
| if (Result.getNode()->getNumValues() == 1) break; |
| |
| assert(Result.getNode()->getNumValues() == 2 && |
| "Cannot return more than two values!"); |
| |
| // Since we produced two values, make sure to remember that we |
| // legalized both of them. |
| Tmp1 = LegalizeOp(Result); |
| Tmp2 = LegalizeOp(Result.getValue(1)); |
| AddLegalizedOperand(Op.getValue(0), Tmp1); |
| AddLegalizedOperand(Op.getValue(1), Tmp2); |
| return Op.getResNo() ? Tmp2 : Tmp1; |
| case ISD::EH_RETURN: { |
| MVT VT = Node->getValueType(0); |
| // The only "good" option for this node is to custom lower it. |
| switch (TLI.getOperationAction(Node->getOpcode(), VT)) { |
| default: assert(0 && "This action is not supported at all!"); |
| case TargetLowering::Custom: |
| Result = TLI.LowerOperation(Op, DAG); |
| if (Result.getNode()) break; |
| // Fall Thru |
| case TargetLowering::Legal: |
| // Target does not know, how to lower this, lower to noop |
| Result = LegalizeOp(Node->getOperand(0)); |
| break; |
| } |
| } |
| break; |
| case ISD::AssertSext: |
| case ISD::AssertZext: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); |
| break; |
| case ISD::MERGE_VALUES: |
| // Legalize eliminates MERGE_VALUES nodes. |
| Result = Node->getOperand(Op.getResNo()); |
| break; |
| case ISD::CopyFromReg: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| Result = Op.getValue(0); |
| if (Node->getNumValues() == 2) { |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); |
| } else { |
| assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); |
| if (Node->getNumOperands() == 3) { |
| Tmp2 = LegalizeOp(Node->getOperand(2)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); |
| } else { |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); |
| } |
| AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); |
| } |
| // Since CopyFromReg produces two values, make sure to remember that we |
| // legalized both of them. |
| AddLegalizedOperand(Op.getValue(0), Result); |
| AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); |
| return Result.getValue(Op.getResNo()); |
| case ISD::UNDEF: { |
| MVT VT = Op.getValueType(); |
| switch (TLI.getOperationAction(ISD::UNDEF, VT)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Expand: |
| if (VT.isInteger()) |
| Result = DAG.getConstant(0, VT); |
| else if (VT.isFloatingPoint()) |
| Result = DAG.getConstantFP(APFloat(APInt(VT.getSizeInBits(), 0)), |
| VT); |
| else |
| assert(0 && "Unknown value type!"); |
| break; |
| case TargetLowering::Legal: |
| break; |
| } |
| break; |
| } |
| |
| case ISD::INTRINSIC_W_CHAIN: |
| case ISD::INTRINSIC_WO_CHAIN: |
| case ISD::INTRINSIC_VOID: { |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) |
| Ops.push_back(LegalizeOp(Node->getOperand(i))); |
| Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); |
| |
| // Allow the target to custom lower its intrinsics if it wants to. |
| if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == |
| TargetLowering::Custom) { |
| Tmp3 = TLI.LowerOperation(Result, DAG); |
| if (Tmp3.getNode()) Result = Tmp3; |
| } |
| |
| if (Result.getNode()->getNumValues() == 1) break; |
| |
| // Must have return value and chain result. |
| assert(Result.getNode()->getNumValues() == 2 && |
| "Cannot return more than two values!"); |
| |
| // Since loads produce two values, make sure to remember that we |
| // legalized both of them. |
| AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); |
| AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); |
| return Result.getValue(Op.getResNo()); |
| } |
| |
| case ISD::DBG_STOPPOINT: |
| assert(Node->getNumOperands() == 1 && "Invalid DBG_STOPPOINT node!"); |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. |
| |
| switch (TLI.getOperationAction(ISD::DBG_STOPPOINT, MVT::Other)) { |
| case TargetLowering::Promote: |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Expand: { |
| DwarfWriter *DW = DAG.getDwarfWriter(); |
| bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC, |
| MVT::Other); |
| bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other); |
| |
| const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node); |
| GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit()); |
| if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) { |
| DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit())); |
| unsigned SrcFile = DW->RecordSource(CU.getDirectory(), |
| CU.getFilename()); |
| |
| unsigned Line = DSP->getLine(); |
| unsigned Col = DSP->getColumn(); |
| |
| if (useDEBUG_LOC) { |
| SDValue Ops[] = { Tmp1, DAG.getConstant(Line, MVT::i32), |
| DAG.getConstant(Col, MVT::i32), |
| DAG.getConstant(SrcFile, MVT::i32) }; |
| Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, Ops, 4); |
| } else { |
| unsigned ID = DW->RecordSourceLine(Line, Col, SrcFile); |
| Result = DAG.getLabel(ISD::DBG_LABEL, Tmp1, ID); |
| } |
| } else { |
| Result = Tmp1; // chain |
| } |
| break; |
| } |
| case TargetLowering::Legal: { |
| LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType()); |
| if (Action == Legal && Tmp1 == Node->getOperand(0)) |
| break; |
| |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(Tmp1); |
| if (Action == Legal) { |
| Ops.push_back(Node->getOperand(1)); // line # must be legal. |
| Ops.push_back(Node->getOperand(2)); // col # must be legal. |
| } else { |
| // Otherwise promote them. |
| Ops.push_back(PromoteOp(Node->getOperand(1))); |
| Ops.push_back(PromoteOp(Node->getOperand(2))); |
| } |
| Ops.push_back(Node->getOperand(3)); // filename must be legal. |
| Ops.push_back(Node->getOperand(4)); // working dir # must be legal. |
| Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); |
| break; |
| } |
| } |
| break; |
| |
| case ISD::DECLARE: |
| assert(Node->getNumOperands() == 3 && "Invalid DECLARE node!"); |
| switch (TLI.getOperationAction(ISD::DECLARE, MVT::Other)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. |
| Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the variable. |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); |
| break; |
| case TargetLowering::Expand: |
| Result = LegalizeOp(Node->getOperand(0)); |
| break; |
| } |
| break; |
| |
| case ISD::DEBUG_LOC: |
| assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); |
| switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: { |
| LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType()); |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| if (Action == Legal && Tmp1 == Node->getOperand(0)) |
| break; |
| if (Action == Legal) { |
| Tmp2 = Node->getOperand(1); |
| Tmp3 = Node->getOperand(2); |
| Tmp4 = Node->getOperand(3); |
| } else { |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. |
| Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. |
| Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. |
| } |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); |
| break; |
| } |
| } |
| break; |
| |
| case ISD::DBG_LABEL: |
| case ISD::EH_LABEL: |
| assert(Node->getNumOperands() == 1 && "Invalid LABEL node!"); |
| switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| Result = DAG.UpdateNodeOperands(Result, Tmp1); |
| break; |
| case TargetLowering::Expand: |
| Result = LegalizeOp(Node->getOperand(0)); |
| break; |
| } |
| break; |
| |
| case ISD::PREFETCH: |
| assert(Node->getNumOperands() == 4 && "Invalid Prefetch node!"); |
| switch (TLI.getOperationAction(ISD::PREFETCH, MVT::Other)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. |
| Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the rw specifier. |
| Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize locality specifier. |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); |
| break; |
| case TargetLowering::Expand: |
| // It's a noop. |
| Result = LegalizeOp(Node->getOperand(0)); |
| break; |
| } |
| break; |
| |
| case ISD::MEMBARRIER: { |
| assert(Node->getNumOperands() == 6 && "Invalid MemBarrier node!"); |
| switch (TLI.getOperationAction(ISD::MEMBARRIER, MVT::Other)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: { |
| SDValue Ops[6]; |
| Ops[0] = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| for (int x = 1; x < 6; ++x) { |
| Ops[x] = Node->getOperand(x); |
| if (!isTypeLegal(Ops[x].getValueType())) |
| Ops[x] = PromoteOp(Ops[x]); |
| } |
| Result = DAG.UpdateNodeOperands(Result, &Ops[0], 6); |
| break; |
| } |
| case TargetLowering::Expand: |
| //There is no libgcc call for this op |
| Result = Node->getOperand(0); // Noop |
| break; |
| } |
| break; |
| } |
| |
| case ISD::ATOMIC_CMP_SWAP: { |
| unsigned int num_operands = 4; |
| assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!"); |
| SDValue Ops[4]; |
| for (unsigned int x = 0; x < num_operands; ++x) |
| Ops[x] = LegalizeOp(Node->getOperand(x)); |
| Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands); |
| |
| switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Custom: |
| Result = TLI.LowerOperation(Result, DAG); |
| break; |
| case TargetLowering::Legal: |
| break; |
| } |
| AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); |
| AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); |
| return Result.getValue(Op.getResNo()); |
| } |
| case ISD::ATOMIC_LOAD_ADD: |
| case ISD::ATOMIC_LOAD_SUB: |
| case ISD::ATOMIC_LOAD_AND: |
| case ISD::ATOMIC_LOAD_OR: |
| case ISD::ATOMIC_LOAD_XOR: |
| case ISD::ATOMIC_LOAD_NAND: |
| case ISD::ATOMIC_LOAD_MIN: |
| case ISD::ATOMIC_LOAD_MAX: |
| case ISD::ATOMIC_LOAD_UMIN: |
| case ISD::ATOMIC_LOAD_UMAX: |
| case ISD::ATOMIC_SWAP: { |
| unsigned int num_operands = 3; |
| assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!"); |
| SDValue Ops[3]; |
| for (unsigned int x = 0; x < num_operands; ++x) |
| Ops[x] = LegalizeOp(Node->getOperand(x)); |
| Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands); |
| |
| switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Custom: |
| Result = TLI.LowerOperation(Result, DAG); |
| break; |
| case TargetLowering::Legal: |
| break; |
| } |
| AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); |
| AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); |
| return Result.getValue(Op.getResNo()); |
| } |
| case ISD::Constant: { |
| ConstantSDNode *CN = cast<ConstantSDNode>(Node); |
| unsigned opAction = |
| TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); |
| |
| // We know we don't need to expand constants here, constants only have one |
| // value and we check that it is fine above. |
| |
| if (opAction == TargetLowering::Custom) { |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) |
| Result = Tmp1; |
| } |
| break; |
| } |
| case ISD::ConstantFP: { |
| // Spill FP immediates to the constant pool if the target cannot directly |
| // codegen them. Targets often have some immediate values that can be |
| // efficiently generated into an FP register without a load. We explicitly |
| // leave these constants as ConstantFP nodes for the target to deal with. |
| ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); |
| |
| switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: |
| break; |
| case TargetLowering::Custom: |
| Tmp3 = TLI.LowerOperation(Result, DAG); |
| if (Tmp3.getNode()) { |
| Result = Tmp3; |
| break; |
| } |
| // FALLTHROUGH |
| case TargetLowering::Expand: { |
| // Check to see if this FP immediate is already legal. |
| bool isLegal = false; |
| for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), |
| E = TLI.legal_fpimm_end(); I != E; ++I) { |
| if (CFP->isExactlyValue(*I)) { |
| isLegal = true; |
| break; |
| } |
| } |
| // If this is a legal constant, turn it into a TargetConstantFP node. |
| if (isLegal) |
| break; |
| Result = ExpandConstantFP(CFP, true, DAG, TLI); |
| } |
| } |
| break; |
| } |
| case ISD::TokenFactor: |
| if (Node->getNumOperands() == 2) { |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| Tmp2 = LegalizeOp(Node->getOperand(1)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); |
| } else if (Node->getNumOperands() == 3) { |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| Tmp2 = LegalizeOp(Node->getOperand(1)); |
| Tmp3 = LegalizeOp(Node->getOperand(2)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); |
| } else { |
| SmallVector<SDValue, 8> Ops; |
| // Legalize the operands. |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) |
| Ops.push_back(LegalizeOp(Node->getOperand(i))); |
| Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); |
| } |
| break; |
| |
| case ISD::FORMAL_ARGUMENTS: |
| case ISD::CALL: |
| // The only option for this is to custom lower it. |
| Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); |
| assert(Tmp3.getNode() && "Target didn't custom lower this node!"); |
| // A call within a calling sequence must be legalized to something |
| // other than the normal CALLSEQ_END. Violating this gets Legalize |
| // into an infinite loop. |
| assert ((!IsLegalizingCall || |
| Node->getOpcode() != ISD::CALL || |
| Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) && |
| "Nested CALLSEQ_START..CALLSEQ_END not supported."); |
| |
| // The number of incoming and outgoing values should match; unless the final |
| // outgoing value is a flag. |
| assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() || |
| (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 && |
| Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) == |
| MVT::Flag)) && |
| "Lowering call/formal_arguments produced unexpected # results!"); |
| |
| // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to |
| // remember that we legalized all of them, so it doesn't get relegalized. |
| for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) { |
| if (Tmp3.getNode()->getValueType(i) == MVT::Flag) |
| continue; |
| Tmp1 = LegalizeOp(Tmp3.getValue(i)); |
| if (Op.getResNo() == i) |
| Tmp2 = Tmp1; |
| AddLegalizedOperand(SDValue(Node, i), Tmp1); |
| } |
| return Tmp2; |
| case ISD::EXTRACT_SUBREG: { |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1)); |
| assert(idx && "Operand must be a constant"); |
| Tmp2 = DAG.getTargetConstant(idx->getAPIntValue(), idx->getValueType(0)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); |
| } |
| break; |
| case ISD::INSERT_SUBREG: { |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| Tmp2 = LegalizeOp(Node->getOperand(1)); |
| ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2)); |
| assert(idx && "Operand must be a constant"); |
| Tmp3 = DAG.getTargetConstant(idx->getAPIntValue(), idx->getValueType(0)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); |
| } |
| break; |
| case ISD::BUILD_VECTOR: |
| switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Custom: |
| Tmp3 = TLI.LowerOperation(Result, DAG); |
| if (Tmp3.getNode()) { |
| Result = Tmp3; |
| break; |
| } |
| // FALLTHROUGH |
| case TargetLowering::Expand: |
| Result = ExpandBUILD_VECTOR(Result.getNode()); |
| break; |
| } |
| break; |
| case ISD::INSERT_VECTOR_ELT: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec |
| Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo |
| |
| // The type of the value to insert may not be legal, even though the vector |
| // type is legal. Legalize/Promote accordingly. We do not handle Expand |
| // here. |
| switch (getTypeAction(Node->getOperand(1).getValueType())) { |
| default: assert(0 && "Cannot expand insert element operand"); |
| case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; |
| case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; |
| case Expand: |
| // FIXME: An alternative would be to check to see if the target is not |
| // going to custom lower this operation, we could bitcast to half elt |
| // width and perform two inserts at that width, if that is legal. |
| Tmp2 = Node->getOperand(1); |
| break; |
| } |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); |
| |
| switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, |
| Node->getValueType(0))) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: |
| break; |
| case TargetLowering::Custom: |
| Tmp4 = TLI.LowerOperation(Result, DAG); |
| if (Tmp4.getNode()) { |
| Result = Tmp4; |
| break; |
| } |
| // FALLTHROUGH |
| case TargetLowering::Promote: |
| // Fall thru for vector case |
| case TargetLowering::Expand: { |
| // If the insert index is a constant, codegen this as a scalar_to_vector, |
| // then a shuffle that inserts it into the right position in the vector. |
| if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { |
| // SCALAR_TO_VECTOR requires that the type of the value being inserted |
| // match the element type of the vector being created. |
| if (Tmp2.getValueType() == |
| Op.getValueType().getVectorElementType()) { |
| SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, |
| Tmp1.getValueType(), Tmp2); |
| |
| unsigned NumElts = Tmp1.getValueType().getVectorNumElements(); |
| MVT ShufMaskVT = |
| MVT::getIntVectorWithNumElements(NumElts); |
| MVT ShufMaskEltVT = ShufMaskVT.getVectorElementType(); |
| |
| // We generate a shuffle of InVec and ScVec, so the shuffle mask |
| // should be 0,1,2,3,4,5... with the appropriate element replaced with |
| // elt 0 of the RHS. |
| SmallVector<SDValue, 8> ShufOps; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (i != InsertPos->getZExtValue()) |
| ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT)); |
| else |
| ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT)); |
| } |
| SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT, |
| &ShufOps[0], ShufOps.size()); |
| |
| Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(), |
| Tmp1, ScVec, ShufMask); |
| Result = LegalizeOp(Result); |
| break; |
| } |
| } |
| Result = PerformInsertVectorEltInMemory(Tmp1, Tmp2, Tmp3); |
| break; |
| } |
| } |
| break; |
| case ISD::SCALAR_TO_VECTOR: |
| if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { |
| Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); |
| break; |
| } |
| |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal |
| Result = DAG.UpdateNodeOperands(Result, Tmp1); |
| switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, |
| Node->getValueType(0))) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: |
| break; |
| case TargetLowering::Custom: |
| Tmp3 = TLI.LowerOperation(Result, DAG); |
| if (Tmp3.getNode()) { |
| Result = Tmp3; |
| break; |
| } |
| // FALLTHROUGH |
| case TargetLowering::Expand: |
| Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); |
| break; |
| } |
| break; |
| case ISD::VECTOR_SHUFFLE: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); |
| |
| // Allow targets to custom lower the SHUFFLEs they support. |
| switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) { |
| default: assert(0 && "Unknown operation action!"); |
| case TargetLowering::Legal: |
| assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) && |
| "vector shuffle should not be created if not legal!"); |
| break; |
| case TargetLowering::Custom: |
| Tmp3 = TLI.LowerOperation(Result, DAG); |
| if (Tmp3.getNode()) { |
| Result = Tmp3; |
| break; |
| } |
| // FALLTHROUGH |
| case TargetLowering::Expand: { |
| MVT VT = Node->getValueType(0); |
| MVT EltVT = VT.getVectorElementType(); |
| MVT PtrVT = TLI.getPointerTy(); |
| SDValue Mask = Node->getOperand(2); |
| unsigned NumElems = Mask.getNumOperands(); |
| SmallVector<SDValue,8> Ops; |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDValue Arg = Mask.getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) { |
| Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); |
| } else { |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue(); |
| if (Idx < NumElems) |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, |
| DAG.getConstant(Idx, PtrVT))); |
| else |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, |
| DAG.getConstant(Idx - NumElems, PtrVT))); |
| } |
| } |
| Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); |
| break; |
| } |
| case TargetLowering::Promote: { |
| // Change base type to a different vector type. |
| MVT OVT = Node->getValueType(0); |
| MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); |
| |
| // Cast the two input vectors. |
| Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); |
| Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); |
| |
| // Convert the shuffle mask to the right # elements. |
| Tmp3 = SDValue(isShuffleLegal(OVT, Node->getOperand(2)), 0); |
| assert(Tmp3.getNode() && "Shuffle not legal?"); |
| Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3); |
| Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); |
| break; |
| } |
| } |
| break; |
| |
| case ISD::EXTRACT_VECTOR_ELT: |
| Tmp1 = Node->getOperand(0); |
| Tmp2 = LegalizeOp(Node->getOperand(1)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); |
| Result = ExpandEXTRACT_VECTOR_ELT(Result); |
| break; |
| |
| case ISD::EXTRACT_SUBVECTOR: |
| Tmp1 = Node->getOperand(0); |
| Tmp2 = LegalizeOp(Node->getOperand(1)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); |
| Result = ExpandEXTRACT_SUBVECTOR(Result); |
| break; |
| |
| case ISD::CONCAT_VECTORS: { |
| // Use extract/insert/build vector for now. We might try to be |
| // more clever later. |
| MVT PtrVT = TLI.getPointerTy(); |
| SmallVector<SDValue, 8> Ops; |
| unsigned NumOperands = Node->getNumOperands(); |
| for (unsigned i=0; i < NumOperands; ++i) { |
| SDValue SubOp = Node->getOperand(i); |
| MVT VVT = SubOp.getNode()->getValueType(0); |
| MVT EltVT = VVT.getVectorElementType(); |
| unsigned NumSubElem = VVT.getVectorNumElements(); |
| for (unsigned j=0; j < NumSubElem; ++j) { |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, SubOp, |
| DAG.getConstant(j, PtrVT))); |
| } |
| } |
| return LegalizeOp(DAG.getNode(ISD::BUILD_VECTOR, Node->getValueType(0), |
| &Ops[0], Ops.size())); |
| } |
| |
| case ISD::CALLSEQ_START: { |
| SDNode *CallEnd = FindCallEndFromCallStart(Node); |
| |
| // Recursively Legalize all of the inputs of the call end that do not lead |
| // to this call start. This ensures that any libcalls that need be inserted |
| // are inserted *before* the CALLSEQ_START. |
| {SmallPtrSet<SDNode*, 32> NodesLeadingTo; |
| for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) |
| LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node, |
| NodesLeadingTo); |
| } |
| |
| // Now that we legalized all of the inputs (which may have inserted |
| // libcalls) create the new CALLSEQ_START node. |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| |
| // Merge in the last call, to ensure that this call start after the last |
| // call ended. |
| if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { |
| Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); |
| Tmp1 = LegalizeOp(Tmp1); |
| } |
| |
| // Do not try to legalize the target-specific arguments (#1+). |
| if (Tmp1 != Node->getOperand(0)) { |
| SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); |
| Ops[0] = Tmp1; |
| Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); |
| } |
| |
| // Remember that the CALLSEQ_START is legalized. |
| AddLegalizedOperand(Op.getValue(0), Result); |
| if (Node->getNumValues() == 2) // If this has a flag result, remember it. |
| AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); |
| |
| // Now that the callseq_start and all of the non-call nodes above this call |
| // sequence have been legalized, legalize the call itself. During this |
| // process, no libcalls can/will be inserted, guaranteeing that no calls |
| // can overlap. |
| assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); |
| // Note that we are selecting this call! |
| LastCALLSEQ_END = SDValue(CallEnd, 0); |
| IsLegalizingCall = true; |
| |
| // Legalize the call, starting from the CALLSEQ_END. |
| LegalizeOp(LastCALLSEQ_END); |
| assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); |
| return Result; |
| } |
| case ISD::CALLSEQ_END: |
| // If the CALLSEQ_START node hasn't been legalized first, legalize it. This |
| // will cause this node to be legalized as well as handling libcalls right. |
| if (LastCALLSEQ_END.getNode() != Node) { |
| LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0)); |
| DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); |
| assert(I != LegalizedNodes.end() && |
| "Legalizing the call start should have legalized this node!"); |
| return I->second; |
| } |
| |
| // Otherwise, the call start has been legalized and everything is going |
| // according to plan. Just legalize ourselves normally here. |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| // Do not try to legalize the target-specific arguments (#1+), except for |
| // an optional flag input. |
| if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ |
| if (Tmp1 != Node->getOperand(0)) { |
| SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); |
| Ops[0] = Tmp1; |
| Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); |
| } |
| } else { |
| Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); |
| if (Tmp1 != Node->getOperand(0) || |
| Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { |
| SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); |
| Ops[0] = Tmp1; |
| Ops.back() = Tmp2; |
| Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); |
| } |
| } |
| assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); |
| // This finishes up call legalization. |
| IsLegalizingCall = false; |
| |
| // If the CALLSEQ_END node has a flag, remember that we legalized it. |
| AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); |
| if (Node->getNumValues() == 2) |
| AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); |
| return Result.getValue(Op.getResNo()); |
| case ISD::DYNAMIC_STACKALLOC: { |
| MVT VT = Node->getValueType(0); |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. |
| Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); |
| |
| Tmp1 = Result.getValue(0); |
| Tmp2 = Result.getValue(1); |
| switch (TLI.getOperationAction(Node->getOpcode(), VT)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Expand: { |
| unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); |
| assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" |
| " not tell us which reg is the stack pointer!"); |
| SDValue Chain = Tmp1.getOperand(0); |
| |
| // Chain the dynamic stack allocation so that it doesn't modify the stack |
| // pointer when other instructions are using the stack. |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); |
| |
| SDValue Size = Tmp2.getOperand(1); |
| SDValue SP = DAG.getCopyFromReg(Chain, SPReg, VT); |
| Chain = SP.getValue(1); |
| unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); |
| unsigned StackAlign = |
| TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); |
| if (Align > StackAlign) |
| SP = DAG.getNode(ISD::AND, VT, SP, |
| DAG.getConstant(-(uint64_t)Align, VT)); |
| Tmp1 = DAG.getNode(ISD::SUB, VT, SP, Size); // Value |
| Chain = DAG.getCopyToReg(Chain, SPReg, Tmp1); // Output chain |
| |
| Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), |
| DAG.getIntPtrConstant(0, true), SDValue()); |
| |
| Tmp1 = LegalizeOp(Tmp1); |
| Tmp2 = LegalizeOp(Tmp2); |
| break; |
| } |
| case TargetLowering::Custom: |
| Tmp3 = TLI.LowerOperation(Tmp1, DAG); |
| if (Tmp3.getNode()) { |
| Tmp1 = LegalizeOp(Tmp3); |
| Tmp2 = LegalizeOp(Tmp3.getValue(1)); |
| } |
| break; |
| case TargetLowering::Legal: |
| break; |
| } |
| // Since this op produce two values, make sure to remember that we |
| // legalized both of them. |
| AddLegalizedOperand(SDValue(Node, 0), Tmp1); |
| AddLegalizedOperand(SDValue(Node, 1), Tmp2); |
| return Op.getResNo() ? Tmp2 : Tmp1; |
| } |
| case ISD::INLINEASM: { |
| SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); |
| bool Changed = false; |
| // Legalize all of the operands of the inline asm, in case they are nodes |
| // that need to be expanded or something. Note we skip the asm string and |
| // all of the TargetConstant flags. |
| SDValue Op = LegalizeOp(Ops[0]); |
| Changed = Op != Ops[0]; |
| Ops[0] = Op; |
| |
| bool HasInFlag = Ops.back().getValueType() == MVT::Flag; |
| for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { |
| unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getZExtValue() >> 3; |
| for (++i; NumVals; ++i, --NumVals) { |
| SDValue Op = LegalizeOp(Ops[i]); |
| if (Op != Ops[i]) { |
| Changed = true; |
| Ops[i] = Op; |
| } |
| } |
| } |
| |
| if (HasInFlag) { |
| Op = LegalizeOp(Ops.back()); |
| Changed |= Op != Ops.back(); |
| Ops.back() = Op; |
| } |
| |
| if (Changed) |
| Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); |
| |
| // INLINE asm returns a chain and flag, make sure to add both to the map. |
| AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); |
| AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); |
| return Result.getValue(Op.getResNo()); |
| } |
| case ISD::BR: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| // Ensure that libcalls are emitted before a branch. |
| Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); |
| Tmp1 = LegalizeOp(Tmp1); |
| LastCALLSEQ_END = DAG.getEntryNode(); |
| |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); |
| break; |
| case ISD::BRIND: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| // Ensure that libcalls are emitted before a branch. |
| Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); |
| Tmp1 = LegalizeOp(Tmp1); |
| LastCALLSEQ_END = DAG.getEntryNode(); |
| |
| switch (getTypeAction(Node->getOperand(1).getValueType())) { |
| default: assert(0 && "Indirect target must be legal type (pointer)!"); |
| case Legal: |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. |
| break; |
| } |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); |
| break; |
| case ISD::BR_JT: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| // Ensure that libcalls are emitted before a branch. |
| Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); |
| Tmp1 = LegalizeOp(Tmp1); |
| LastCALLSEQ_END = DAG.getEntryNode(); |
| |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); |
| |
| switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: break; |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| break; |
| case TargetLowering::Expand: { |
| SDValue Chain = Result.getOperand(0); |
| SDValue Table = Result.getOperand(1); |
| SDValue Index = Result.getOperand(2); |
| |
| MVT PTy = TLI.getPointerTy(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); |
| Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy)); |
| SDValue Addr = DAG.getNode(ISD::ADD, PTy, Index, Table); |
| |
| MVT MemVT = MVT::getIntegerVT(EntrySize * 8); |
| SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, PTy, Chain, Addr, |
| PseudoSourceValue::getJumpTable(), 0, MemVT); |
| Addr = LD; |
| if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { |
| // For PIC, the sequence is: |
| // BRIND(load(Jumptable + index) + RelocBase) |
| // RelocBase can be JumpTable, GOT or some sort of global base. |
| Addr = DAG.getNode(ISD::ADD, PTy, Addr, |
| TLI.getPICJumpTableRelocBase(Table, DAG)); |
| } |
| Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr); |
| } |
| } |
| break; |
| case ISD::BRCOND: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| // Ensure that libcalls are emitted before a return. |
| Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); |
| Tmp1 = LegalizeOp(Tmp1); |
| LastCALLSEQ_END = DAG.getEntryNode(); |
| |
| switch (getTypeAction(Node->getOperand(1).getValueType())) { |
| case Expand: assert(0 && "It's impossible to expand bools"); |
| case Legal: |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. |
| break; |
| case Promote: { |
| Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. |
| |
| // The top bits of the promoted condition are not necessarily zero, ensure |
| // that the value is properly zero extended. |
| unsigned BitWidth = Tmp2.getValueSizeInBits(); |
| if (!DAG.MaskedValueIsZero(Tmp2, |
| APInt::getHighBitsSet(BitWidth, BitWidth-1))) |
| Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1); |
| break; |
| } |
| } |
| |
| // Basic block destination (Op#2) is always legal. |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); |
| |
| switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: break; |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| break; |
| case TargetLowering::Expand: |
| // Expand brcond's setcc into its constituent parts and create a BR_CC |
| // Node. |
| if (Tmp2.getOpcode() == ISD::SETCC) { |
| Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2), |
| Tmp2.getOperand(0), Tmp2.getOperand(1), |
| Node->getOperand(2)); |
| } else { |
| Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, |
| DAG.getCondCode(ISD::SETNE), Tmp2, |
| DAG.getConstant(0, Tmp2.getValueType()), |
| Node->getOperand(2)); |
| } |
| break; |
| } |
| break; |
| case ISD::BR_CC: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| // Ensure that libcalls are emitted before a branch. |
| Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); |
| Tmp1 = LegalizeOp(Tmp1); |
| Tmp2 = Node->getOperand(2); // LHS |
| Tmp3 = Node->getOperand(3); // RHS |
| Tmp4 = Node->getOperand(1); // CC |
| |
| LegalizeSetCC(TLI.getSetCCResultType(Tmp2.getValueType()), Tmp2, Tmp3,Tmp4); |
| LastCALLSEQ_END = DAG.getEntryNode(); |
| |
| // If we didn't get both a LHS and RHS back from LegalizeSetCC, |
| // the LHS is a legal SETCC itself. In this case, we need to compare |
| // the result against zero to select between true and false values. |
| if (Tmp3.getNode() == 0) { |
| Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); |
| Tmp4 = DAG.getCondCode(ISD::SETNE); |
| } |
| |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, |
| Node->getOperand(4)); |
| |
| switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { |
| default: assert(0 && "Unexpected action for BR_CC!"); |
| case TargetLowering::Legal: break; |
| case TargetLowering::Custom: |
| Tmp4 = TLI.LowerOperation(Result, DAG); |
| if (Tmp4.getNode()) Result = Tmp4; |
| break; |
| } |
| break; |
| case ISD::LOAD: { |
| LoadSDNode *LD = cast<LoadSDNode>(Node); |
| Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. |
| Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. |
| |
| ISD::LoadExtType ExtType = LD->getExtensionType(); |
| if (ExtType == ISD::NON_EXTLOAD) { |
| MVT VT = Node->getValueType(0); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); |
| Tmp3 = Result.getValue(0); |
| Tmp4 = Result.getValue(1); |
| |
| switch (TLI.getOperationAction(Node->getOpcode(), VT)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: |
| // If this is an unaligned load and the target doesn't support it, |
| // expand it. |
| if (!TLI.allowsUnalignedMemoryAccesses()) { |
| unsigned ABIAlignment = TLI.getTargetData()-> |
| getABITypeAlignment(LD->getMemoryVT().getTypeForMVT()); |
| if (LD->getAlignment() < ABIAlignment){ |
| Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG, |
| TLI); |
| Tmp3 = Result.getOperand(0); |
| Tmp4 = Result.getOperand(1); |
| Tmp3 = LegalizeOp(Tmp3); |
| Tmp4 = LegalizeOp(Tmp4); |
| } |
| } |
| break; |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Tmp3, DAG); |
| if (Tmp1.getNode()) { |
| Tmp3 = LegalizeOp(Tmp1); |
| Tmp4 = LegalizeOp(Tmp1.getValue(1)); |
| } |
| break; |
| case TargetLowering::Promote: { |
| // Only promote a load of vector type to another. |
| assert(VT.isVector() && "Cannot promote this load!"); |
| // Change base type to a different vector type. |
| MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); |
| |
| Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(), |
| LD->getSrcValueOffset(), |
| LD->isVolatile(), LD->getAlignment()); |
| Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1)); |
| Tmp4 = LegalizeOp(Tmp1.getValue(1)); |
| break; |
| } |
| } |
| // Since loads produce two values, make sure to remember that we |
| // legalized both of them. |
| AddLegalizedOperand(SDValue(Node, 0), Tmp3); |
| AddLegalizedOperand(SDValue(Node, 1), Tmp4); |
| return Op.getResNo() ? Tmp4 : Tmp3; |
| } else { |
| MVT SrcVT = LD->getMemoryVT(); |
| unsigned SrcWidth = SrcVT.getSizeInBits(); |
| int SVOffset = LD->getSrcValueOffset(); |
| unsigned Alignment = LD->getAlignment(); |
| bool isVolatile = LD->isVolatile(); |
| |
| if (SrcWidth != SrcVT.getStoreSizeInBits() && |
| // Some targets pretend to have an i1 loading operation, and actually |
| // load an i8. This trick is correct for ZEXTLOAD because the top 7 |
| // bits are guaranteed to be zero; it helps the optimizers understand |
| // that these bits are zero. It is also useful for EXTLOAD, since it |
| // tells the optimizers that those bits are undefined. It would be |
| // nice to have an effective generic way of getting these benefits... |
| // Until such a way is found, don't insist on promoting i1 here. |
| (SrcVT != MVT::i1 || |
| TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { |
| // Promote to a byte-sized load if not loading an integral number of |
| // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. |
| unsigned NewWidth = SrcVT.getStoreSizeInBits(); |
| MVT NVT = MVT::getIntegerVT(NewWidth); |
| SDValue Ch; |
| |
| // The extra bits are guaranteed to be zero, since we stored them that |
| // way. A zext load from NVT thus automatically gives zext from SrcVT. |
| |
| ISD::LoadExtType NewExtType = |
| ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; |
| |
| Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), |
| Tmp1, Tmp2, LD->getSrcValue(), SVOffset, |
| NVT, isVolatile, Alignment); |
| |
| Ch = Result.getValue(1); // The chain. |
| |
| if (ExtType == ISD::SEXTLOAD) |
| // Having the top bits zero doesn't help when sign extending. |
| Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), |
| Result, DAG.getValueType(SrcVT)); |
| else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) |
| // All the top bits are guaranteed to be zero - inform the optimizers. |
| Result = DAG.getNode(ISD::AssertZext, Result.getValueType(), Result, |
| DAG.getValueType(SrcVT)); |
| |
| Tmp1 = LegalizeOp(Result); |
| Tmp2 = LegalizeOp(Ch); |
| } else if (SrcWidth & (SrcWidth - 1)) { |
| // If not loading a power-of-2 number of bits, expand as two loads. |
| assert(SrcVT.isExtended() && !SrcVT.isVector() && |
| "Unsupported extload!"); |
| unsigned RoundWidth = 1 << Log2_32(SrcWidth); |
| assert(RoundWidth < SrcWidth); |
| unsigned ExtraWidth = SrcWidth - RoundWidth; |
| assert(ExtraWidth < RoundWidth); |
| assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && |
| "Load size not an integral number of bytes!"); |
| MVT RoundVT = MVT::getIntegerVT(RoundWidth); |
| MVT ExtraVT = MVT::getIntegerVT(ExtraWidth); |
| SDValue Lo, Hi, Ch; |
| unsigned IncrementSize; |
| |
| if (TLI.isLittleEndian()) { |
| // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) |
| // Load the bottom RoundWidth bits. |
| Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, |
| LD->getSrcValue(), SVOffset, RoundVT, isVolatile, |
| Alignment); |
| |
| // Load the remaining ExtraWidth bits. |
| IncrementSize = RoundWidth / 8; |
| Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, |
| DAG.getIntPtrConstant(IncrementSize)); |
| Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, |
| LD->getSrcValue(), SVOffset + IncrementSize, |
| ExtraVT, isVolatile, |
| MinAlign(Alignment, IncrementSize)); |
| |
| // Build a factor node to remember that this load is independent of the |
| // other one. |
| Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), |
| Hi.getValue(1)); |
| |
| // Move the top bits to the right place. |
| Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, |
| DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); |
| |
| // Join the hi and lo parts. |
| Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); |
| } else { |
| // Big endian - avoid unaligned loads. |
| // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 |
| // Load the top RoundWidth bits. |
| Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, |
| LD->getSrcValue(), SVOffset, RoundVT, isVolatile, |
| Alignment); |
| |
| // Load the remaining ExtraWidth bits. |
| IncrementSize = RoundWidth / 8; |
| Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, |
| DAG.getIntPtrConstant(IncrementSize)); |
| Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, |
| LD->getSrcValue(), SVOffset + IncrementSize, |
| ExtraVT, isVolatile, |
| MinAlign(Alignment, IncrementSize)); |
| |
| // Build a factor node to remember that this load is independent of the |
| // other one. |
| Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), |
| Hi.getValue(1)); |
| |
| // Move the top bits to the right place. |
| Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, |
| DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); |
| |
| // Join the hi and lo parts. |
| Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); |
| } |
| |
| Tmp1 = LegalizeOp(Result); |
| Tmp2 = LegalizeOp(Ch); |
| } else { |
| switch (TLI.getLoadExtAction(ExtType, SrcVT)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Custom: |
| isCustom = true; |
| // FALLTHROUGH |
| case TargetLowering::Legal: |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); |
| Tmp1 = Result.getValue(0); |
| Tmp2 = Result.getValue(1); |
| |
| if (isCustom) { |
| Tmp3 = TLI.LowerOperation(Result, DAG); |
| if (Tmp3.getNode()) { |
| Tmp1 = LegalizeOp(Tmp3); |
| Tmp2 = LegalizeOp(Tmp3.getValue(1)); |
| } |
| } else { |
| // If this is an unaligned load and the target doesn't support it, |
| // expand it. |
| if (!TLI.allowsUnalignedMemoryAccesses()) { |
| unsigned ABIAlignment = TLI.getTargetData()-> |
| getABITypeAlignment(LD->getMemoryVT().getTypeForMVT()); |
| if (LD->getAlignment() < ABIAlignment){ |
| Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG, |
| TLI); |
| Tmp1 = Result.getOperand(0); |
| Tmp2 = Result.getOperand(1); |
| Tmp1 = LegalizeOp(Tmp1); |
| Tmp2 = LegalizeOp(Tmp2); |
| } |
| } |
| } |
| break; |
| case TargetLowering::Expand: |
| // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND |
| if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { |
| SDValue Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(), |
| LD->getSrcValueOffset(), |
| LD->isVolatile(), LD->getAlignment()); |
| Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load); |
| Tmp1 = LegalizeOp(Result); // Relegalize new nodes. |
| Tmp2 = LegalizeOp(Load.getValue(1)); |
| break; |
| } |
| assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); |
| // Turn the unsupported load into an EXTLOAD followed by an explicit |
| // zero/sign extend inreg. |
| Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), |
| Tmp1, Tmp2, LD->getSrcValue(), |
| LD->getSrcValueOffset(), SrcVT, |
| LD->isVolatile(), LD->getAlignment()); |
| SDValue ValRes; |
| if (ExtType == ISD::SEXTLOAD) |
| ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), |
| Result, DAG.getValueType(SrcVT)); |
| else |
| ValRes = DAG.getZeroExtendInReg(Result, SrcVT); |
| Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. |
| Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. |
| break; |
| } |
| } |
| |
| // Since loads produce two values, make sure to remember that we legalized |
| // both of them. |
| AddLegalizedOperand(SDValue(Node, 0), Tmp1); |
| AddLegalizedOperand(SDValue(Node, 1), Tmp2); |
| return Op.getResNo() ? Tmp2 : Tmp1; |
| } |
| } |
| case ISD::EXTRACT_ELEMENT: { |
| MVT OpTy = Node->getOperand(0).getValueType(); |
| switch (getTypeAction(OpTy)) { |
| default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); |
| case Legal: |
| if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { |
| // 1 -> Hi |
| Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0), |
| DAG.getConstant(OpTy.getSizeInBits()/2, |
| TLI.getShiftAmountTy())); |
| Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result); |
| } else { |
| // 0 -> Lo |
| Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), |
| Node->getOperand(0)); |
| } |
| break; |
| case Expand: |
| // Get both the low and high parts. |
| ExpandOp(Node->getOperand(0), Tmp1, Tmp2); |
| if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) |
| Result = Tmp2; // 1 -> Hi |
| else |
| Result = Tmp1; // 0 -> Lo |
| break; |
| } |
| break; |
| } |
| |
| case ISD::CopyToReg: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| |
| assert(isTypeLegal(Node->getOperand(2).getValueType()) && |
| "Register type must be legal!"); |
| // Legalize the incoming value (must be a legal type). |
| Tmp2 = LegalizeOp(Node->getOperand(2)); |
| if (Node->getNumValues() == 1) { |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); |
| } else { |
| assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); |
| if (Node->getNumOperands() == 4) { |
| Tmp3 = LegalizeOp(Node->getOperand(3)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, |
| Tmp3); |
| } else { |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); |
| } |
| |
| // Since this produces two values, make sure to remember that we legalized |
| // both of them. |
| AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); |
| AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); |
| return Result; |
| } |
| break; |
| |
| case ISD::RET: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| |
| // Ensure that libcalls are emitted before a return. |
| Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); |
| Tmp1 = LegalizeOp(Tmp1); |
| LastCALLSEQ_END = DAG.getEntryNode(); |
| |
| switch (Node->getNumOperands()) { |
| case 3: // ret val |
| Tmp2 = Node->getOperand(1); |
| Tmp3 = Node->getOperand(2); // Signness |
| switch (getTypeAction(Tmp2.getValueType())) { |
| case Legal: |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); |
| break; |
| case Expand: |
| if (!Tmp2.getValueType().isVector()) { |
| SDValue Lo, Hi; |
| ExpandOp(Tmp2, Lo, Hi); |
| |
| // Big endian systems want the hi reg first. |
| if (TLI.isBigEndian()) |
| std::swap(Lo, Hi); |
| |
| if (Hi.getNode()) |
| Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); |
| else |
| Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3); |
| Result = LegalizeOp(Result); |
| } else { |
| SDNode *InVal = Tmp2.getNode(); |
| int InIx = Tmp2.getResNo(); |
| unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements(); |
| MVT EVT = InVal->getValueType(InIx).getVectorElementType(); |
| |
| // Figure out if there is a simple type corresponding to this Vector |
| // type. If so, convert to the vector type. |
| MVT TVT = MVT::getVectorVT(EVT, NumElems); |
| if (TLI.isTypeLegal(TVT)) { |
| // Turn this into a return of the vector type. |
| Tmp2 = LegalizeOp(Tmp2); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); |
| } else if (NumElems == 1) { |
| // Turn this into a return of the scalar type. |
| Tmp2 = ScalarizeVectorOp(Tmp2); |
| Tmp2 = LegalizeOp(Tmp2); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); |
| |
| // FIXME: Returns of gcc generic vectors smaller than a legal type |
| // should be returned in integer registers! |
| |
| // The scalarized value type may not be legal, e.g. it might require |
| // promotion or expansion. Relegalize the return. |
| Result = LegalizeOp(Result); |
| } else { |
| // FIXME: Returns of gcc generic vectors larger than a legal vector |
| // type should be returned by reference! |
| SDValue Lo, Hi; |
| SplitVectorOp(Tmp2, Lo, Hi); |
| Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); |
| Result = LegalizeOp(Result); |
| } |
| } |
| break; |
| case Promote: |
| Tmp2 = PromoteOp(Node->getOperand(1)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); |
| Result = LegalizeOp(Result); |
| break; |
| } |
| break; |
| case 1: // ret void |
| Result = DAG.UpdateNodeOperands(Result, Tmp1); |
| break; |
| default: { // ret <values> |
| SmallVector<SDValue, 8> NewValues; |
| NewValues.push_back(Tmp1); |
| for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) |
| switch (getTypeAction(Node->getOperand(i).getValueType())) { |
| case Legal: |
| NewValues.push_back(LegalizeOp(Node->getOperand(i))); |
| NewValues.push_back(Node->getOperand(i+1)); |
| break; |
| case Expand: { |
| SDValue Lo, Hi; |
| assert(!Node->getOperand(i).getValueType().isExtended() && |
| "FIXME: TODO: implement returning non-legal vector types!"); |
| ExpandOp(Node->getOperand(i), Lo, Hi); |
| NewValues.push_back(Lo); |
| NewValues.push_back(Node->getOperand(i+1)); |
| if (Hi.getNode()) { |
| NewValues.push_back(Hi); |
| NewValues.push_back(Node->getOperand(i+1)); |
| } |
| break; |
| } |
| case Promote: |
| assert(0 && "Can't promote multiple return value yet!"); |
| } |
| |
| if (NewValues.size() == Node->getNumOperands()) |
| Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); |
| else |
| Result = DAG.getNode(ISD::RET, MVT::Other, |
| &NewValues[0], NewValues.size()); |
| break; |
| } |
| } |
| |
| if (Result.getOpcode() == ISD::RET) { |
| switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: break; |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| break; |
| } |
| } |
| break; |
| case ISD::STORE: { |
| StoreSDNode *ST = cast<StoreSDNode>(Node); |
| Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. |
| Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. |
| int SVOffset = ST->getSrcValueOffset(); |
| unsigned Alignment = ST->getAlignment(); |
| bool isVolatile = ST->isVolatile(); |
| |
| if (!ST->isTruncatingStore()) { |
| // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' |
| // FIXME: We shouldn't do this for TargetConstantFP's. |
| // FIXME: move this to the DAG Combiner! Note that we can't regress due |
| // to phase ordering between legalized code and the dag combiner. This |
| // probably means that we need to integrate dag combiner and legalizer |
| // together. |
| // We generally can't do this one for long doubles. |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { |
| if (CFP->getValueType(0) == MVT::f32 && |
| getTypeAction(MVT::i32) == Legal) { |
| Tmp3 = DAG.getConstant(CFP->getValueAPF(). |
| bitcastToAPInt().zextOrTrunc(32), |
| MVT::i32); |
| Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), |
| SVOffset, isVolatile, Alignment); |
| break; |
| } else if (CFP->getValueType(0) == MVT::f64) { |
| // If this target supports 64-bit registers, do a single 64-bit store. |
| if (getTypeAction(MVT::i64) == Legal) { |
| Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). |
| zextOrTrunc(64), MVT::i64); |
| Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), |
| SVOffset, isVolatile, Alignment); |
| break; |
| } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) { |
| // Otherwise, if the target supports 32-bit registers, use 2 32-bit |
| // stores. If the target supports neither 32- nor 64-bits, this |
| // xform is certainly not worth it. |
| const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); |
| SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32); |
| SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); |
| if (TLI.isBigEndian()) std::swap(Lo, Hi); |
| |
| Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), |
| SVOffset, isVolatile, Alignment); |
| Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, |
| DAG.getIntPtrConstant(4)); |
| Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, |
| isVolatile, MinAlign(Alignment, 4U)); |
| |
| Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); |
| break; |
| } |
| } |
| } |
| |
| switch (getTypeAction(ST->getMemoryVT())) { |
| case Legal: { |
| Tmp3 = LegalizeOp(ST->getValue()); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, |
| ST->getOffset()); |
| |
| MVT VT = Tmp3.getValueType(); |
| switch (TLI.getOperationAction(ISD::STORE, VT)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: |
| // If this is an unaligned store and the target doesn't support it, |
| // expand it. |
| if (!TLI.allowsUnalignedMemoryAccesses()) { |
| unsigned ABIAlignment = TLI.getTargetData()-> |
| getABITypeAlignment(ST->getMemoryVT().getTypeForMVT()); |
| if (ST->getAlignment() < ABIAlignment) |
| Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG, |
| TLI); |
| } |
| break; |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| break; |
| case TargetLowering::Promote: |
| assert(VT.isVector() && "Unknown legal promote case!"); |
| Tmp3 = DAG.getNode(ISD::BIT_CONVERT, |
| TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); |
| Result = DAG.getStore(Tmp1, Tmp3, Tmp2, |
| ST->getSrcValue(), SVOffset, isVolatile, |
| Alignment); |
| break; |
| } |
| break; |
| } |
| case Promote: |
| if (!ST->getMemoryVT().isVector()) { |
| // Truncate the value and store the result. |
| Tmp3 = PromoteOp(ST->getValue()); |
| Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), |
| SVOffset, ST->getMemoryVT(), |
| isVolatile, Alignment); |
| break; |
| } |
| // Fall thru to expand for vector |
| case Expand: { |
| unsigned IncrementSize = 0; |
| SDValue Lo, Hi; |
| |
| // If this is a vector type, then we have to calculate the increment as |
| // the product of the element size in bytes, and the number of elements |
| // in the high half of the vector. |
| if (ST->getValue().getValueType().isVector()) { |
| SDNode *InVal = ST->getValue().getNode(); |
| int InIx = ST->getValue().getResNo(); |
| MVT InVT = InVal->getValueType(InIx); |
| unsigned NumElems = InVT.getVectorNumElements(); |
| MVT EVT = InVT.getVectorElementType(); |
| |
| // Figure out if there is a simple type corresponding to this Vector |
| // type. If so, convert to the vector type. |
| MVT TVT = MVT::getVectorVT(EVT, NumElems); |
| if (TLI.isTypeLegal(TVT)) { |
| // Turn this into a normal store of the vector type. |
| Tmp3 = LegalizeOp(ST->getValue()); |
| Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), |
| SVOffset, isVolatile, Alignment); |
| Result = LegalizeOp(Result); |
| break; |
| } else if (NumElems == 1) { |
| // Turn this into a normal store of the scalar type. |
| Tmp3 = ScalarizeVectorOp(ST->getValue()); |
| Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), |
| SVOffset, isVolatile, Alignment); |
| // The scalarized value type may not be legal, e.g. it might require |
| // promotion or expansion. Relegalize the scalar store. |
| Result = LegalizeOp(Result); |
| break; |
| } else { |
| // Check if we have widen this node with another value |
| std::map<SDValue, SDValue>::iterator I = |
| WidenNodes.find(ST->getValue()); |
| if (I != WidenNodes.end()) { |
| Result = StoreWidenVectorOp(ST, Tmp1, Tmp2); |
| break; |
| } |
| else { |
| SplitVectorOp(ST->getValue(), Lo, Hi); |
| IncrementSize = Lo.getNode()->getValueType(0).getVectorNumElements() * |
| EVT.getSizeInBits()/8; |
| } |
| } |
| } else { |
| ExpandOp(ST->getValue(), Lo, Hi); |
| IncrementSize = Hi.getNode() ? Hi.getValueType().getSizeInBits()/8 : 0; |
| |
| if (Hi.getNode() && TLI.isBigEndian()) |
| std::swap(Lo, Hi); |
| } |
| |
| Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), |
| SVOffset, isVolatile, Alignment); |
| |
| if (Hi.getNode() == NULL) { |
| // Must be int <-> float one-to-one expansion. |
| Result = Lo; |
| break; |
| } |
| |
| Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, |
| DAG.getIntPtrConstant(IncrementSize)); |
| assert(isTypeLegal(Tmp2.getValueType()) && |
| "Pointers must be legal!"); |
| SVOffset += IncrementSize; |
| Alignment = MinAlign(Alignment, IncrementSize); |
| Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), |
| SVOffset, isVolatile, Alignment); |
| Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); |
| break; |
| } // case Expand |
| } |
| } else { |
| switch (getTypeAction(ST->getValue().getValueType())) { |
| case Legal: |
| Tmp3 = LegalizeOp(ST->getValue()); |
| break; |
| case Promote: |
| if (!ST->getValue().getValueType().isVector()) { |
| // We can promote the value, the truncstore will still take care of it. |
| Tmp3 = PromoteOp(ST->getValue()); |
| break; |
| } |
| // Vector case falls through to expand |
| case Expand: |
| // Just store the low part. This may become a non-trunc store, so make |
| // sure to use getTruncStore, not UpdateNodeOperands below. |
| ExpandOp(ST->getValue(), Tmp3, Tmp4); |
| return DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), |
| SVOffset, MVT::i8, isVolatile, Alignment); |
| } |
| |
| MVT StVT = ST->getMemoryVT(); |
| unsigned StWidth = StVT.getSizeInBits(); |
| |
| if (StWidth != StVT.getStoreSizeInBits()) { |
| // Promote to a byte-sized store with upper bits zero if not |
| // storing an integral number of bytes. For example, promote |
| // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) |
| MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits()); |
| Tmp3 = DAG.getZeroExtendInReg(Tmp3, StVT); |
| Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), |
| SVOffset, NVT, isVolatile, Alignment); |
| } else if (StWidth & (StWidth - 1)) { |
| // If not storing a power-of-2 number of bits, expand as two stores. |
| assert(StVT.isExtended() && !StVT.isVector() && |
| "Unsupported truncstore!"); |
| unsigned RoundWidth = 1 << Log2_32(StWidth); |
| assert(RoundWidth < StWidth); |
| unsigned ExtraWidth = StWidth - RoundWidth; |
| assert(ExtraWidth < RoundWidth); |
| assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && |
| "Store size not an integral number of bytes!"); |
| MVT RoundVT = MVT::getIntegerVT(RoundWidth); |
| MVT ExtraVT = MVT::getIntegerVT(ExtraWidth); |
| SDValue Lo, Hi; |
| unsigned IncrementSize; |
| |
| if (TLI.isLittleEndian()) { |
| // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) |
| // Store the bottom RoundWidth bits. |
| Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), |
| SVOffset, RoundVT, |
| isVolatile, Alignment); |
| |
| // Store the remaining ExtraWidth bits. |
| IncrementSize = RoundWidth / 8; |
| Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, |
| DAG.getIntPtrConstant(IncrementSize)); |
| Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, |
| DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); |
| Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), |
| SVOffset + IncrementSize, ExtraVT, isVolatile, |
| MinAlign(Alignment, IncrementSize)); |
| } else { |
| // Big endian - avoid unaligned stores. |
| // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X |
| // Store the top RoundWidth bits. |
| Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, |
| DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); |
| Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset, |
| RoundVT, isVolatile, Alignment); |
| |
| // Store the remaining ExtraWidth bits. |
| IncrementSize = RoundWidth / 8; |
| Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, |
| DAG.getIntPtrConstant(IncrementSize)); |
| Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), |
| SVOffset + IncrementSize, ExtraVT, isVolatile, |
| MinAlign(Alignment, IncrementSize)); |
| } |
| |
| // The order of the stores doesn't matter. |
| Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); |
| } else { |
| if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || |
| Tmp2 != ST->getBasePtr()) |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, |
| ST->getOffset()); |
| |
| switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: |
| // If this is an unaligned store and the target doesn't support it, |
| // expand it. |
| if (!TLI.allowsUnalignedMemoryAccesses()) { |
| unsigned ABIAlignment = TLI.getTargetData()-> |
| getABITypeAlignment(ST->getMemoryVT().getTypeForMVT()); |
| if (ST->getAlignment() < ABIAlignment) |
| Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG, |
| TLI); |
| } |
| break; |
| case TargetLowering::Custom: |
| Result = TLI.LowerOperation(Result, DAG); |
| break; |
| case Expand: |
| // TRUNCSTORE:i16 i32 -> STORE i16 |
| assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); |
| Tmp3 = DAG.getNode(ISD::TRUNCATE, StVT, Tmp3); |
| Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, |
| isVolatile, Alignment); |
| break; |
| } |
| } |
| } |
| break; |
| } |
| case ISD::PCMARKER: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); |
| break; |
| case ISD::STACKSAVE: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| Result = DAG.UpdateNodeOperands(Result, Tmp1); |
| Tmp1 = Result.getValue(0); |
| Tmp2 = Result.getValue(1); |
| |
| switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: break; |
| case TargetLowering::Custom: |
| Tmp3 = TLI.LowerOperation(Result, DAG); |
| if (Tmp3.getNode()) { |
| Tmp1 = LegalizeOp(Tmp3); |
| Tmp2 = LegalizeOp(Tmp3.getValue(1)); |
| } |
| break; |
| case TargetLowering::Expand: |
| // Expand to CopyFromReg if the target set |
| // StackPointerRegisterToSaveRestore. |
| if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { |
| Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP, |
| Node->getValueType(0)); |
| Tmp2 = Tmp1.getValue(1); |
| } else { |
| Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0)); |
| Tmp2 = Node->getOperand(0); |
| } |
| break; |
| } |
| |
| // Since stacksave produce two values, make sure to remember that we |
| // legalized both of them. |
| AddLegalizedOperand(SDValue(Node, 0), Tmp1); |
| AddLegalizedOperand(SDValue(Node, 1), Tmp2); |
| return Op.getResNo() ? Tmp2 : Tmp1; |
| |
| case ISD::STACKRESTORE: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); |
| |
| switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: break; |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| break; |
| case TargetLowering::Expand: |
| // Expand to CopyToReg if the target set |
| // StackPointerRegisterToSaveRestore. |
| if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { |
| Result = DAG.getCopyToReg(Tmp1, SP, Tmp2); |
| } else { |
| Result = Tmp1; |
| } |
| break; |
| } |
| break; |
| |
| case ISD::READCYCLECOUNTER: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain |
| Result = DAG.UpdateNodeOperands(Result, Tmp1); |
| switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, |
| Node->getValueType(0))) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: |
| Tmp1 = Result.getValue(0); |
| Tmp2 = Result.getValue(1); |
| break; |
| case TargetLowering::Custom: |
| Result = TLI.LowerOperation(Result, DAG); |
| Tmp1 = LegalizeOp(Result.getValue(0)); |
| Tmp2 = LegalizeOp(Result.getValue(1)); |
| break; |
| } |
| |
| // Since rdcc produce two values, make sure to remember that we legalized |
| // both of them. |
| AddLegalizedOperand(SDValue(Node, 0), Tmp1); |
| AddLegalizedOperand(SDValue(Node, 1), Tmp2); |
| return Result; |
| |
| case ISD::SELECT: |
| switch (getTypeAction(Node->getOperand(0).getValueType())) { |
| case Expand: assert(0 && "It's impossible to expand bools"); |
| case Legal: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. |
| break; |
| case Promote: { |
| assert(!Node->getOperand(0).getValueType().isVector() && "not possible"); |
| Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. |
| // Make sure the condition is either zero or one. |
| unsigned BitWidth = Tmp1.getValueSizeInBits(); |
| if (!DAG.MaskedValueIsZero(Tmp1, |
| APInt::getHighBitsSet(BitWidth, BitWidth-1))) |
| Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1); |
| break; |
| } |
| } |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal |
| Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal |
| |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); |
| |
| switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: break; |
| case TargetLowering::Custom: { |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| break; |
| } |
| case TargetLowering::Expand: |
| if (Tmp1.getOpcode() == ISD::SETCC) { |
| Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1), |
| Tmp2, Tmp3, |
| cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); |
| } else { |
| Result = DAG.getSelectCC(Tmp1, |
| DAG.getConstant(0, Tmp1.getValueType()), |
| Tmp2, Tmp3, ISD::SETNE); |
| } |
| break; |
| case TargetLowering::Promote: { |
| MVT NVT = |
| TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); |
| unsigned ExtOp, TruncOp; |
| if (Tmp2.getValueType().isVector()) { |
| ExtOp = ISD::BIT_CONVERT; |
| TruncOp = ISD::BIT_CONVERT; |
| } else if (Tmp2.getValueType().isInteger()) { |
| ExtOp = ISD::ANY_EXTEND; |
| TruncOp = ISD::TRUNCATE; |
| } else { |
| ExtOp = ISD::FP_EXTEND; |
| TruncOp = ISD::FP_ROUND; |
| } |
| // Promote each of the values to the new type. |
| Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2); |
| Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3); |
| // Perform the larger operation, then round down. |
| Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3); |
| if (TruncOp != ISD::FP_ROUND) |
| Result = DAG.getNode(TruncOp, Node->getValueType(0), Result); |
| else |
| Result = DAG.getNode(TruncOp, Node->getValueType(0), Result, |
| DAG.getIntPtrConstant(0)); |
| break; |
| } |
| } |
| break; |
| case ISD::SELECT_CC: { |
| Tmp1 = Node->getOperand(0); // LHS |
| Tmp2 = Node->getOperand(1); // RHS |
| Tmp3 = LegalizeOp(Node->getOperand(2)); // True |
| Tmp4 = LegalizeOp(Node->getOperand(3)); // False |
| SDValue CC = Node->getOperand(4); |
| |
| LegalizeSetCC(TLI.getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC); |
| |
| // If we didn't get both a LHS and RHS back from LegalizeSetCC, |
| // the LHS is a legal SETCC itself. In this case, we need to compare |
| // the result against zero to select between true and false values. |
| if (Tmp2.getNode() == 0) { |
| Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); |
| CC = DAG.getCondCode(ISD::SETNE); |
| } |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); |
| |
| // Everything is legal, see if we should expand this op or something. |
| switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: break; |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| break; |
| } |
| break; |
| } |
| case ISD::SETCC: |
| Tmp1 = Node->getOperand(0); |
| Tmp2 = Node->getOperand(1); |
| Tmp3 = Node->getOperand(2); |
| LegalizeSetCC(Node->getValueType(0), Tmp1, Tmp2, Tmp3); |
| |
| // If we had to Expand the SetCC operands into a SELECT node, then it may |
| // not always be possible to return a true LHS & RHS. In this case, just |
| // return the value we legalized, returned in the LHS |
| if (Tmp2.getNode() == 0) { |
| Result = Tmp1; |
| break; |
| } |
| |
| switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { |
| default: assert(0 && "Cannot handle this action for SETCC yet!"); |
| case TargetLowering::Custom: |
| isCustom = true; |
| // FALLTHROUGH. |
| case TargetLowering::Legal: |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); |
| if (isCustom) { |
| Tmp4 = TLI.LowerOperation(Result, DAG); |
| if (Tmp4.getNode()) Result = Tmp4; |
| } |
| break; |
| case TargetLowering::Promote: { |
| // First step, figure out the appropriate operation to use. |
| // Allow SETCC to not be supported for all legal data types |
| // Mostly this targets FP |
| MVT NewInTy = Node->getOperand(0).getValueType(); |
| MVT OldVT = NewInTy; OldVT = OldVT; |
| |
| // Scan for the appropriate larger type to use. |
| while (1) { |
| NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1); |
| |
| assert(NewInTy.isInteger() == OldVT.isInteger() && |
| "Fell off of the edge of the integer world"); |
| assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() && |
| "Fell off of the edge of the floating point world"); |
| |
| // If the target supports SETCC of this type, use it. |
| if (TLI.isOperationLegalOrCustom(ISD::SETCC, NewInTy)) |
| break; |
| } |
| if (NewInTy.isInteger()) |
| assert(0 && "Cannot promote Legal Integer SETCC yet"); |
| else { |
| Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1); |
| Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2); |
| } |
| Tmp1 = LegalizeOp(Tmp1); |
| Tmp2 = LegalizeOp(Tmp2); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); |
| Result = LegalizeOp(Result); |
| break; |
| } |
| case TargetLowering::Expand: |
| // Expand a setcc node into a select_cc of the same condition, lhs, and |
| // rhs that selects between const 1 (true) and const 0 (false). |
| MVT VT = Node->getValueType(0); |
| Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2, |
| DAG.getConstant(1, VT), DAG.getConstant(0, VT), |
| Tmp3); |
| break; |
| } |
| break; |
| case ISD::VSETCC: { |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS |
| SDValue CC = Node->getOperand(2); |
| |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, CC); |
| |
| // Everything is legal, see if we should expand this op or something. |
| switch (TLI.getOperationAction(ISD::VSETCC, Tmp1.getValueType())) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: break; |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| break; |
| case TargetLowering::Expand: { |
| // Unroll into a nasty set of scalar code for now. |
| MVT VT = Node->getValueType(0); |
| unsigned NumElems = VT.getVectorNumElements(); |
| MVT EltVT = VT.getVectorElementType(); |
| MVT TmpEltVT = Tmp1.getValueType().getVectorElementType(); |
| SmallVector<SDValue, 8> Ops(NumElems); |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue In1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, TmpEltVT, |
| Tmp1, DAG.getIntPtrConstant(i)); |
| Ops[i] = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(TmpEltVT), In1, |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, TmpEltVT, |
| Tmp2, DAG.getIntPtrConstant(i)), |
| CC); |
| Ops[i] = DAG.getNode(ISD::SELECT, EltVT, Ops[i], DAG.getConstant( |
| APInt::getAllOnesValue(EltVT.getSizeInBits()), |
| EltVT), DAG.getConstant(0, EltVT)); |
| } |
| Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], NumElems); |
| break; |
| } |
| } |
| break; |
| } |
| |
| case ISD::SHL_PARTS: |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: { |
| SmallVector<SDValue, 8> Ops; |
| bool Changed = false; |
| unsigned N = Node->getNumOperands(); |
| for (unsigned i = 0; i + 1 < N; ++i) { |
| Ops.push_back(LegalizeOp(Node->getOperand(i))); |
| Changed |= Ops.back() != Node->getOperand(i); |
| } |
| Ops.push_back(LegalizeOp(DAG.getShiftAmountOperand(Node->getOperand(N-1)))); |
| Changed |= Ops.back() != Node->getOperand(N-1); |
| if (Changed) |
| Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); |
| |
| switch (TLI.getOperationAction(Node->getOpcode(), |
| Node->getValueType(0))) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: break; |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) { |
| SDValue Tmp2, RetVal(0, 0); |
| for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { |
| Tmp2 = LegalizeOp(Tmp1.getValue(i)); |
| AddLegalizedOperand(SDValue(Node, i), Tmp2); |
| if (i == Op.getResNo()) |
| RetVal = Tmp2; |
| } |
| assert(RetVal.getNode() && "Illegal result number"); |
| return RetVal; |
| } |
| break; |
| } |
| |
| // Since these produce multiple values, make sure to remember that we |
| // legalized all of them. |
| for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) |
| AddLegalizedOperand(SDValue(Node, i), Result.getValue(i)); |
| return Result.getValue(Op.getResNo()); |
| } |
| |
| // Binary operators |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::MULHS: |
| case ISD::MULHU: |
| case ISD::UDIV: |
| case ISD::SDIV: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::SRA: |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FDIV: |
| case ISD::FPOW: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS |
| |
| if ((Node->getOpcode() == ISD::SHL || |
| Node->getOpcode() == ISD::SRL || |
| Node->getOpcode() == ISD::SRA) && |
| !Node->getValueType(0).isVector()) |
| Tmp2 = DAG.getShiftAmountOperand(Tmp2); |
| |
| switch (getTypeAction(Tmp2.getValueType())) { |
| case Expand: assert(0 && "Not possible"); |
| case Legal: |
| Tmp2 = LegalizeOp(Tmp2); // Legalize the RHS. |
| break; |
| case Promote: |
| Tmp2 = PromoteOp(Tmp2); // Promote the RHS. |
| break; |
| } |
| |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); |
| |
| switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { |
| default: assert(0 && "BinOp legalize operation not supported"); |
| case TargetLowering::Legal: break; |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) { |
| Result = Tmp1; |
| break; |
| } |
| // Fall through if the custom lower can't deal with the operation |
| case TargetLowering::Expand: { |
| MVT VT = Op.getValueType(); |
| |
| // See if multiply or divide can be lowered using two-result operations. |
| SDVTList VTs = DAG.getVTList(VT, VT); |
| if (Node->getOpcode() == ISD::MUL) { |
| // We just need the low half of the multiply; try both the signed |
| // and unsigned forms. If the target supports both SMUL_LOHI and |
| // UMUL_LOHI, form a preference by checking which forms of plain |
| // MULH it supports. |
| bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); |
| bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); |
| bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); |
| bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); |
| unsigned OpToUse = 0; |
| if (HasSMUL_LOHI && !HasMULHS) { |
| OpToUse = ISD::SMUL_LOHI; |
| } else if (HasUMUL_LOHI && !HasMULHU) { |
| OpToUse = ISD::UMUL_LOHI; |
| } else if (HasSMUL_LOHI) { |
| OpToUse = ISD::SMUL_LOHI; |
| } else if (HasUMUL_LOHI) { |
| OpToUse = ISD::UMUL_LOHI; |
| } |
| if (OpToUse) { |
| Result = SDValue(DAG.getNode(OpToUse, VTs, Tmp1, Tmp2).getNode(), 0); |
| break; |
| } |
| } |
| if (Node->getOpcode() == ISD::MULHS && |
| TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { |
| Result = SDValue(DAG.getNode(ISD::SMUL_LOHI, VTs, Tmp1, Tmp2).getNode(), |
| 1); |
| break; |
| } |
| if (Node->getOpcode() == ISD::MULHU && |
| TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { |
| Result = SDValue(DAG.getNode(ISD::UMUL_LOHI, VTs, Tmp1, Tmp2).getNode(), |
| 1); |
| break; |
| } |
| if (Node->getOpcode() == ISD::SDIV && |
| TLI.isOperationLegalOrCustom(ISD::SDIVREM, VT)) { |
| Result = SDValue(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).getNode(), |
| 0); |
| break; |
| } |
| if (Node->getOpcode() == ISD::UDIV && |
| TLI.isOperationLegalOrCustom(ISD::UDIVREM, VT)) { |
| Result = SDValue(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).getNode(), |
| 0); |
| break; |
| } |
| |
| // Check to see if we have a libcall for this operator. |
| RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
| bool isSigned = false; |
| switch (Node->getOpcode()) { |
| case ISD::UDIV: |
| case ISD::SDIV: |
| if (VT == MVT::i32) { |
| LC = Node->getOpcode() == ISD::UDIV |
| ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32; |
| isSigned = Node->getOpcode() == ISD::SDIV; |
| } |
| break; |
| case ISD::MUL: |
| if (VT == MVT::i32) |
| LC = RTLIB::MUL_I32; |
| else if (VT == MVT::i64) |
| LC = RTLIB::MUL_I64; |
| break; |
| case ISD::FPOW: |
| LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, |
| RTLIB::POW_PPCF128); |
| break; |
| case ISD::FDIV: |
| LC = GetFPLibCall(VT, RTLIB::DIV_F32, RTLIB::DIV_F64, RTLIB::DIV_F80, |
| RTLIB::DIV_PPCF128); |
| break; |
| default: break; |
| } |
| if (LC != RTLIB::UNKNOWN_LIBCALL) { |
| SDValue Dummy; |
| Result = ExpandLibCall(LC, Node, isSigned, Dummy); |
| break; |
| } |
| |
| assert(Node->getValueType(0).isVector() && |
| "Cannot expand this binary operator!"); |
| // Expand the operation into a bunch of nasty scalar code. |
| Result = LegalizeOp(UnrollVectorOp(Op)); |
| break; |
| } |
| case TargetLowering::Promote: { |
| switch (Node->getOpcode()) { |
| default: assert(0 && "Do not know how to promote this BinOp!"); |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: { |
| MVT OVT = Node->getValueType(0); |
| MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); |
| assert(OVT.isVector() && "Cannot promote this BinOp!"); |
| // Bit convert each of the values to the new type. |
| Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); |
| Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); |
| Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); |
| // Bit convert the result back the original type. |
| Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); |
| break; |
| } |
| } |
| } |
| } |
| break; |
| |
| case ISD::SMUL_LOHI: |
| case ISD::UMUL_LOHI: |
| case ISD::SDIVREM: |
| case ISD::UDIVREM: |
| // These nodes will only be produced by target-specific lowering, so |
| // they shouldn't be here if they aren't legal. |
| assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && |
| "This must be legal!"); |
| |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); |
| break; |
| |
| case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS |
| switch (getTypeAction(Node->getOperand(1).getValueType())) { |
| case Expand: assert(0 && "Not possible"); |
| case Legal: |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. |
| break; |
| case Promote: |
| Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. |
| break; |
| } |
| |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); |
| |
| switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { |
| default: assert(0 && "Operation not supported"); |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| break; |
| case TargetLowering::Legal: break; |
| case TargetLowering::Expand: { |
| // If this target supports fabs/fneg natively and select is cheap, |
| // do this efficiently. |
| if (!TLI.isSelectExpensive() && |
| TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == |
| TargetLowering::Legal && |
| TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == |
| TargetLowering::Legal) { |
| // Get the sign bit of the RHS. |
| MVT IVT = |
| Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; |
| SDValue SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2); |
| SignBit = DAG.getSetCC(TLI.getSetCCResultType(IVT), |
| SignBit, DAG.getConstant(0, IVT), ISD::SETLT); |
| // Get the absolute value of the result. |
| SDValue AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1); |
| // Select between the nabs and abs value based on the sign bit of |
| // the input. |
| Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit, |
| DAG.getNode(ISD::FNEG, AbsVal.getValueType(), |
| AbsVal), |
| AbsVal); |
| Result = LegalizeOp(Result); |
| break; |
| } |
| |
| // Otherwise, do bitwise ops! |
| MVT NVT = |
| Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; |
| Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); |
| Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result); |
| Result = LegalizeOp(Result); |
| break; |
| } |
| } |
| break; |
| |
| case ISD::ADDC: |
| case ISD::SUBC: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| Tmp2 = LegalizeOp(Node->getOperand(1)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); |
| Tmp3 = Result.getValue(0); |
| Tmp4 = Result.getValue(1); |
| |
| switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: |
| break; |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Tmp3, DAG); |
| if (Tmp1.getNode() != NULL) { |
| Tmp3 = LegalizeOp(Tmp1); |
| Tmp4 = LegalizeOp(Tmp1.getValue(1)); |
| } |
| break; |
| } |
| // Since this produces two values, make sure to remember that we legalized |
| // both of them. |
| AddLegalizedOperand(SDValue(Node, 0), Tmp3); |
| AddLegalizedOperand(SDValue(Node, 1), Tmp4); |
| return Op.getResNo() ? Tmp4 : Tmp3; |
| |
| case ISD::ADDE: |
| case ISD::SUBE: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| Tmp2 = LegalizeOp(Node->getOperand(1)); |
| Tmp3 = LegalizeOp(Node->getOperand(2)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); |
| Tmp3 = Result.getValue(0); |
| Tmp4 = Result.getValue(1); |
| |
| switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: |
| break; |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Tmp3, DAG); |
| if (Tmp1.getNode() != NULL) { |
| Tmp3 = LegalizeOp(Tmp1); |
| Tmp4 = LegalizeOp(Tmp1.getValue(1)); |
| } |
| break; |
| } |
| // Since this produces two values, make sure to remember that we legalized |
| // both of them. |
| AddLegalizedOperand(SDValue(Node, 0), Tmp3); |
| AddLegalizedOperand(SDValue(Node, 1), Tmp4); |
| return Op.getResNo() ? Tmp4 : Tmp3; |
| |
| case ISD::BUILD_PAIR: { |
| MVT PairTy = Node->getValueType(0); |
| // TODO: handle the case where the Lo and Hi operands are not of legal type |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi |
| switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { |
| case TargetLowering::Promote: |
| case TargetLowering::Custom: |
| assert(0 && "Cannot promote/custom this yet!"); |
| case TargetLowering::Legal: |
| if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) |
| Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2); |
| break; |
| case TargetLowering::Expand: |
| Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1); |
| Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2); |
| Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2, |
| DAG.getConstant(PairTy.getSizeInBits()/2, |
| TLI.getShiftAmountTy())); |
| Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2); |
| break; |
| } |
| break; |
| } |
| |
| case ISD::UREM: |
| case ISD::SREM: |
| case ISD::FREM: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS |
| |
| switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { |
| case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); |
| case TargetLowering::Custom: |
| isCustom = true; |
| // FALLTHROUGH |
| case TargetLowering::Legal: |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); |
| if (isCustom) { |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| } |
| break; |
| case TargetLowering::Expand: { |
| unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; |
| bool isSigned = DivOpc == ISD::SDIV; |
| MVT VT = Node->getValueType(0); |
| |
| // See if remainder can be lowered using two-result operations. |
| SDVTList VTs = DAG.getVTList(VT, VT); |
| if (Node->getOpcode() == ISD::SREM && |
| TLI.isOperationLegalOrCustom(ISD::SDIVREM, VT)) { |
| Result = SDValue(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).getNode(), 1); |
| break; |
| } |
| if (Node->getOpcode() == ISD::UREM && |
| TLI.isOperationLegalOrCustom(ISD::UDIVREM, VT)) { |
| Result = SDValue(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).getNode(), 1); |
| break; |
| } |
| |
| if (VT.isInteger()) { |
| if (TLI.getOperationAction(DivOpc, VT) == |
| TargetLowering::Legal) { |
| // X % Y -> X-X/Y*Y |
| Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2); |
| Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2); |
| Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result); |
| } else if (VT.isVector()) { |
| Result = LegalizeOp(UnrollVectorOp(Op)); |
| } else { |
| assert(VT == MVT::i32 && |
| "Cannot expand this binary operator!"); |
| RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM |
| ? RTLIB::UREM_I32 : RTLIB::SREM_I32; |
| SDValue Dummy; |
| Result = ExpandLibCall(LC, Node, isSigned, Dummy); |
| } |
| } else { |
| assert(VT.isFloatingPoint() && |
| "remainder op must have integer or floating-point type"); |
| if (VT.isVector()) { |
| Result = LegalizeOp(UnrollVectorOp(Op)); |
| } else { |
| // Floating point mod -> fmod libcall. |
| RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64, |
| RTLIB::REM_F80, RTLIB::REM_PPCF128); |
| SDValue Dummy; |
| Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); |
| } |
| } |
| break; |
| } |
| } |
| break; |
| case ISD::VAARG: { |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. |
| |
| MVT VT = Node->getValueType(0); |
| switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Custom: |
| isCustom = true; |
| // FALLTHROUGH |
| case TargetLowering::Legal: |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); |
| Result = Result.getValue(0); |
| Tmp1 = Result.getValue(1); |
| |
| if (isCustom) { |
| Tmp2 = TLI.LowerOperation(Result, DAG); |
| if (Tmp2.getNode()) { |
| Result = LegalizeOp(Tmp2); |
| Tmp1 = LegalizeOp(Tmp2.getValue(1)); |
| } |
| } |
| break; |
| case TargetLowering::Expand: { |
| const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); |
| SDValue VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); |
| // Increment the pointer, VAList, to the next vaarg |
| Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, |
| DAG.getConstant(TLI.getTargetData()-> |
| getTypePaddedSize(VT.getTypeForMVT()), |
| TLI.getPointerTy())); |
| // Store the incremented VAList to the legalized pointer |
| Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); |
| // Load the actual argument out of the pointer VAList |
| Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0); |
| Tmp1 = LegalizeOp(Result.getValue(1)); |
| Result = LegalizeOp(Result); |
| break; |
| } |
| } |
| // Since VAARG produces two values, make sure to remember that we |
| // legalized both of them. |
| AddLegalizedOperand(SDValue(Node, 0), Result); |
| AddLegalizedOperand(SDValue(Node, 1), Tmp1); |
| return Op.getResNo() ? Tmp1 : Result; |
| } |
| |
| case ISD::VACOPY: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. |
| Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. |
| |
| switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Custom: |
| isCustom = true; |
| // FALLTHROUGH |
| case TargetLowering::Legal: |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, |
| Node->getOperand(3), Node->getOperand(4)); |
| if (isCustom) { |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| } |
| break; |
| case TargetLowering::Expand: |
| // This defaults to loading a pointer from the input and storing it to the |
| // output, returning the chain. |
| const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); |
| const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); |
| Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, VS, 0); |
| Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, VD, 0); |
| break; |
| } |
| break; |
| |
| case ISD::VAEND: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. |
| |
| switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Custom: |
| isCustom = true; |
| // FALLTHROUGH |
| case TargetLowering::Legal: |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); |
| if (isCustom) { |
| Tmp1 = TLI.LowerOperation(Tmp1, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| } |
| break; |
| case TargetLowering::Expand: |
| Result = Tmp1; // Default to a no-op, return the chain |
| break; |
| } |
| break; |
| |
| case ISD::VASTART: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. |
| |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); |
| |
| switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Legal: break; |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| break; |
| } |
| break; |
| |
| case ISD::ROTL: |
| case ISD::ROTR: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS |
| Tmp2 = LegalizeOp(DAG.getShiftAmountOperand(Node->getOperand(1))); // RHS |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); |
| switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { |
| default: |
| assert(0 && "ROTL/ROTR legalize operation not supported"); |
| break; |
| case TargetLowering::Legal: |
| break; |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| break; |
| case TargetLowering::Promote: |
| assert(0 && "Do not know how to promote ROTL/ROTR"); |
| break; |
| case TargetLowering::Expand: |
| assert(0 && "Do not know how to expand ROTL/ROTR"); |
| break; |
| } |
| break; |
| |
| case ISD::BSWAP: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Op |
| switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { |
| case TargetLowering::Custom: |
| assert(0 && "Cannot custom legalize this yet!"); |
| case TargetLowering::Legal: |
| Result = DAG.UpdateNodeOperands(Result, Tmp1); |
| break; |
| case TargetLowering::Promote: { |
| MVT OVT = Tmp1.getValueType(); |
| MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); |
| unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); |
| |
| Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); |
| Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); |
| Result = DAG.getNode(ISD::SRL, NVT, Tmp1, |
| DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); |
| break; |
| } |
| case TargetLowering::Expand: |
| Result = ExpandBSWAP(Tmp1); |
| break; |
| } |
| break; |
| |
| case ISD::CTPOP: |
| case ISD::CTTZ: |
| case ISD::CTLZ: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Op |
| switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { |
| case TargetLowering::Custom: |
| case TargetLowering::Legal: |
| Result = DAG.UpdateNodeOperands(Result, Tmp1); |
| if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == |
| TargetLowering::Custom) { |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) { |
| Result = Tmp1; |
| } |
| } |
| break; |
| case TargetLowering::Promote: { |
| MVT OVT = Tmp1.getValueType(); |
| MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); |
| |
| // Zero extend the argument. |
| Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); |
| // Perform the larger operation, then subtract if needed. |
| Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); |
| switch (Node->getOpcode()) { |
| case ISD::CTPOP: |
| Result = Tmp1; |
| break; |
| case ISD::CTTZ: |
| //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) |
| Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(Tmp1.getValueType()), Tmp1, |
| DAG.getConstant(NVT.getSizeInBits(), NVT), |
| ISD::SETEQ); |
| Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, |
| DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); |
| break; |
| case ISD::CTLZ: |
| // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) |
| Result = DAG.getNode(ISD::SUB, NVT, Tmp1, |
| DAG.getConstant(NVT.getSizeInBits() - |
| OVT.getSizeInBits(), NVT)); |
| break; |
| } |
| break; |
| } |
| case TargetLowering::Expand: |
| Result = ExpandBitCount(Node->getOpcode(), Tmp1); |
| break; |
| } |
| break; |
| |
| // Unary operators |
| case ISD::FABS: |
| case ISD::FNEG: |
| case ISD::FSQRT: |
| case ISD::FSIN: |
| case ISD::FCOS: |
| case ISD::FLOG: |
| case ISD::FLOG2: |
| case ISD::FLOG10: |
| case ISD::FEXP: |
| case ISD::FEXP2: |
| case ISD::FTRUNC: |
| case ISD::FFLOOR: |
| case ISD::FCEIL: |
| case ISD::FRINT: |
| case ISD::FNEARBYINT: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { |
| case TargetLowering::Promote: |
| case TargetLowering::Custom: |
| isCustom = true; |
| // FALLTHROUGH |
| case TargetLowering::Legal: |
| Result = DAG.UpdateNodeOperands(Result, Tmp1); |
| if (isCustom) { |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| } |
| break; |
| case TargetLowering::Expand: |
| switch (Node->getOpcode()) { |
| default: assert(0 && "Unreachable!"); |
| case ISD::FNEG: |
| // Expand Y = FNEG(X) -> Y = SUB -0.0, X |
| Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); |
| Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1); |
| break; |
| case ISD::FABS: { |
| // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). |
| MVT VT = Node->getValueType(0); |
| Tmp2 = DAG.getConstantFP(0.0, VT); |
| Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(Tmp1.getValueType()), |
| Tmp1, Tmp2, ISD::SETUGT); |
| Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1); |
| Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3); |
| break; |
| } |
| case ISD::FSQRT: |
| case ISD::FSIN: |
| case ISD::FCOS: |
| case ISD::FLOG: |
| case ISD::FLOG2: |
| case ISD::FLOG10: |
| case ISD::FEXP: |
| case ISD::FEXP2: |
| case ISD::FTRUNC: |
| case ISD::FFLOOR: |
| case ISD::FCEIL: |
| case ISD::FRINT: |
| case ISD::FNEARBYINT: { |
| MVT VT = Node->getValueType(0); |
| |
| // Expand unsupported unary vector operators by unrolling them. |
| if (VT.isVector()) { |
| Result = LegalizeOp(UnrollVectorOp(Op)); |
| break; |
| } |
| |
| RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
| switch(Node->getOpcode()) { |
| case ISD::FSQRT: |
| LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, |
| RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); |
| break; |
| case ISD::FSIN: |
| LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, |
| RTLIB::SIN_F80, RTLIB::SIN_PPCF128); |
| break; |
| case ISD::FCOS: |
| LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, |
| RTLIB::COS_F80, RTLIB::COS_PPCF128); |
| break; |
| case ISD::FLOG: |
| LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64, |
| RTLIB::LOG_F80, RTLIB::LOG_PPCF128); |
| break; |
| case ISD::FLOG2: |
| LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64, |
| RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128); |
| break; |
| case ISD::FLOG10: |
| LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64, |
| RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128); |
| break; |
| case ISD::FEXP: |
| LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64, |
| RTLIB::EXP_F80, RTLIB::EXP_PPCF128); |
| break; |
| case ISD::FEXP2: |
| LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64, |
| RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128); |
| break; |
| case ISD::FTRUNC: |
| LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, |
| RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128); |
| break; |
| case ISD::FFLOOR: |
| LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, |
| RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128); |
| break; |
| case ISD::FCEIL: |
| LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64, |
| RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128); |
| break; |
| case ISD::FRINT: |
| LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64, |
| RTLIB::RINT_F80, RTLIB::RINT_PPCF128); |
| break; |
| case ISD::FNEARBYINT: |
| LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, |
| RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128); |
| break; |
| break; |
| default: assert(0 && "Unreachable!"); |
| } |
| SDValue Dummy; |
| Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); |
| break; |
| } |
| } |
| break; |
| } |
| break; |
| case ISD::FPOWI: { |
| MVT VT = Node->getValueType(0); |
| |
| // Expand unsupported unary vector operators by unrolling them. |
| if (VT.isVector()) { |
| Result = LegalizeOp(UnrollVectorOp(Op)); |
| break; |
| } |
| |
| // We always lower FPOWI into a libcall. No target support for it yet. |
| RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, |
| RTLIB::POWI_F80, RTLIB::POWI_PPCF128); |
| SDValue Dummy; |
| Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); |
| break; |
| } |
| case ISD::BIT_CONVERT: |
| if (!isTypeLegal(Node->getOperand(0).getValueType())) { |
| Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), |
| Node->getValueType(0)); |
| } else if (Op.getOperand(0).getValueType().isVector()) { |
| // The input has to be a vector type, we have to either scalarize it, pack |
| // it, or convert it based on whether the input vector type is legal. |
| SDNode *InVal = Node->getOperand(0).getNode(); |
| int InIx = Node->getOperand(0).getResNo(); |
| unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements(); |
| MVT EVT = InVal->getValueType(InIx).getVectorElementType(); |
| |
| // Figure out if there is a simple type corresponding to this Vector |
| // type. If so, convert to the vector type. |
| MVT TVT = MVT::getVectorVT(EVT, NumElems); |
| if (TLI.isTypeLegal(TVT)) { |
| // Turn this into a bit convert of the vector input. |
| Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), |
| LegalizeOp(Node->getOperand(0))); |
| break; |
| } else if (NumElems == 1) { |
| // Turn this into a bit convert of the scalar input. |
| Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), |
| ScalarizeVectorOp(Node->getOperand(0))); |
| break; |
| } else { |
| // FIXME: UNIMP! Store then reload |
| assert(0 && "Cast from unsupported vector type not implemented yet!"); |
| } |
| } else { |
| switch (TLI.getOperationAction(ISD::BIT_CONVERT, |
| Node->getOperand(0).getValueType())) { |
| default: assert(0 && "Unknown operation action!"); |
| case TargetLowering::Expand: |
| Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), |
| Node->getValueType(0)); |
| break; |
| case TargetLowering::Legal: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1); |
| break; |
| } |
| } |
| break; |
| case ISD::CONVERT_RNDSAT: { |
| ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); |
| switch (CvtCode) { |
| default: assert(0 && "Unknown cvt code!"); |
| case ISD::CVT_SF: |
| case ISD::CVT_UF: |
| case ISD::CVT_FF: |
| break; |
| case ISD::CVT_FS: |
| case ISD::CVT_FU: |
| case ISD::CVT_SS: |
| case ISD::CVT_SU: |
| case ISD::CVT_US: |
| case ISD::CVT_UU: { |
| SDValue DTyOp = Node->getOperand(1); |
| SDValue STyOp = Node->getOperand(2); |
| SDValue RndOp = Node->getOperand(3); |
| SDValue SatOp = Node->getOperand(4); |
| switch (getTypeAction(Node->getOperand(0).getValueType())) { |
| case Expand: assert(0 && "Shouldn't need to expand other operators here!"); |
| case Legal: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, DTyOp, STyOp, |
| RndOp, SatOp); |
| if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == |
| TargetLowering::Custom) { |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| } |
| break; |
| case Promote: |
| Result = PromoteOp(Node->getOperand(0)); |
| // For FP, make Op1 a i32 |
| |
| Result = DAG.getConvertRndSat(Op.getValueType(), Result, |
| DTyOp, STyOp, RndOp, SatOp, CvtCode); |
| break; |
| } |
| break; |
| } |
| } // end switch CvtCode |
| break; |
| } |
| // Conversion operators. The source and destination have different types. |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: { |
| bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; |
| Result = LegalizeINT_TO_FP(Result, isSigned, |
| Node->getValueType(0), Node->getOperand(0), dl); |
| break; |
| } |
| case ISD::TRUNCATE: |
| switch (getTypeAction(Node->getOperand(0).getValueType())) { |
| case Legal: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { |
| default: assert(0 && "Unknown TRUNCATE legalization operation action!"); |
| case TargetLowering::Custom: |
| isCustom = true; |
| // FALLTHROUGH |
| case TargetLowering::Legal: |
| Result = DAG.UpdateNodeOperands(Result, Tmp1); |
| if (isCustom) { |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| } |
| break; |
| case TargetLowering::Expand: |
| assert(Result.getValueType().isVector() && "must be vector type"); |
| // Unroll the truncate. We should do better. |
| Result = LegalizeOp(UnrollVectorOp(Result)); |
| } |
| break; |
| case Expand: |
| ExpandOp(Node->getOperand(0), Tmp1, Tmp2); |
| |
| // Since the result is legal, we should just be able to truncate the low |
| // part of the source. |
| Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1); |
| break; |
| case Promote: |
| Result = PromoteOp(Node->getOperand(0)); |
| Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result); |
| break; |
| } |
| break; |
| |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| switch (getTypeAction(Node->getOperand(0).getValueType())) { |
| case Legal: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| |
| switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ |
| default: assert(0 && "Unknown operation action!"); |
| case TargetLowering::Custom: |
| isCustom = true; |
| // FALLTHROUGH |
| case TargetLowering::Legal: |
| Result = DAG.UpdateNodeOperands(Result, Tmp1); |
| if (isCustom) { |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| } |
| break; |
| case TargetLowering::Promote: |
| Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), |
| Node->getOpcode() == ISD::FP_TO_SINT, |
| dl); |
| break; |
| case TargetLowering::Expand: |
| if (Node->getOpcode() == ISD::FP_TO_UINT) { |
| SDValue True, False; |
| MVT VT = Node->getOperand(0).getValueType(); |
| MVT NVT = Node->getValueType(0); |
| const uint64_t zero[] = {0, 0}; |
| APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero)); |
| APInt x = APInt::getSignBit(NVT.getSizeInBits()); |
| (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); |
| Tmp2 = DAG.getConstantFP(apf, VT); |
| Tmp3 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), |
| Node->getOperand(0), |
| Tmp2, ISD::SETLT); |
| True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); |
| False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, |
| DAG.getNode(ISD::FSUB, dl, VT, |
| Node->getOperand(0), Tmp2)); |
| False = DAG.getNode(ISD::XOR, dl, NVT, False, |
| DAG.getConstant(x, NVT)); |
| Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp3, True, False); |
| break; |
| } else { |
| assert(0 && "Do not know how to expand FP_TO_SINT yet!"); |
| } |
| break; |
| } |
| break; |
| case Expand: { |
| MVT VT = Op.getValueType(); |
| MVT OVT = Node->getOperand(0).getValueType(); |
| // Convert ppcf128 to i32 |
| if (OVT == MVT::ppcf128 && VT == MVT::i32) { |
| if (Node->getOpcode() == ISD::FP_TO_SINT) { |
| Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, MVT::ppcf128, |
| Node->getOperand(0), DAG.getValueType(MVT::f64)); |
| Result = DAG.getNode(ISD::FP_ROUND, dl, MVT::f64, Result, |
| DAG.getIntPtrConstant(1)); |
| Result = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Result); |
| } else { |
| const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; |
| APFloat apf = APFloat(APInt(128, 2, TwoE31)); |
| Tmp2 = DAG.getConstantFP(apf, OVT); |
| // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X |
| // FIXME: generated code sucks. |
| Result = DAG.getNode(ISD::SELECT_CC, dl, VT, Node->getOperand(0), |
| Tmp2, |
| DAG.getNode(ISD::ADD, dl, MVT::i32, |
| DAG.getNode(ISD::FP_TO_SINT, dl, VT, |
| DAG.getNode(ISD::FSUB, dl, OVT, |
| Node->getOperand(0), Tmp2)), |
| DAG.getConstant(0x80000000, MVT::i32)), |
| DAG.getNode(ISD::FP_TO_SINT, dl, VT, |
| Node->getOperand(0)), |
| DAG.getCondCode(ISD::SETGE)); |
| } |
| break; |
| } |
| // Convert f32 / f64 to i32 / i64 / i128. |
| RTLIB::Libcall LC = (Node->getOpcode() == ISD::FP_TO_SINT) ? |
| RTLIB::getFPTOSINT(OVT, VT) : RTLIB::getFPTOUINT(OVT, VT); |
| assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpectd fp-to-int conversion!"); |
| SDValue Dummy; |
| Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); |
| break; |
| } |
| case Promote: |
| Tmp1 = PromoteOp(Node->getOperand(0)); |
| Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); |
| Result = LegalizeOp(Result); |
| break; |
| } |
| break; |
| |
| case ISD::FP_EXTEND: { |
| MVT DstVT = Op.getValueType(); |
| MVT SrcVT = Op.getOperand(0).getValueType(); |
| if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { |
| // The only other way we can lower this is to turn it into a STORE, |
| // LOAD pair, targetting a temporary location (a stack slot). |
| Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT); |
| break; |
| } |
| switch (getTypeAction(Node->getOperand(0).getValueType())) { |
| case Expand: assert(0 && "Shouldn't need to expand other operators here!"); |
| case Legal: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1); |
| break; |
| case Promote: |
| Tmp1 = PromoteOp(Node->getOperand(0)); |
| Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Tmp1); |
| break; |
| } |
| break; |
| } |
| case ISD::FP_ROUND: { |
| MVT DstVT = Op.getValueType(); |
| MVT SrcVT = Op.getOperand(0).getValueType(); |
| if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { |
| if (SrcVT == MVT::ppcf128) { |
| SDValue Lo; |
| ExpandOp(Node->getOperand(0), Lo, Result); |
| // Round it the rest of the way (e.g. to f32) if needed. |
| if (DstVT!=MVT::f64) |
| Result = DAG.getNode(ISD::FP_ROUND, DstVT, Result, Op.getOperand(1)); |
| break; |
| } |
| // The only other way we can lower this is to turn it into a STORE, |
| // LOAD pair, targetting a temporary location (a stack slot). |
| Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT); |
| break; |
| } |
| switch (getTypeAction(Node->getOperand(0).getValueType())) { |
| case Expand: assert(0 && "Shouldn't need to expand other operators here!"); |
| case Legal: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); |
| break; |
| case Promote: |
| Tmp1 = PromoteOp(Node->getOperand(0)); |
| Result = DAG.getNode(ISD::FP_ROUND, Op.getValueType(), Tmp1, |
| Node->getOperand(1)); |
| break; |
| } |
| break; |
| } |
| case ISD::ANY_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::SIGN_EXTEND: |
| switch (getTypeAction(Node->getOperand(0).getValueType())) { |
| case Expand: assert(0 && "Shouldn't need to expand other operators here!"); |
| case Legal: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1); |
| if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == |
| TargetLowering::Custom) { |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| } |
| break; |
| case Promote: |
| switch (Node->getOpcode()) { |
| case ISD::ANY_EXTEND: |
| Tmp1 = PromoteOp(Node->getOperand(0)); |
| Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1); |
| break; |
| case ISD::ZERO_EXTEND: |
| Result = PromoteOp(Node->getOperand(0)); |
| Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); |
| Result = DAG.getZeroExtendInReg(Result, |
| Node->getOperand(0).getValueType()); |
| break; |
| case ISD::SIGN_EXTEND: |
| Result = PromoteOp(Node->getOperand(0)); |
| Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); |
| Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), |
| Result, |
| DAG.getValueType(Node->getOperand(0).getValueType())); |
| break; |
| } |
| } |
| break; |
| case ISD::FP_ROUND_INREG: |
| case ISD::SIGN_EXTEND_INREG: { |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); |
| |
| // If this operation is not supported, convert it to a shl/shr or load/store |
| // pair. |
| switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { |
| default: assert(0 && "This action not supported for this op yet!"); |
| case TargetLowering::Legal: |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); |
| break; |
| case TargetLowering::Expand: |
| // If this is an integer extend and shifts are supported, do that. |
| if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| // NOTE: we could fall back on load/store here too for targets without |
| // SAR. However, it is doubtful that any exist. |
| unsigned BitsDiff = Node->getValueType(0).getSizeInBits() - |
| ExtraVT.getSizeInBits(); |
| SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); |
| Result = DAG.getNode(ISD::SHL, Node->getValueType(0), |
| Node->getOperand(0), ShiftCst); |
| Result = DAG.getNode(ISD::SRA, Node->getValueType(0), |
| Result, ShiftCst); |
| } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { |
| // The only way we can lower this is to turn it into a TRUNCSTORE, |
| // EXTLOAD pair, targetting a temporary location (a stack slot). |
| |
| // NOTE: there is a choice here between constantly creating new stack |
| // slots and always reusing the same one. We currently always create |
| // new ones, as reuse may inhibit scheduling. |
| Result = EmitStackConvert(Node->getOperand(0), ExtraVT, |
| Node->getValueType(0)); |
| } else { |
| assert(0 && "Unknown op"); |
| } |
| break; |
| } |
| break; |
| } |
| case ISD::TRAMPOLINE: { |
| SDValue Ops[6]; |
| for (unsigned i = 0; i != 6; ++i) |
| Ops[i] = LegalizeOp(Node->getOperand(i)); |
| Result = DAG.UpdateNodeOperands(Result, Ops, 6); |
| // The only option for this node is to custom lower it. |
| Result = TLI.LowerOperation(Result, DAG); |
| assert(Result.getNode() && "Should always custom lower!"); |
| |
| // Since trampoline produces two values, make sure to remember that we |
| // legalized both of them. |
| Tmp1 = LegalizeOp(Result.getValue(1)); |
| Result = LegalizeOp(Result); |
| AddLegalizedOperand(SDValue(Node, 0), Result); |
| AddLegalizedOperand(SDValue(Node, 1), Tmp1); |
| return Op.getResNo() ? Tmp1 : Result; |
| } |
| case ISD::FLT_ROUNDS_: { |
| MVT VT = Node->getValueType(0); |
| switch (TLI.getOperationAction(Node->getOpcode(), VT)) { |
| default: assert(0 && "This action not supported for this op yet!"); |
| case TargetLowering::Custom: |
| Result = TLI.LowerOperation(Op, DAG); |
| if (Result.getNode()) break; |
| // Fall Thru |
| case TargetLowering::Legal: |
| // If this operation is not supported, lower it to constant 1 |
| Result = DAG.getConstant(1, VT); |
| break; |
| } |
| break; |
| } |
| case ISD::TRAP: { |
| MVT VT = Node->getValueType(0); |
| switch (TLI.getOperationAction(Node->getOpcode(), VT)) { |
| default: assert(0 && "This action not supported for this op yet!"); |
| case TargetLowering::Legal: |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1); |
| break; |
| case TargetLowering::Custom: |
| Result = TLI.LowerOperation(Op, DAG); |
| if (Result.getNode()) break; |
| // Fall Thru |
| case TargetLowering::Expand: |
| // If this operation is not supported, lower it to 'abort()' call |
| Tmp1 = LegalizeOp(Node->getOperand(0)); |
| TargetLowering::ArgListTy Args; |
| std::pair<SDValue,SDValue> CallResult = |
| TLI.LowerCallTo(Tmp1, Type::VoidTy, |
| false, false, false, false, CallingConv::C, false, |
| DAG.getExternalSymbol("abort", TLI.getPointerTy()), |
| Args, DAG, dl); |
| Result = CallResult.second; |
| break; |
| } |
| break; |
| } |
| |
| case ISD::SADDO: |
| case ISD::SSUBO: { |
| MVT VT = Node->getValueType(0); |
| switch (TLI.getOperationAction(Node->getOpcode(), VT)) { |
| default: assert(0 && "This action not supported for this op yet!"); |
| case TargetLowering::Custom: |
| Result = TLI.LowerOperation(Op, DAG); |
| if (Result.getNode()) break; |
| // FALLTHROUGH |
| case TargetLowering::Legal: { |
| SDValue LHS = LegalizeOp(Node->getOperand(0)); |
| SDValue RHS = LegalizeOp(Node->getOperand(1)); |
| |
| SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? |
| ISD::ADD : ISD::SUB, LHS.getValueType(), |
| LHS, RHS); |
| MVT OType = Node->getValueType(1); |
| |
| SDValue Zero = DAG.getConstant(0, LHS.getValueType()); |
| |
| // LHSSign -> LHS >= 0 |
| // RHSSign -> RHS >= 0 |
| // SumSign -> Sum >= 0 |
| // |
| // Add: |
| // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) |
| // Sub: |
| // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) |
| // |
| SDValue LHSSign = DAG.getSetCC(OType, LHS, Zero, ISD::SETGE); |
| SDValue RHSSign = DAG.getSetCC(OType, RHS, Zero, ISD::SETGE); |
| SDValue SignsMatch = DAG.getSetCC(OType, LHSSign, RHSSign, |
| Node->getOpcode() == ISD::SADDO ? |
| ISD::SETEQ : ISD::SETNE); |
| |
| SDValue SumSign = DAG.getSetCC(OType, Sum, Zero, ISD::SETGE); |
| SDValue SumSignNE = DAG.getSetCC(OType, LHSSign, SumSign, ISD::SETNE); |
| |
| SDValue Cmp = DAG.getNode(ISD::AND, OType, SignsMatch, SumSignNE); |
| |
| MVT ValueVTs[] = { LHS.getValueType(), OType }; |
| SDValue Ops[] = { Sum, Cmp }; |
| |
| Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(&ValueVTs[0], 2), |
| &Ops[0], 2); |
| SDNode *RNode = Result.getNode(); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), SDValue(RNode, 0)); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(RNode, 1)); |
| break; |
| } |
| } |
| |
| break; |
| } |
| case ISD::UADDO: |
| case ISD::USUBO: { |
| MVT VT = Node->getValueType(0); |
| switch (TLI.getOperationAction(Node->getOpcode(), VT)) { |
| default: assert(0 && "This action not supported for this op yet!"); |
| case TargetLowering::Custom: |
| Result = TLI.LowerOperation(Op, DAG); |
| if (Result.getNode()) break; |
| // FALLTHROUGH |
| case TargetLowering::Legal: { |
| SDValue LHS = LegalizeOp(Node->getOperand(0)); |
| SDValue RHS = LegalizeOp(Node->getOperand(1)); |
| |
| SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? |
| ISD::ADD : ISD::SUB, LHS.getValueType(), |
| LHS, RHS); |
| MVT OType = Node->getValueType(1); |
| SDValue Cmp = DAG.getSetCC(OType, Sum, LHS, |
| Node->getOpcode () == ISD::UADDO ? |
| ISD::SETULT : ISD::SETUGT); |
| |
| MVT ValueVTs[] = { LHS.getValueType(), OType }; |
| SDValue Ops[] = { Sum, Cmp }; |
| |
| Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(&ValueVTs[0], 2), |
| &Ops[0], 2); |
| SDNode *RNode = Result.getNode(); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), SDValue(RNode, 0)); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(RNode, 1)); |
| break; |
| } |
| } |
| |
| break; |
| } |
| case ISD::SMULO: |
| case ISD::UMULO: { |
| MVT VT = Node->getValueType(0); |
| switch (TLI.getOperationAction(Node->getOpcode(), VT)) { |
| default: assert(0 && "This action is not supported at all!"); |
| case TargetLowering::Custom: |
| Result = TLI.LowerOperation(Op, DAG); |
| if (Result.getNode()) break; |
| // Fall Thru |
| case TargetLowering::Legal: |
| // FIXME: According to Hacker's Delight, this can be implemented in |
| // target independent lowering, but it would be inefficient, since it |
| // requires a division + a branch. |
| assert(0 && "Target independent lowering is not supported for SMULO/UMULO!"); |
| break; |
| } |
| break; |
| } |
| |
| } |
| |
| assert(Result.getValueType() == Op.getValueType() && |
| "Bad legalization!"); |
| |
| // Make sure that the generated code is itself legal. |
| if (Result != Op) |
| Result = LegalizeOp(Result); |
| |
| // Note that LegalizeOp may be reentered even from single-use nodes, which |
| // means that we always must cache transformed nodes. |
| AddLegalizedOperand(Op, Result); |
| return Result; |
| } |
| |
| /// PromoteOp - Given an operation that produces a value in an invalid type, |
| /// promote it to compute the value into a larger type. The produced value will |
| /// have the correct bits for the low portion of the register, but no guarantee |
| /// is made about the top bits: it may be zero, sign-extended, or garbage. |
| SDValue SelectionDAGLegalize::PromoteOp(SDValue Op) { |
| MVT VT = Op.getValueType(); |
| MVT NVT = TLI.getTypeToTransformTo(VT); |
| assert(getTypeAction(VT) == Promote && |
| "Caller should expand or legalize operands that are not promotable!"); |
| assert(NVT.bitsGT(VT) && NVT.isInteger() == VT.isInteger() && |
| "Cannot promote to smaller type!"); |
| |
| SDValue Tmp1, Tmp2, Tmp3; |
| SDValue Result; |
| SDNode *Node = Op.getNode(); |
| |
| DenseMap<SDValue, SDValue>::iterator I = PromotedNodes.find(Op); |
| if (I != PromotedNodes.end()) return I->second; |
| |
| switch (Node->getOpcode()) { |
| case ISD::CopyFromReg: |
| assert(0 && "CopyFromReg must be legal!"); |
| default: |
| #ifndef NDEBUG |
| cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; |
| #endif |
| assert(0 && "Do not know how to promote this operator!"); |
| abort(); |
| case ISD::UNDEF: |
| Result = DAG.getNode(ISD::UNDEF, NVT); |
| break; |
| case ISD::Constant: |
| if (VT != MVT::i1) |
| Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op); |
| else |
| Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op); |
| assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); |
| break; |
| case ISD::ConstantFP: |
| Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op); |
| assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); |
| break; |
| |
| case ISD::SETCC: { |
| MVT VT0 = Node->getOperand(0).getValueType(); |
| assert(isTypeLegal(TLI.getSetCCResultType(VT0)) |
| && "SetCC type is not legal??"); |
| Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(VT0), |
| Node->getOperand(0), Node->getOperand(1), |
| Node->getOperand(2)); |
| break; |
| } |
| case ISD::TRUNCATE: |
| switch (getTypeAction(Node->getOperand(0).getValueType())) { |
| case Legal: |
| Result = LegalizeOp(Node->getOperand(0)); |
| assert(Result.getValueType().bitsGE(NVT) && |
| "This truncation doesn't make sense!"); |
| if (Result.getValueType().bitsGT(NVT)) // Truncate to NVT instead of VT |
| Result = DAG.getNode(ISD::TRUNCATE, NVT, Result); |
| break; |
| case Promote: |
| // The truncation is not required, because we don't guarantee anything |
| // about high bits anyway. |
| Result = PromoteOp(Node->getOperand(0)); |
| break; |
| case Expand: |
| ExpandOp(Node->getOperand(0), Tmp1, Tmp2); |
| // Truncate the low part of the expanded value to the result type |
| Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1); |
| } |
| break; |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| switch (getTypeAction(Node->getOperand(0).getValueType())) { |
| case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); |
| case Legal: |
| // Input is legal? Just do extend all the way to the larger type. |
| Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); |
| break; |
| case Promote: |
| // Promote the reg if it's smaller. |
| Result = PromoteOp(Node->getOperand(0)); |
| // The high bits are not guaranteed to be anything. Insert an extend. |
| if (Node->getOpcode() == ISD::SIGN_EXTEND) |
| Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, |
| DAG.getValueType(Node->getOperand(0).getValueType())); |
| else if (Node->getOpcode() == ISD::ZERO_EXTEND) |
| Result = DAG.getZeroExtendInReg(Result, |
| Node->getOperand(0).getValueType()); |
| break; |
| } |
| break; |
| case ISD::CONVERT_RNDSAT: { |
| ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); |
| assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU || |
| CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU || |
| CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) && |
| "can only promote integers"); |
| Result = DAG.getConvertRndSat(NVT, Node->getOperand(0), |
| Node->getOperand(1), Node->getOperand(2), |
| Node->getOperand(3), Node->getOperand(4), |
| CvtCode); |
| break; |
| |
| } |
| case ISD::BIT_CONVERT: |
| Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), |
| Node->getValueType(0)); |
| Result = PromoteOp(Result); |
| break; |
| |
| case ISD::FP_EXTEND: |
| assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); |
| case ISD::FP_ROUND: |
| switch (getTypeAction(Node->getOperand(0).getValueType())) { |
| case Expand: assert(0 && "BUG: Cannot expand FP regs!"); |
| case Promote: assert(0 && "Unreachable with 2 FP types!"); |
| case Legal: |
| if (Node->getConstantOperandVal(1) == 0) { |
| // Input is legal? Do an FP_ROUND_INREG. |
| Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0), |
| DAG.getValueType(VT)); |
| } else { |
| // Just remove the truncate, it isn't affecting the value. |
| Result = DAG.getNode(ISD::FP_ROUND, NVT, Node->getOperand(0), |
| Node->getOperand(1)); |
| } |
| break; |
| } |
| break; |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| switch (getTypeAction(Node->getOperand(0).getValueType())) { |
| case Legal: |
| // No extra round required here. |
| Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); |
| break; |
| |
| case Promote: |
| Result = PromoteOp(Node->getOperand(0)); |
| if (Node->getOpcode() == ISD::SINT_TO_FP) |
| Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), |
| Result, |
| DAG.getValueType(Node->getOperand(0).getValueType())); |
| else |
| Result = DAG.getZeroExtendInReg(Result, |
| Node->getOperand(0).getValueType()); |
| // No extra round required here. |
| Result = DAG.getNode(Node->getOpcode(), NVT, Result); |
| break; |
| case Expand: |
| Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, |
| Node->getOperand(0), Node->getDebugLoc()); |
| // Round if we cannot tolerate excess precision. |
| if (NoExcessFPPrecision) |
| Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, |
| DAG.getValueType(VT)); |
| break; |
| } |
| break; |
| |
| case ISD::SIGN_EXTEND_INREG: |
| Result = PromoteOp(Node->getOperand(0)); |
| Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, |
| Node->getOperand(1)); |
| break; |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| switch (getTypeAction(Node->getOperand(0).getValueType())) { |
| case Legal: |
| case Expand: |
| Tmp1 = Node->getOperand(0); |
| break; |
| case Promote: |
| // The input result is prerounded, so we don't have to do anything |
| // special. |
| Tmp1 = PromoteOp(Node->getOperand(0)); |
| break; |
| } |
| // If we're promoting a UINT to a larger size, check to see if the new node |
| // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since |
| // we can use that instead. This allows us to generate better code for |
| // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not |
| // legal, such as PowerPC. |
| if (Node->getOpcode() == ISD::FP_TO_UINT && |
| !TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NVT) && |
| (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT) || |
| TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ |
| Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1); |
| } else { |
| Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); |
| } |
| break; |
| |
| case ISD::FABS: |
| case ISD::FNEG: |
| Tmp1 = PromoteOp(Node->getOperand(0)); |
| assert(Tmp1.getValueType() == NVT); |
| Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); |
| // NOTE: we do not have to do any extra rounding here for |
| // NoExcessFPPrecision, because we know the input will have the appropriate |
| // precision, and these operations don't modify precision at all. |
| break; |
| |
| case ISD::FLOG: |
| case ISD::FLOG2: |
| case ISD::FLOG10: |
| case ISD::FEXP: |
| case ISD::FEXP2: |
| case ISD::FSQRT: |
| case ISD::FSIN: |
| case ISD::FCOS: |
| case ISD::FTRUNC: |
| case ISD::FFLOOR: |
| case ISD::FCEIL: |
| case ISD::FRINT: |
| case ISD::FNEARBYINT: |
| Tmp1 = PromoteOp(Node->getOperand(0)); |
| assert(Tmp1.getValueType() == NVT); |
| Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); |
| if (NoExcessFPPrecision) |
| Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, |
| DAG.getValueType(VT)); |
| break; |
| |
| case ISD::FPOW: |
| case ISD::FPOWI: { |
| // Promote f32 pow(i) to f64 pow(i). Note that this could insert a libcall |
| // directly as well, which may be better. |
| Tmp1 = PromoteOp(Node->getOperand(0)); |
| Tmp2 = Node->getOperand(1); |
| if (Node->getOpcode() == ISD::FPOW) |
| Tmp2 = PromoteOp(Tmp2); |
| assert(Tmp1.getValueType() == NVT); |
| Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); |
| if (NoExcessFPPrecision) |
| Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, |
| DAG.getValueType(VT)); |
| break; |
| } |
| |
| case ISD::ATOMIC_CMP_SWAP: { |
| AtomicSDNode* AtomNode = cast<AtomicSDNode>(Node); |
| Tmp2 = PromoteOp(Node->getOperand(2)); |
| Tmp3 = PromoteOp(Node->getOperand(3)); |
| Result = DAG.getAtomic(Node->getOpcode(), AtomNode->getMemoryVT(), |
| AtomNode->getChain(), |
| AtomNode->getBasePtr(), Tmp2, Tmp3, |
| AtomNode->getSrcValue(), |
| AtomNode->getAlignment()); |
| // Remember that we legalized the chain. |
| AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); |
| break; |
| } |
| case ISD::ATOMIC_LOAD_ADD: |
| case ISD::ATOMIC_LOAD_SUB: |
| case ISD::ATOMIC_LOAD_AND: |
| case ISD::ATOMIC_LOAD_OR: |
| case ISD::ATOMIC_LOAD_XOR: |
| case ISD::ATOMIC_LOAD_NAND: |
| case ISD::ATOMIC_LOAD_MIN: |
| case ISD::ATOMIC_LOAD_MAX: |
| case ISD::ATOMIC_LOAD_UMIN: |
| case ISD::ATOMIC_LOAD_UMAX: |
| case ISD::ATOMIC_SWAP: { |
| AtomicSDNode* AtomNode = cast<AtomicSDNode>(Node); |
| Tmp2 = PromoteOp(Node->getOperand(2)); |
| Result = DAG.getAtomic(Node->getOpcode(), AtomNode->getMemoryVT(), |
| AtomNode->getChain(), |
| AtomNode->getBasePtr(), Tmp2, |
| AtomNode->getSrcValue(), |
| AtomNode->getAlignment()); |
| // Remember that we legalized the chain. |
| AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); |
| break; |
| } |
| |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| // The input may have strange things in the top bits of the registers, but |
| // these operations don't care. They may have weird bits going out, but |
| // that too is okay if they are integer operations. |
| Tmp1 = PromoteOp(Node->getOperand(0)); |
| Tmp2 = PromoteOp(Node->getOperand(1)); |
| assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); |
| Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); |
| break; |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| Tmp1 = PromoteOp(Node->getOperand(0)); |
| Tmp2 = PromoteOp(Node->getOperand(1)); |
| assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); |
| Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); |
| |
| // Floating point operations will give excess precision that we may not be |
| // able to tolerate. If we DO allow excess precision, just leave it, |
| // otherwise excise it. |
| // FIXME: Why would we need to round FP ops more than integer ones? |
| // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) |
| if (NoExcessFPPrecision) |
| Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, |
| DAG.getValueType(VT)); |
| break; |
| |
| case ISD::SDIV: |
| case ISD::SREM: |
| // These operators require that their input be sign extended. |
| Tmp1 = PromoteOp(Node->getOperand(0)); |
| Tmp2 = PromoteOp(Node->getOperand(1)); |
| if (NVT.isInteger()) { |
| Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, |
| DAG.getValueType(VT)); |
| Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, |
| DAG.getValueType(VT)); |
| } |
| Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); |
| |
| // Perform FP_ROUND: this is probably overly pessimistic. |
| if (NVT.isFloatingPoint() && NoExcessFPPrecision) |
| Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, |
| DAG.getValueType(VT)); |
| break; |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::FCOPYSIGN: |
| // These operators require that their input be fp extended. |
| switch (getTypeAction(Node->getOperand(0).getValueType())) { |
| case Expand: assert(0 && "not implemented"); |
| case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); break; |
| case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); break; |
| } |
| switch (getTypeAction(Node->getOperand(1).getValueType())) { |
| case Expand: assert(0 && "not implemented"); |
| case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; |
| case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; |
| } |
| Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); |
| |
| // Perform FP_ROUND: this is probably overly pessimistic. |
| if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) |
| Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, |
| DAG.getValueType(VT)); |
| break; |
| |
| case ISD::UDIV: |
| case ISD::UREM: |
| // These operators require that their input be zero extended. |
| Tmp1 = PromoteOp(Node->getOperand(0)); |
| Tmp2 = PromoteOp(Node->getOperand(1)); |
| assert(NVT.isInteger() && "Operators don't apply to FP!"); |
| Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); |
| Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); |
| Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); |
| break; |
| |
| case ISD::SHL: |
| Tmp1 = PromoteOp(Node->getOperand(0)); |
| Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1)); |
| break; |
| case ISD::SRA: |
| // The input value must be properly sign extended. |
| Tmp1 = PromoteOp(Node->getOperand(0)); |
| Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, |
| DAG.getValueType(VT)); |
| Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1)); |
| break; |
| case ISD::SRL: |
| // The input value must be properly zero extended. |
| Tmp1 = PromoteOp(Node->getOperand(0)); |
| Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); |
| Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1)); |
| break; |
| |
| case ISD::VAARG: |
| Tmp1 = Node->getOperand(0); // Get the chain. |
| Tmp2 = Node->getOperand(1); // Get the pointer. |
| if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { |
| Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2)); |
| Result = TLI.LowerOperation(Tmp3, DAG); |
| } else { |
| const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); |
| SDValue VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); |
| // Increment the pointer, VAList, to the next vaarg |
| Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, |
| DAG.getConstant(VT.getSizeInBits()/8, |
| TLI.getPointerTy())); |
| // Store the incremented VAList to the legalized pointer |
| Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); |
| // Load the actual argument out of the pointer VAList |
| Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT); |
| } |
| // Remember that we legalized the chain. |
| AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); |
| break; |
| |
| case ISD::LOAD: { |
| LoadSDNode *LD = cast<LoadSDNode>(Node); |
| ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) |
| ? ISD::EXTLOAD : LD->getExtensionType(); |
| Result = DAG.getExtLoad(ExtType, NVT, |
| LD->getChain(), LD->getBasePtr(), |
| LD->getSrcValue(), LD->getSrcValueOffset(), |
| LD->getMemoryVT(), |
| LD->isVolatile(), |
| LD->getAlignment()); |
| // Remember that we legalized the chain. |
| AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); |
| break; |
| } |
| case ISD::SELECT: { |
| Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 |
| Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 |
| |
| MVT VT2 = Tmp2.getValueType(); |
| assert(VT2 == Tmp3.getValueType() |
| && "PromoteOp SELECT: Operands 2 and 3 ValueTypes don't match"); |
| // Ensure that the resulting node is at least the same size as the operands' |
| // value types, because we cannot assume that TLI.getSetCCValueType() is |
| // constant. |
| Result = DAG.getNode(ISD::SELECT, VT2, Node->getOperand(0), Tmp2, Tmp3); |
| break; |
| } |
| case ISD::SELECT_CC: |
| Tmp2 = PromoteOp(Node->getOperand(2)); // True |
| Tmp3 = PromoteOp(Node->getOperand(3)); // False |
| Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), |
| Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); |
| break; |
| case ISD::BSWAP: |
| Tmp1 = Node->getOperand(0); |
| Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); |
| Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); |
| Result = DAG.getNode(ISD::SRL, NVT, Tmp1, |
| DAG.getConstant(NVT.getSizeInBits() - |
| VT.getSizeInBits(), |
| TLI.getShiftAmountTy())); |
| break; |
| case ISD::CTPOP: |
| case ISD::CTTZ: |
| case ISD::CTLZ: |
| // Zero extend the argument |
| Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); |
| // Perform the larger operation, then subtract if needed. |
| Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1); |
| switch(Node->getOpcode()) { |
| case ISD::CTPOP: |
| Result = Tmp1; |
| break; |
| case ISD::CTTZ: |
| // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) |
| Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(Tmp1.getValueType()), Tmp1, |
| DAG.getConstant(NVT.getSizeInBits(), NVT), |
| ISD::SETEQ); |
| Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, |
| DAG.getConstant(VT.getSizeInBits(), NVT), Tmp1); |
| break; |
| case ISD::CTLZ: |
| //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) |
| Result = DAG.getNode(ISD::SUB, NVT, Tmp1, |
| DAG.getConstant(NVT.getSizeInBits() - |
| VT.getSizeInBits(), NVT)); |
| break; |
| } |
| break; |
| case ISD::EXTRACT_SUBVECTOR: |
| Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); |
| break; |
| case ISD::EXTRACT_VECTOR_ELT: |
| Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); |
| break; |
| } |
| |
| assert(Result.getNode() && "Didn't set a result!"); |
| |
| // Make sure the result is itself legal. |
| Result = LegalizeOp(Result); |
| |
| // Remember that we promoted this! |
| AddPromotedOperand(Op, Result); |
| return Result; |
| } |
| |
| /// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into |
| /// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, |
| /// based on the vector type. The return type of this matches the element type |
| /// of the vector, which may not be legal for the target. |
| SDValue SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDValue Op) { |
| // We know that operand #0 is the Vec vector. If the index is a constant |
| // or if the invec is a supported hardware type, we can use it. Otherwise, |
| // lower to a store then an indexed load. |
| SDValue Vec = Op.getOperand(0); |
| SDValue Idx = Op.getOperand(1); |
| |
| MVT TVT = Vec.getValueType(); |
| unsigned NumElems = TVT.getVectorNumElements(); |
| |
| switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { |
| default: assert(0 && "This action is not supported yet!"); |
| case TargetLowering::Custom: { |
| Vec = LegalizeOp(Vec); |
| Op = DAG.UpdateNodeOperands(Op, Vec, Idx); |
| SDValue Tmp3 = TLI.LowerOperation(Op, DAG); |
| if (Tmp3.getNode()) |
| return Tmp3; |
| break; |
| } |
| case TargetLowering::Legal: |
| if (isTypeLegal(TVT)) { |
| Vec = LegalizeOp(Vec); |
| Op = DAG.UpdateNodeOperands(Op, Vec, Idx); |
| return Op; |
| } |
| break; |
| case TargetLowering::Promote: |
| assert(TVT.isVector() && "not vector type"); |
| // fall thru to expand since vectors are by default are promote |
| case TargetLowering::Expand: |
| break; |
| } |
| |
| if (NumElems == 1) { |
| // This must be an access of the only element. Return it. |
| Op = ScalarizeVectorOp(Vec); |
| } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { |
| unsigned NumLoElts = 1 << Log2_32(NumElems-1); |
| ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); |
| SDValue Lo, Hi; |
| SplitVectorOp(Vec, Lo, Hi); |
| if (CIdx->getZExtValue() < NumLoElts) { |
| Vec = Lo; |
| } else { |
| Vec = Hi; |
| Idx = DAG.getConstant(CIdx->getZExtValue() - NumLoElts, |
| Idx.getValueType()); |
| } |
| |
| // It's now an extract from the appropriate high or low part. Recurse. |
| Op = DAG.UpdateNodeOperands(Op, Vec, Idx); |
| Op = ExpandEXTRACT_VECTOR_ELT(Op); |
| } else { |
| // Store the value to a temporary stack slot, then LOAD the scalar |
| // element back out. |
| SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); |
| SDValue Ch = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0); |
| |
| // Add the offset to the index. |
| unsigned EltSize = Op.getValueType().getSizeInBits()/8; |
| Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx, |
| DAG.getConstant(EltSize, Idx.getValueType())); |
| |
| if (Idx.getValueType().bitsGT(TLI.getPointerTy())) |
| Idx = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Idx); |
| else |
| Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx); |
| |
| StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr); |
| |
| Op = DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0); |
| } |
| return Op; |
| } |
| |
| /// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now |
| /// we assume the operation can be split if it is not already legal. |
| SDValue SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDValue Op) { |
| // We know that operand #0 is the Vec vector. For now we assume the index |
| // is a constant and that the extracted result is a supported hardware type. |
| SDValue Vec = Op.getOperand(0); |
| SDValue Idx = LegalizeOp(Op.getOperand(1)); |
| |
| unsigned NumElems = Vec.getValueType().getVectorNumElements(); |
| |
| if (NumElems == Op.getValueType().getVectorNumElements()) { |
| // This must be an access of the desired vector length. Return it. |
| return Vec; |
| } |
| |
| ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); |
| SDValue Lo, Hi; |
| SplitVectorOp(Vec, Lo, Hi); |
| if (CIdx->getZExtValue() < NumElems/2) { |
| Vec = Lo; |
| } else { |
| Vec = Hi; |
| Idx = DAG.getConstant(CIdx->getZExtValue() - NumElems/2, |
| Idx.getValueType()); |
| } |
| |
| // It's now an extract from the appropriate high or low part. Recurse. |
| Op = DAG.UpdateNodeOperands(Op, Vec, Idx); |
| return ExpandEXTRACT_SUBVECTOR(Op); |
| } |
| |
| /// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC |
| /// with condition CC on the current target. This usually involves legalizing |
| /// or promoting the arguments. In the case where LHS and RHS must be expanded, |
| /// there may be no choice but to create a new SetCC node to represent the |
| /// legalized value of setcc lhs, rhs. In this case, the value is returned in |
| /// LHS, and the SDValue returned in RHS has a nil SDNode value. |
| void SelectionDAGLegalize::LegalizeSetCCOperands(SDValue &LHS, |
| SDValue &RHS, |
| SDValue &CC) { |
| SDValue Tmp1, Tmp2, Tmp3, Result; |
| |
| switch (getTypeAction(LHS.getValueType())) { |
| case Legal: |
| Tmp1 = LegalizeOp(LHS); // LHS |
| Tmp2 = LegalizeOp(RHS); // RHS |
| break; |
| case Promote: |
| Tmp1 = PromoteOp(LHS); // LHS |
| Tmp2 = PromoteOp(RHS); // RHS |
| |
| // If this is an FP compare, the operands have already been extended. |
| if (LHS.getValueType().isInteger()) { |
| MVT VT = LHS.getValueType(); |
| MVT NVT = TLI.getTypeToTransformTo(VT); |
| |
| // Otherwise, we have to insert explicit sign or zero extends. Note |
| // that we could insert sign extends for ALL conditions, but zero extend |
| // is cheaper on many machines (an AND instead of two shifts), so prefer |
| // it. |
| switch (cast<CondCodeSDNode>(CC)->get()) { |
| default: assert(0 && "Unknown integer comparison!"); |
| case ISD::SETEQ: |
| case ISD::SETNE: |
| case ISD::SETUGE: |
| case ISD::SETUGT: |
| case ISD::SETULE: |
| case ISD::SETULT: |
| // ALL of these operations will work if we either sign or zero extend |
| // the operands (including the unsigned comparisons!). Zero extend is |
| // usually a simpler/cheaper operation, so prefer it. |
| Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); |
| Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); |
| break; |
| case ISD::SETGE: |
| case ISD::SETGT: |
| case ISD::SETLT: |
| case ISD::SETLE: |
| Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, |
| DAG.getValueType(VT)); |
| Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, |
| DAG.getValueType(VT)); |
| Tmp1 = LegalizeOp(Tmp1); // Relegalize new nodes. |
| Tmp2 = LegalizeOp(Tmp2); // Relegalize new nodes. |
| break; |
| } |
| } |
| break; |
| case Expand: { |
| MVT VT = LHS.getValueType(); |
| if (VT == MVT::f32 || VT == MVT::f64) { |
| // Expand into one or more soft-fp libcall(s). |
| RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; |
| switch (cast<CondCodeSDNode>(CC)->get()) { |
| case ISD::SETEQ: |
| case ISD::SETOEQ: |
| LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; |
| break; |
| case ISD::SETNE: |
| case ISD::SETUNE: |
| LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; |
| break; |
| case ISD::SETGE: |
| case ISD::SETOGE: |
| LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; |
| break; |
| case ISD::SETLT: |
| case ISD::SETOLT: |
| LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; |
| break; |
| case ISD::SETLE: |
| case ISD::SETOLE: |
| LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; |
| break; |
| case ISD::SETGT: |
| case ISD::SETOGT: |
| LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; |
| break; |
| case ISD::SETUO: |
| LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; |
| break; |
| case ISD::SETO: |
| LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; |
| break; |
| default: |
| LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; |
| switch (cast<CondCodeSDNode>(CC)->get()) { |
| case ISD::SETONE: |
| // SETONE = SETOLT | SETOGT |
| LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; |
| // Fallthrough |
| case ISD::SETUGT: |
| LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; |
| break; |
| case ISD::SETUGE: |
| LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; |
| break; |
| case ISD::SETULT: |
| LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; |
| break; |
| case ISD::SETULE: |
| LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; |
| break; |
| case ISD::SETUEQ: |
| LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; |
| break; |
| default: assert(0 && "Unsupported FP setcc!"); |
| } |
| } |
| |
| SDValue Dummy; |
| SDValue Ops[2] = { LHS, RHS }; |
| Tmp1 = ExpandLibCall(LC1, DAG.getMergeValues(Ops, 2).getNode(), |
| false /*sign irrelevant*/, Dummy); |
| Tmp2 = DAG.getConstant(0, MVT::i32); |
| CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); |
| if (LC2 != RTLIB::UNKNOWN_LIBCALL) { |
| Tmp1 = DAG.getNode(ISD::SETCC, |
| TLI.getSetCCResultType(Tmp1.getValueType()), |
| Tmp1, Tmp2, CC); |
| LHS = ExpandLibCall(LC2, DAG.getMergeValues(Ops, 2).getNode(), |
| false /*sign irrelevant*/, Dummy); |
| Tmp2 = DAG.getNode(ISD::SETCC, |
| TLI.getSetCCResultType(LHS.getValueType()), LHS, |
| Tmp2, DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); |
| Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); |
| Tmp2 = SDValue(); |
| } |
| LHS = LegalizeOp(Tmp1); |
| RHS = Tmp2; |
| return; |
| } |
| |
| SDValue LHSLo, LHSHi, RHSLo, RHSHi; |
| ExpandOp(LHS, LHSLo, LHSHi); |
| ExpandOp(RHS, RHSLo, RHSHi); |
| ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); |
| |
| if (VT==MVT::ppcf128) { |
| // FIXME: This generated code sucks. We want to generate |
| // FCMPU crN, hi1, hi2 |
| // BNE crN, L: |
| // FCMPU crN, lo1, lo2 |
| // The following can be improved, but not that much. |
| Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi.getValueType()), |
| LHSHi, RHSHi, ISD::SETOEQ); |
| Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo.getValueType()), |
| LHSLo, RHSLo, CCCode); |
| Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); |
| Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi.getValueType()), |
| LHSHi, RHSHi, ISD::SETUNE); |
| Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi.getValueType()), |
| LHSHi, RHSHi, CCCode); |
| Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); |
| Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3); |
| Tmp2 = SDValue(); |
| break; |
| } |
| |
| switch (CCCode) { |
| case ISD::SETEQ: |
| case ISD::SETNE: |
| if (RHSLo == RHSHi) |
| if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) |
| if (RHSCST->isAllOnesValue()) { |
| // Comparison to -1. |
| Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); |
| Tmp2 = RHSLo; |
| break; |
| } |
| |
| Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); |
| Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); |
| Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); |
| Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); |
| break; |
| default: |
| // If this is a comparison of the sign bit, just look at the top part. |
| // X > -1, x < 0 |
| if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) |
| if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && |
| CST->isNullValue()) || // X < 0 |
| (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && |
| CST->isAllOnesValue())) { // X > -1 |
| Tmp1 = LHSHi; |
| Tmp2 = RHSHi; |
| break; |
| } |
| |
| // FIXME: This generated code sucks. |
| ISD::CondCode LowCC; |
| switch (CCCode) { |
| default: assert(0 && "Unknown integer setcc!"); |
| case ISD::SETLT: |
| case ISD::SETULT: LowCC = ISD::SETULT; break; |
| case ISD::SETGT: |
| case ISD::SETUGT: LowCC = ISD::SETUGT; break; |
| case ISD::SETLE: |
| case ISD::SETULE: LowCC = ISD::SETULE; break; |
| case ISD::SETGE: |
| case ISD::SETUGE: LowCC = ISD::SETUGE; break; |
| } |
| |
| // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison |
| // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands |
| // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; |
| |
| // NOTE: on targets without efficient SELECT of bools, we can always use |
| // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) |
| TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); |
| Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo.getValueType()), |
| LHSLo, RHSLo, LowCC, false, DagCombineInfo); |
| if (!Tmp1.getNode()) |
| Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo.getValueType()), |
| LHSLo, RHSLo, LowCC); |
| Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()), |
| LHSHi, RHSHi, CCCode, false, DagCombineInfo); |
| if (!Tmp2.getNode()) |
| Tmp2 = DAG.getNode(ISD::SETCC, |
| TLI.getSetCCResultType(LHSHi.getValueType()), |
| LHSHi, RHSHi,CC); |
| |
| ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode()); |
| ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode()); |
| if ((Tmp1C && Tmp1C->isNullValue()) || |
| (Tmp2C && Tmp2C->isNullValue() && |
| (CCCode == ISD::SETLE || CCCode == ISD::SETGE || |
| CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || |
| (Tmp2C && Tmp2C->getAPIntValue() == 1 && |
| (CCCode == ISD::SETLT || CCCode == ISD::SETGT || |
| CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { |
| // low part is known false, returns high part. |
| // For LE / GE, if high part is known false, ignore the low part. |
| // For LT / GT, if high part is known true, ignore the low part. |
| Tmp1 = Tmp2; |
| Tmp2 = SDValue(); |
| } else { |
| Result = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()), |
| LHSHi, RHSHi, ISD::SETEQ, false, |
| DagCombineInfo); |
| if (!Result.getNode()) |
| Result=DAG.getSetCC(TLI.getSetCCResultType(LHSHi.getValueType()), |
| LHSHi, RHSHi, ISD::SETEQ); |
| Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(), |
| Result, Tmp1, Tmp2)); |
| Tmp1 = Result; |
| Tmp2 = SDValue(); |
| } |
| } |
| } |
| } |
| LHS = Tmp1; |
| RHS = Tmp2; |
| } |
| |
| /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and |
| /// condition code CC on the current target. This routine assumes LHS and rHS |
| /// have already been legalized by LegalizeSetCCOperands. It expands SETCC with |
| /// illegal condition code into AND / OR of multiple SETCC values. |
| void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT, |
| SDValue &LHS, SDValue &RHS, |
| SDValue &CC) { |
| MVT OpVT = LHS.getValueType(); |
| ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); |
| switch (TLI.getCondCodeAction(CCCode, OpVT)) { |
| default: assert(0 && "Unknown condition code action!"); |
| case TargetLowering::Legal: |
| // Nothing to do. |
| break; |
| case TargetLowering::Expand: { |
| ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; |
| unsigned Opc = 0; |
| switch (CCCode) { |
| default: assert(0 && "Don't know how to expand this condition!"); abort(); |
| case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break; |
| case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break; |
| case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break; |
| case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break; |
| case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break; |
| case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break; |
| case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break; |
| case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break; |
| case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break; |
| case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break; |
| case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break; |
| case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break; |
| // FIXME: Implement more expansions. |
| } |
| |
| SDValue SetCC1 = DAG.getSetCC(VT, LHS, RHS, CC1); |
| SDValue SetCC2 = DAG.getSetCC(VT, LHS, RHS, CC2); |
| LHS = DAG.getNode(Opc, VT, SetCC1, SetCC2); |
| RHS = SDValue(); |
| CC = SDValue(); |
| break; |
| } |
| } |
| } |
| |
| /// EmitStackConvert - Emit a store/load combination to the stack. This stores |
| /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does |
| /// a load from the stack slot to DestVT, extending it if needed. |
| /// The resultant code need not be legal. |
| SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, |
| MVT SlotVT, |
| MVT DestVT) { |
| // Create the stack frame object. |
| unsigned SrcAlign = TLI.getTargetData()->getPrefTypeAlignment( |
| SrcOp.getValueType().getTypeForMVT()); |
| SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); |
| |
| FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); |
| int SPFI = StackPtrFI->getIndex(); |
| const Value *SV = PseudoSourceValue::getFixedStack(SPFI); |
| |
| unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); |
| unsigned SlotSize = SlotVT.getSizeInBits(); |
| unsigned DestSize = DestVT.getSizeInBits(); |
| unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment( |
| DestVT.getTypeForMVT()); |
| |
| // Emit a store to the stack slot. Use a truncstore if the input value is |
| // later than DestVT. |
| SDValue Store; |
| |
| if (SrcSize > SlotSize) |
| Store = DAG.getTruncStore(DAG.getEntryNode(), SrcOp, FIPtr, |
| SV, 0, SlotVT, false, SrcAlign); |
| else { |
| assert(SrcSize == SlotSize && "Invalid store"); |
| Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr, |
| SV, 0, false, SrcAlign); |
| } |
| |
| // Result is a load from the stack slot. |
| if (SlotSize == DestSize) |
| return DAG.getLoad(DestVT, Store, FIPtr, SV, 0, false, DestAlign); |
| |
| assert(SlotSize < DestSize && "Unknown extension!"); |
| return DAG.getExtLoad(ISD::EXTLOAD, DestVT, Store, FIPtr, SV, 0, SlotVT, |
| false, DestAlign); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { |
| // Create a vector sized/aligned stack slot, store the value to element #0, |
| // then load the whole vector back out. |
| SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); |
| |
| FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); |
| int SPFI = StackPtrFI->getIndex(); |
| |
| SDValue Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr, |
| PseudoSourceValue::getFixedStack(SPFI), 0); |
| return DAG.getLoad(Node->getValueType(0), Ch, StackPtr, |
| PseudoSourceValue::getFixedStack(SPFI), 0); |
| } |
| |
| |
| /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't |
| /// support the operation, but do support the resultant vector type. |
| SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { |
| |
| // If the only non-undef value is the low element, turn this into a |
| // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. |
| unsigned NumElems = Node->getNumOperands(); |
| bool isOnlyLowElement = true; |
| SDValue SplatValue = Node->getOperand(0); |
| |
| // FIXME: it would be far nicer to change this into map<SDValue,uint64_t> |
| // and use a bitmask instead of a list of elements. |
| std::map<SDValue, std::vector<unsigned> > Values; |
| Values[SplatValue].push_back(0); |
| bool isConstant = true; |
| if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && |
| SplatValue.getOpcode() != ISD::UNDEF) |
| isConstant = false; |
| |
| for (unsigned i = 1; i < NumElems; ++i) { |
| SDValue V = Node->getOperand(i); |
| Values[V].push_back(i); |
| if (V.getOpcode() != ISD::UNDEF) |
| isOnlyLowElement = false; |
| if (SplatValue != V) |
| SplatValue = SDValue(0,0); |
| |
| // If this isn't a constant element or an undef, we can't use a constant |
| // pool load. |
| if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && |
| V.getOpcode() != ISD::UNDEF) |
| isConstant = false; |
| } |
| |
| if (isOnlyLowElement) { |
| // If the low element is an undef too, then this whole things is an undef. |
| if (Node->getOperand(0).getOpcode() == ISD::UNDEF) |
| return DAG.getNode(ISD::UNDEF, Node->getValueType(0)); |
| // Otherwise, turn this into a scalar_to_vector node. |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), |
| Node->getOperand(0)); |
| } |
| |
| // If all elements are constants, create a load from the constant pool. |
| if (isConstant) { |
| MVT VT = Node->getValueType(0); |
| std::vector<Constant*> CV; |
| for (unsigned i = 0, e = NumElems; i != e; ++i) { |
| if (ConstantFPSDNode *V = |
| dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { |
| CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); |
| } else if (ConstantSDNode *V = |
| dyn_cast<ConstantSDNode>(Node->getOperand(i))) { |
| CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); |
| } else { |
| assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); |
| const Type *OpNTy = |
| Node->getOperand(0).getValueType().getTypeForMVT(); |
| CV.push_back(UndefValue::get(OpNTy)); |
| } |
| } |
| Constant *CP = ConstantVector::get(CV); |
| SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); |
| unsigned Alignment = 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, Alignment); |
| } |
| |
| if (SplatValue.getNode()) { // Splat of one value? |
| // Build the shuffle constant vector: <0, 0, 0, 0> |
| MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| SDValue Zero = DAG.getConstant(0, MaskVT.getVectorElementType()); |
| std::vector<SDValue> ZeroVec(NumElems, Zero); |
| SDValue SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &ZeroVec[0], ZeroVec.size()); |
| |
| // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. |
| if (isShuffleLegal(Node->getValueType(0), SplatMask)) { |
| // Get the splatted value into the low element of a vector register. |
| SDValue LowValVec = |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue); |
| |
| // Return shuffle(LowValVec, undef, <0,0,0,0>) |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec, |
| DAG.getNode(ISD::UNDEF, Node->getValueType(0)), |
| SplatMask); |
| } |
| } |
| |
| // If there are only two unique elements, we may be able to turn this into a |
| // vector shuffle. |
| if (Values.size() == 2) { |
| // Get the two values in deterministic order. |
| SDValue Val1 = Node->getOperand(1); |
| SDValue Val2; |
| std::map<SDValue, std::vector<unsigned> >::iterator MI = Values.begin(); |
| if (MI->first != Val1) |
| Val2 = MI->first; |
| else |
| Val2 = (++MI)->first; |
| |
| // If Val1 is an undef, make sure end ends up as Val2, to ensure that our |
| // vector shuffle has the undef vector on the RHS. |
| if (Val1.getOpcode() == ISD::UNDEF) |
| std::swap(Val1, Val2); |
| |
| // Build the shuffle constant vector: e.g. <0, 4, 0, 4> |
| MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT MaskEltVT = MaskVT.getVectorElementType(); |
| std::vector<SDValue> MaskVec(NumElems); |
| |
| // Set elements of the shuffle mask for Val1. |
| std::vector<unsigned> &Val1Elts = Values[Val1]; |
| for (unsigned i = 0, e = Val1Elts.size(); i != e; ++i) |
| MaskVec[Val1Elts[i]] = DAG.getConstant(0, MaskEltVT); |
| |
| // Set elements of the shuffle mask for Val2. |
| std::vector<unsigned> &Val2Elts = Values[Val2]; |
| for (unsigned i = 0, e = Val2Elts.size(); i != e; ++i) |
| if (Val2.getOpcode() != ISD::UNDEF) |
| MaskVec[Val2Elts[i]] = DAG.getConstant(NumElems, MaskEltVT); |
| else |
| MaskVec[Val2Elts[i]] = DAG.getNode(ISD::UNDEF, MaskEltVT); |
| |
| SDValue ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &MaskVec[0], MaskVec.size()); |
| |
| // If the target supports SCALAR_TO_VECTOR and this shuffle mask, use it. |
| if (TLI.isOperationLegalOrCustom(ISD::SCALAR_TO_VECTOR, |
| Node->getValueType(0)) && |
| isShuffleLegal(Node->getValueType(0), ShuffleMask)) { |
| Val1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), Val1); |
| Val2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), Val2); |
| SDValue Ops[] = { Val1, Val2, ShuffleMask }; |
| |
| // Return shuffle(LoValVec, HiValVec, <0,1,0,1>) |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), Ops, 3); |
| } |
| } |
| |
| // Otherwise, we can't handle this case efficiently. Allocate a sufficiently |
| // aligned object on the stack, store each element into it, then load |
| // the result as a vector. |
| MVT VT = Node->getValueType(0); |
| // Create the stack frame object. |
| SDValue FIPtr = DAG.CreateStackTemporary(VT); |
| int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); |
| const Value *SV = PseudoSourceValue::getFixedStack(FI); |
| |
| // Emit a store of each element to the stack slot. |
| SmallVector<SDValue, 8> Stores; |
| unsigned TypeByteSize = Node->getOperand(0).getValueType().getSizeInBits()/8; |
| // Store (in the right endianness) the elements to memory. |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { |
| // Ignore undef elements. |
| if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; |
| |
| unsigned Offset = TypeByteSize*i; |
| |
| SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); |
| Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx); |
| |
| Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx, |
| SV, Offset)); |
| } |
| |
| SDValue StoreChain; |
| if (!Stores.empty()) // Not all undef elements? |
| StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &Stores[0], Stores.size()); |
| else |
| StoreChain = DAG.getEntryNode(); |
| |
| // Result is a load from the stack slot. |
| return DAG.getLoad(VT, StoreChain, FIPtr, SV, 0); |
| } |
| |
| void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, |
| SDValue Op, SDValue Amt, |
| SDValue &Lo, SDValue &Hi) { |
| // Expand the subcomponents. |
| SDValue LHSL, LHSH; |
| ExpandOp(Op, LHSL, LHSH); |
| |
| SDValue Ops[] = { LHSL, LHSH, Amt }; |
| MVT VT = LHSL.getValueType(); |
| Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); |
| Hi = Lo.getValue(1); |
| } |
| |
| |
| /// ExpandShift - Try to find a clever way to expand this shift operation out to |
| /// smaller elements. If we can't find a way that is more efficient than a |
| /// libcall on this target, return false. Otherwise, return true with the |
| /// low-parts expanded into Lo and Hi. |
| bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDValue Op,SDValue Amt, |
| SDValue &Lo, SDValue &Hi) { |
| assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && |
| "This is not a shift!"); |
| |
| MVT NVT = TLI.getTypeToTransformTo(Op.getValueType()); |
| SDValue ShAmt = LegalizeOp(Amt); |
| MVT ShTy = ShAmt.getValueType(); |
| unsigned ShBits = ShTy.getSizeInBits(); |
| unsigned VTBits = Op.getValueType().getSizeInBits(); |
| unsigned NVTBits = NVT.getSizeInBits(); |
| |
| // Handle the case when Amt is an immediate. |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.getNode())) { |
| unsigned Cst = CN->getZExtValue(); |
| // Expand the incoming operand to be shifted, so that we have its parts |
| SDValue InL, InH; |
| ExpandOp(Op, InL, InH); |
| switch(Opc) { |
| case ISD::SHL: |
| if (Cst > VTBits) { |
| Lo = DAG.getConstant(0, NVT); |
| Hi = DAG.getConstant(0, NVT); |
| } else if (Cst > NVTBits) { |
| Lo = DAG.getConstant(0, NVT); |
| Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); |
| } else if (Cst == NVTBits) { |
| Lo = DAG.getConstant(0, NVT); |
| Hi = InL; |
| } else { |
| Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy)); |
| Hi = DAG.getNode(ISD::OR, NVT, |
| DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)), |
| DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy))); |
| } |
| return true; |
| case ISD::SRL: |
| if (Cst > VTBits) { |
| Lo = DAG.getConstant(0, NVT); |
| Hi = DAG.getConstant(0, NVT); |
| } else if (Cst > NVTBits) { |
| Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy)); |
| Hi = DAG.getConstant(0, NVT); |
| } else if (Cst == NVTBits) { |
| Lo = InH; |
| Hi = DAG.getConstant(0, NVT); |
| } else { |
| Lo = DAG.getNode(ISD::OR, NVT, |
| DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), |
| DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); |
| Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy)); |
| } |
| return true; |
| case ISD::SRA: |
| if (Cst > VTBits) { |
| Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, |
| DAG.getConstant(NVTBits-1, ShTy)); |
| } else if (Cst > NVTBits) { |
| Lo = DAG.getNode(ISD::SRA, NVT, InH, |
| DAG.getConstant(Cst-NVTBits, ShTy)); |
| Hi = DAG.getNode(ISD::SRA, NVT, InH, |
| DAG.getConstant(NVTBits-1, ShTy)); |
| } else if (Cst == NVTBits) { |
| Lo = InH; |
| Hi = DAG.getNode(ISD::SRA, NVT, InH, |
| DAG.getConstant(NVTBits-1, ShTy)); |
| } else { |
| Lo = DAG.getNode(ISD::OR, NVT, |
| DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), |
| DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); |
| Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy)); |
| } |
| return true; |
| } |
| } |
| |
| // Okay, the shift amount isn't constant. However, if we can tell that it is |
| // >= 32 or < 32, we can still simplify it, without knowing the actual value. |
| APInt Mask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits)); |
| APInt KnownZero, KnownOne; |
| DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); |
| |
| // If we know that if any of the high bits of the shift amount are one, then |
| // we can do this as a couple of simple shifts. |
| if (KnownOne.intersects(Mask)) { |
| // Mask out the high bit, which we know is set. |
| Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt, |
| DAG.getConstant(~Mask, Amt.getValueType())); |
| |
| // Expand the incoming operand to be shifted, so that we have its parts |
| SDValue InL, InH; |
| ExpandOp(Op, InL, InH); |
| switch(Opc) { |
| case ISD::SHL: |
| Lo = DAG.getConstant(0, NVT); // Low part is zero. |
| Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. |
| return true; |
| case ISD::SRL: |
| Hi = DAG.getConstant(0, NVT); // Hi part is zero. |
| Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. |
| return true; |
| case ISD::SRA: |
| Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. |
| DAG.getConstant(NVTBits-1, Amt.getValueType())); |
| Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. |
| return true; |
| } |
| } |
| |
| // If we know that the high bits of the shift amount are all zero, then we can |
| // do this as a couple of simple shifts. |
| if ((KnownZero & Mask) == Mask) { |
| // Compute 32-amt. |
| SDValue Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(), |
| DAG.getConstant(NVTBits, Amt.getValueType()), |
| Amt); |
| |
| // Expand the incoming operand to be shifted, so that we have its parts |
| SDValue InL, InH; |
| ExpandOp(Op, InL, InH); |
| switch(Opc) { |
| case ISD::SHL: |
| Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt); |
| Hi = DAG.getNode(ISD::OR, NVT, |
| DAG.getNode(ISD::SHL, NVT, InH, Amt), |
| DAG.getNode(ISD::SRL, NVT, InL, Amt2)); |
| return true; |
| case ISD::SRL: |
| Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt); |
| Lo = DAG.getNode(ISD::OR, NVT, |
| DAG.getNode(ISD::SRL, NVT, InL, Amt), |
| DAG.getNode(ISD::SHL, NVT, InH, Amt2)); |
| return true; |
| case ISD::SRA: |
| Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt); |
| Lo = DAG.getNode(ISD::OR, NVT, |
| DAG.getNode(ISD::SRL, NVT, InL, Amt), |
| DAG.getNode(ISD::SHL, NVT, InH, Amt2)); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| // ExpandLibCall - Expand a node into a call to a libcall. If the result value |
| // does not fit into a register, return the lo part and set the hi part to the |
| // by-reg argument. If it does fit into a single register, return the result |
| // and leave the Hi part unset. |
| SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, |
| bool isSigned, SDValue &Hi) { |
| assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); |
| // The input chain to this libcall is the entry node of the function. |
| // Legalizing the call will automatically add the previous call to the |
| // dependence. |
| SDValue InChain = DAG.getEntryNode(); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { |
| MVT ArgVT = Node->getOperand(i).getValueType(); |
| const Type *ArgTy = ArgVT.getTypeForMVT(); |
| Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; |
| Entry.isSExt = isSigned; |
| Entry.isZExt = !isSigned; |
| Args.push_back(Entry); |
| } |
| SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), |
| TLI.getPointerTy()); |
| |
| // Splice the libcall in wherever FindInputOutputChains tells us to. |
| const Type *RetTy = Node->getValueType(0).getTypeForMVT(); |
| std::pair<SDValue,SDValue> CallInfo = |
| TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, |
| CallingConv::C, false, Callee, Args, DAG, |
| Node->getDebugLoc()); |
| |
| // Legalize the call sequence, starting with the chain. This will advance |
| // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that |
| // was added by LowerCallTo (guaranteeing proper serialization of calls). |
| LegalizeOp(CallInfo.second); |
| SDValue Result; |
| switch (getTypeAction(CallInfo.first.getValueType())) { |
| default: assert(0 && "Unknown thing"); |
| case Legal: |
| Result = CallInfo.first; |
| break; |
| case Expand: |
| ExpandOp(CallInfo.first, Result, Hi); |
| break; |
| } |
| return Result; |
| } |
| |
| /// LegalizeINT_TO_FP - Legalize a [US]INT_TO_FP operation. |
| /// |
| SDValue SelectionDAGLegalize:: |
| LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, SDValue Op, |
| DebugLoc dl) { |
| bool isCustom = false; |
| SDValue Tmp1; |
| switch (getTypeAction(Op.getValueType())) { |
| case Legal: |
| switch (TLI.getOperationAction(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, |
| Op.getValueType())) { |
| default: assert(0 && "Unknown operation action!"); |
| case TargetLowering::Custom: |
| isCustom = true; |
| // FALLTHROUGH |
| case TargetLowering::Legal: |
| Tmp1 = LegalizeOp(Op); |
| if (Result.getNode()) |
| Result = DAG.UpdateNodeOperands(Result, Tmp1); |
| else |
| Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, dl, |
| DestTy, Tmp1); |
| if (isCustom) { |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| } |
| break; |
| case TargetLowering::Expand: |
| Result = ExpandLegalINT_TO_FP(isSigned, LegalizeOp(Op), DestTy, dl); |
| break; |
| case TargetLowering::Promote: |
| Result = PromoteLegalINT_TO_FP(LegalizeOp(Op), DestTy, isSigned, dl); |
| break; |
| } |
| break; |
| case Expand: |
| Result = ExpandIntToFP(isSigned, DestTy, Op, dl) ; |
| break; |
| case Promote: |
| Tmp1 = PromoteOp(Op); |
| if (isSigned) { |
| Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Tmp1.getValueType(), |
| Tmp1, DAG.getValueType(Op.getValueType())); |
| } else { |
| Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, |
| Op.getValueType()); |
| } |
| if (Result.getNode()) |
| Result = DAG.UpdateNodeOperands(Result, Tmp1); |
| else |
| Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, dl, |
| DestTy, Tmp1); |
| Result = LegalizeOp(Result); // The 'op' is not necessarily legal! |
| break; |
| } |
| return Result; |
| } |
| |
| /// ExpandIntToFP - Expand a [US]INT_TO_FP operation. |
| /// |
| SDValue SelectionDAGLegalize:: |
| ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source, DebugLoc dl) { |
| MVT SourceVT = Source.getValueType(); |
| bool ExpandSource = getTypeAction(SourceVT) == Expand; |
| |
| // Expand unsupported int-to-fp vector casts by unrolling them. |
| if (DestTy.isVector()) { |
| if (!ExpandSource) |
| return LegalizeOp(UnrollVectorOp(Source)); |
| MVT DestEltTy = DestTy.getVectorElementType(); |
| if (DestTy.getVectorNumElements() == 1) { |
| SDValue Scalar = ScalarizeVectorOp(Source); |
| SDValue Result = LegalizeINT_TO_FP(SDValue(), isSigned, |
| DestEltTy, Scalar, dl); |
| return DAG.getNode(ISD::BUILD_VECTOR, dl, DestTy, Result); |
| } |
| SDValue Lo, Hi; |
| SplitVectorOp(Source, Lo, Hi); |
| MVT SplitDestTy = MVT::getVectorVT(DestEltTy, |
| DestTy.getVectorNumElements() / 2); |
| SDValue LoResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy, |
| Lo, dl); |
| SDValue HiResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy, |
| Hi, dl); |
| return LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, dl, DestTy, LoResult, |
| HiResult)); |
| } |
| |
| // Special case for i32 source to take advantage of UINTTOFP_I32_F32, etc. |
| if (!isSigned && SourceVT != MVT::i32) { |
| // The integer value loaded will be incorrectly if the 'sign bit' of the |
| // incoming integer is set. To handle this, we dynamically test to see if |
| // it is set, and, if so, add a fudge factor. |
| SDValue Hi; |
| if (ExpandSource) { |
| SDValue Lo; |
| ExpandOp(Source, Lo, Hi); |
| Source = DAG.getNode(ISD::BUILD_PAIR, dl, SourceVT, Lo, Hi); |
| } else { |
| // The comparison for the sign bit will use the entire operand. |
| Hi = Source; |
| } |
| |
| // Check to see if the target has a custom way to lower this. If so, use |
| // it. (Note we've already expanded the operand in this case.) |
| switch (TLI.getOperationAction(ISD::UINT_TO_FP, SourceVT)) { |
| default: assert(0 && "This action not implemented for this operation!"); |
| case TargetLowering::Legal: |
| case TargetLowering::Expand: |
| break; // This case is handled below. |
| case TargetLowering::Custom: { |
| SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::UINT_TO_FP, DestTy, |
| Source), DAG); |
| if (NV.getNode()) |
| return LegalizeOp(NV); |
| break; // The target decided this was legal after all |
| } |
| } |
| |
| // If this is unsigned, and not supported, first perform the conversion to |
| // signed, then adjust the result if the sign bit is set. |
| SDValue SignedConv = ExpandIntToFP(true, DestTy, Source, dl); |
| |
| SDValue SignSet = DAG.getSetCC(dl, |
| TLI.getSetCCResultType(Hi.getValueType()), |
| Hi, DAG.getConstant(0, Hi.getValueType()), |
| ISD::SETLT); |
| SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); |
| SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), |
| SignSet, Four, Zero); |
| uint64_t FF = 0x5f800000ULL; |
| if (TLI.isLittleEndian()) FF <<= 32; |
| static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); |
| |
| SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); |
| unsigned Alignment = 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); |
| Alignment = std::min(Alignment, 4u); |
| SDValue FudgeInReg; |
| if (DestTy == MVT::f32) |
| FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, Alignment); |
| else if (DestTy.bitsGT(MVT::f32)) |
| // FIXME: Avoid the extend by construction the right constantpool? |
| FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, dl, DestTy, DAG.getEntryNode(), |
| CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, |
| MVT::f32, false, Alignment); |
| else |
| assert(0 && "Unexpected conversion"); |
| |
| MVT SCVT = SignedConv.getValueType(); |
| if (SCVT != DestTy) { |
| // Destination type needs to be expanded as well. The FADD now we are |
| // constructing will be expanded into a libcall. |
| if (SCVT.getSizeInBits() != DestTy.getSizeInBits()) { |
| assert(SCVT.getSizeInBits() * 2 == DestTy.getSizeInBits()); |
| SignedConv = DAG.getNode(ISD::BUILD_PAIR, dl, DestTy, |
| SignedConv, SignedConv.getValue(1)); |
| } |
| SignedConv = DAG.getNode(ISD::BIT_CONVERT, dl, DestTy, SignedConv); |
| } |
| return DAG.getNode(ISD::FADD, dl, DestTy, SignedConv, FudgeInReg); |
| } |
| |
| // Check to see if the target has a custom way to lower this. If so, use it. |
| switch (TLI.getOperationAction(ISD::SINT_TO_FP, SourceVT)) { |
| default: assert(0 && "This action not implemented for this operation!"); |
| case TargetLowering::Legal: |
| case TargetLowering::Expand: |
| break; // This case is handled below. |
| case TargetLowering::Custom: { |
| SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, dl, DestTy, |
| Source), DAG); |
| if (NV.getNode()) |
| return LegalizeOp(NV); |
| break; // The target decided this was legal after all |
| } |
| } |
| |
| // Expand the source, then glue it back together for the call. We must expand |
| // the source in case it is shared (this pass of legalize must traverse it). |
| if (ExpandSource) { |
| SDValue SrcLo, SrcHi; |
| ExpandOp(Source, SrcLo, SrcHi); |
| Source = DAG.getNode(ISD::BUILD_PAIR, dl, SourceVT, SrcLo, SrcHi); |
| } |
| |
| RTLIB::Libcall LC = isSigned ? |
| RTLIB::getSINTTOFP(SourceVT, DestTy) : |
| RTLIB::getUINTTOFP(SourceVT, DestTy); |
| assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unknown int value type"); |
| |
| Source = DAG.getNode(ISD::SINT_TO_FP, dl, DestTy, Source); |
| SDValue HiPart; |
| SDValue Result = ExpandLibCall(LC, Source.getNode(), isSigned, HiPart); |
| if (Result.getValueType() != DestTy && HiPart.getNode()) |
| Result = DAG.getNode(ISD::BUILD_PAIR, dl, DestTy, Result, HiPart); |
| return Result; |
| } |
| |
| /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a |
| /// INT_TO_FP operation of the specified operand when the target requests that |
| /// we expand it. At this point, we know that the result and operand types are |
| /// legal for the target. |
| SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, |
| SDValue Op0, |
| MVT DestVT, |
| DebugLoc dl) { |
| if (Op0.getValueType() == MVT::i32) { |
| // simple 32-bit [signed|unsigned] integer to float/double expansion |
| |
| // Get the stack frame index of a 8 byte buffer. |
| SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); |
| |
| // word offset constant for Hi/Lo address computation |
| SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); |
| // set up Hi and Lo (into buffer) address based on endian |
| SDValue Hi = StackSlot; |
| SDValue Lo = DAG.getNode(ISD::ADD, dl, |
| TLI.getPointerTy(), StackSlot,WordOff); |
| if (TLI.isLittleEndian()) |
| std::swap(Hi, Lo); |
| |
| // if signed map to unsigned space |
| SDValue Op0Mapped; |
| if (isSigned) { |
| // constant used to invert sign bit (signed to unsigned mapping) |
| SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); |
| Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); |
| } else { |
| Op0Mapped = Op0; |
| } |
| // store the lo of the constructed double - based on integer input |
| SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, |
| Op0Mapped, Lo, NULL, 0); |
| // initial hi portion of constructed double |
| SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); |
| // store the hi of the constructed double - biased exponent |
| SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0); |
| // load the constructed double |
| SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0); |
| // FP constant to bias correct the final result |
| SDValue Bias = DAG.getConstantFP(isSigned ? |
| BitsToDouble(0x4330000080000000ULL) |
| : BitsToDouble(0x4330000000000000ULL), |
| MVT::f64); |
| // subtract the bias |
| SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); |
| // final result |
| SDValue Result; |
| // handle final rounding |
| if (DestVT == MVT::f64) { |
| // do nothing |
| Result = Sub; |
| } else if (DestVT.bitsLT(MVT::f64)) { |
| Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, |
| DAG.getIntPtrConstant(0)); |
| } else if (DestVT.bitsGT(MVT::f64)) { |
| Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); |
| } |
| return Result; |
| } |
| assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); |
| SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); |
| |
| SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), |
| Op0, DAG.getConstant(0, Op0.getValueType()), |
| ISD::SETLT); |
| SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); |
| SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), |
| SignSet, Four, Zero); |
| |
| // If the sign bit of the integer is set, the large number will be treated |
| // as a negative number. To counteract this, the dynamic code adds an |
| // offset depending on the data type. |
| uint64_t FF; |
| switch (Op0.getValueType().getSimpleVT()) { |
| default: assert(0 && "Unsupported integer type!"); |
| case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) |
| case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) |
| case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) |
| case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) |
| } |
| if (TLI.isLittleEndian()) FF <<= 32; |
| static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); |
| |
| SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); |
| unsigned Alignment = 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); |
| Alignment = std::min(Alignment, 4u); |
| SDValue FudgeInReg; |
| if (DestVT == MVT::f32) |
| FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, Alignment); |
| else { |
| FudgeInReg = |
| LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, |
| DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, |
| MVT::f32, false, Alignment)); |
| } |
| |
| return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); |
| } |
| |
| /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a |
| /// *INT_TO_FP operation of the specified operand when the target requests that |
| /// we promote it. At this point, we know that the result and operand types are |
| /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP |
| /// operation that takes a larger input. |
| SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, |
| MVT DestVT, |
| bool isSigned, |
| DebugLoc dl) { |
| // First step, figure out the appropriate *INT_TO_FP operation to use. |
| MVT NewInTy = LegalOp.getValueType(); |
| |
| unsigned OpToUse = 0; |
| |
| // Scan for the appropriate larger type to use. |
| while (1) { |
| NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1); |
| assert(NewInTy.isInteger() && "Ran out of possibilities!"); |
| |
| // If the target supports SINT_TO_FP of this type, use it. |
| switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { |
| default: break; |
| case TargetLowering::Legal: |
| if (!TLI.isTypeLegal(NewInTy)) |
| break; // Can't use this datatype. |
| // FALL THROUGH. |
| case TargetLowering::Custom: |
| OpToUse = ISD::SINT_TO_FP; |
| break; |
| } |
| if (OpToUse) break; |
| if (isSigned) continue; |
| |
| // If the target supports UINT_TO_FP of this type, use it. |
| switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { |
| default: break; |
| case TargetLowering::Legal: |
| if (!TLI.isTypeLegal(NewInTy)) |
| break; // Can't use this datatype. |
| // FALL THROUGH. |
| case TargetLowering::Custom: |
| OpToUse = ISD::UINT_TO_FP; |
| break; |
| } |
| if (OpToUse) break; |
| |
| // Otherwise, try a larger type. |
| } |
| |
| // Okay, we found the operation and type to use. Zero extend our input to the |
| // desired type then run the operation on it. |
| return DAG.getNode(OpToUse, dl, DestVT, |
| DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, |
| dl, NewInTy, LegalOp)); |
| } |
| |
| /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a |
| /// FP_TO_*INT operation of the specified operand when the target requests that |
| /// we promote it. At this point, we know that the result and operand types are |
| /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT |
| /// operation that returns a larger result. |
| SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, |
| MVT DestVT, |
| bool isSigned, |
| DebugLoc dl) { |
| // First step, figure out the appropriate FP_TO*INT operation to use. |
| MVT NewOutTy = DestVT; |
| |
| unsigned OpToUse = 0; |
| |
| // Scan for the appropriate larger type to use. |
| while (1) { |
| NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1); |
| assert(NewOutTy.isInteger() && "Ran out of possibilities!"); |
| |
| // If the target supports FP_TO_SINT returning this type, use it. |
| switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { |
| default: break; |
| case TargetLowering::Legal: |
| if (!TLI.isTypeLegal(NewOutTy)) |
| break; // Can't use this datatype. |
| // FALL THROUGH. |
| case TargetLowering::Custom: |
| OpToUse = ISD::FP_TO_SINT; |
| break; |
| } |
| if (OpToUse) break; |
| |
| // If the target supports FP_TO_UINT of this type, use it. |
| switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { |
| default: break; |
| case TargetLowering::Legal: |
| if (!TLI.isTypeLegal(NewOutTy)) |
| break; // Can't use this datatype. |
| // FALL THROUGH. |
| case TargetLowering::Custom: |
| OpToUse = ISD::FP_TO_UINT; |
| break; |
| } |
| if (OpToUse) break; |
| |
| // Otherwise, try a larger type. |
| } |
| |
| |
| // Okay, we found the operation and type to use. |
| SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); |
| |
| // If the operation produces an invalid type, it must be custom lowered. Use |
| // the target lowering hooks to expand it. Just keep the low part of the |
| // expanded operation, we know that we're truncating anyway. |
| if (getTypeAction(NewOutTy) == Expand) { |
| SmallVector<SDValue, 2> Results; |
| TLI.ReplaceNodeResults(Operation.getNode(), Results, DAG); |
| assert(Results.size() == 1 && "Incorrect FP_TO_XINT lowering!"); |
| Operation = Results[0]; |
| } |
| |
| // Truncate the result of the extended FP_TO_*INT operation to the desired |
| // size. |
| return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); |
| } |
| |
| /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. |
| /// |
| SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op) { |
| MVT VT = Op.getValueType(); |
| MVT SHVT = TLI.getShiftAmountTy(); |
| SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; |
| switch (VT.getSimpleVT()) { |
| default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); |
| case MVT::i16: |
| Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); |
| Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); |
| return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2); |
| case MVT::i32: |
| Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); |
| Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); |
| Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); |
| Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); |
| Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); |
| Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT)); |
| Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); |
| Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); |
| return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); |
| case MVT::i64: |
| Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT)); |
| Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT)); |
| Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); |
| Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); |
| Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); |
| Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); |
| Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT)); |
| Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT)); |
| Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); |
| Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); |
| Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); |
| Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); |
| Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); |
| Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); |
| Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7); |
| Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5); |
| Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); |
| Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); |
| Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6); |
| Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); |
| return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4); |
| } |
| } |
| |
| /// ExpandBitCount - Expand the specified bitcount instruction into operations. |
| /// |
| SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op) { |
| switch (Opc) { |
| default: assert(0 && "Cannot expand this yet!"); |
| case ISD::CTPOP: { |
| static const uint64_t mask[6] = { |
| 0x5555555555555555ULL, 0x3333333333333333ULL, |
| 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, |
| 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL |
| }; |
| MVT VT = Op.getValueType(); |
| MVT ShVT = TLI.getShiftAmountTy(); |
| unsigned len = VT.getSizeInBits(); |
| for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { |
| //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) |
| unsigned EltSize = VT.isVector() ? |
| VT.getVectorElementType().getSizeInBits() : len; |
| SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT); |
| SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); |
| Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2), |
| DAG.getNode(ISD::AND, VT, |
| DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2)); |
| } |
| return Op; |
| } |
| case ISD::CTLZ: { |
| // for now, we do this: |
| // x = x | (x >> 1); |
| // x = x | (x >> 2); |
| // ... |
| // x = x | (x >>16); |
| // x = x | (x >>32); // for 64-bit input |
| // return popcount(~x); |
| // |
| // but see also: http://www.hackersdelight.org/HDcode/nlz.cc |
| MVT VT = Op.getValueType(); |
| MVT ShVT = TLI.getShiftAmountTy(); |
| unsigned len = VT.getSizeInBits(); |
| for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { |
| SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); |
| Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3)); |
| } |
| Op = DAG.getNOT(DebugLoc::getUnknownLoc(), Op, VT); |
| return DAG.getNode(ISD::CTPOP, VT, Op); |
| } |
| case ISD::CTTZ: { |
| // for now, we use: { return popcount(~x & (x - 1)); } |
| // unless the target has ctlz but not ctpop, in which case we use: |
| // { return 32 - nlz(~x & (x-1)); } |
| // see also http://www.hackersdelight.org/HDcode/ntz.cc |
| MVT VT = Op.getValueType(); |
| SDValue Tmp3 = DAG.getNode(ISD::AND, VT, |
| DAG.getNOT(DebugLoc::getUnknownLoc(), Op, VT), |
| DAG.getNode(ISD::SUB, VT, Op, |
| DAG.getConstant(1, VT))); |
| // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. |
| if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && |
| TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) |
| return DAG.getNode(ISD::SUB, VT, |
| DAG.getConstant(VT.getSizeInBits(), VT), |
| DAG.getNode(ISD::CTLZ, VT, Tmp3)); |
| return DAG.getNode(ISD::CTPOP, VT, Tmp3); |
| } |
| } |
| } |
| |
| /// ExpandOp - Expand the specified SDValue into its two component pieces |
| /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the |
| /// LegalizedNodes map is filled in for any results that are not expanded, the |
| /// ExpandedNodes map is filled in for any results that are expanded, and the |
| /// Lo/Hi values are returned. |
| void SelectionDAGLegalize::ExpandOp(SDValue Op, SDValue &Lo, SDValue &Hi){ |
| MVT VT = Op.getValueType(); |
| MVT NVT = TLI.getTypeToTransformTo(VT); |
| SDNode *Node = Op.getNode(); |
| assert(getTypeAction(VT) == Expand && "Not an expanded type!"); |
| assert(((NVT.isInteger() && NVT.bitsLT(VT)) || VT.isFloatingPoint() || |
| VT.isVector()) && "Cannot expand to FP value or to larger int value!"); |
| |
| // See if we already expanded it. |
| DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator I |
| = ExpandedNodes.find(Op); |
| if (I != ExpandedNodes.end()) { |
| Lo = I->second.first; |
| Hi = I->second.second; |
| return; |
| } |
| |
| switch (Node->getOpcode()) { |
| case ISD::CopyFromReg: |
| assert(0 && "CopyFromReg must be legal!"); |
| case ISD::FP_ROUND_INREG: |
| if (VT == MVT::ppcf128 && |
| TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == |
| TargetLowering::Custom) { |
| SDValue SrcLo, SrcHi, Src; |
| ExpandOp(Op.getOperand(0), SrcLo, SrcHi); |
| Src = DAG.getNode(ISD::BUILD_PAIR, VT, SrcLo, SrcHi); |
| SDValue Result = TLI.LowerOperation( |
| DAG.getNode(ISD::FP_ROUND_INREG, VT, Src, Op.getOperand(1)), DAG); |
| assert(Result.getNode()->getOpcode() == ISD::BUILD_PAIR); |
| Lo = Result.getNode()->getOperand(0); |
| Hi = Result.getNode()->getOperand(1); |
| break; |
| } |
| // fall through |
| default: |
| #ifndef NDEBUG |
| cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; |
| #endif |
| assert(0 && "Do not know how to expand this operator!"); |
| abort(); |
| case ISD::EXTRACT_ELEMENT: |
| ExpandOp(Node->getOperand(0), Lo, Hi); |
| if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) |
| return ExpandOp(Hi, Lo, Hi); |
| return ExpandOp(Lo, Lo, Hi); |
| case ISD::EXTRACT_VECTOR_ELT: |
| // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types. |
| Lo = ExpandEXTRACT_VECTOR_ELT(Op); |
| return ExpandOp(Lo, Lo, Hi); |
| case ISD::UNDEF: |
| Lo = DAG.getNode(ISD::UNDEF, NVT); |
| Hi = DAG.getNode(ISD::UNDEF, NVT); |
| break; |
| case ISD::Constant: { |
| unsigned NVTBits = NVT.getSizeInBits(); |
| const APInt &Cst = cast<ConstantSDNode>(Node)->getAPIntValue(); |
| Lo = DAG.getConstant(APInt(Cst).trunc(NVTBits), NVT); |
| Hi = DAG.getConstant(Cst.lshr(NVTBits).trunc(NVTBits), NVT); |
| break; |
| } |
| case ISD::ConstantFP: { |
| ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); |
| if (CFP->getValueType(0) == MVT::ppcf128) { |
| APInt api = CFP->getValueAPF().bitcastToAPInt(); |
| Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])), |
| MVT::f64); |
| Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), |
| MVT::f64); |
| break; |
| } |
| Lo = ExpandConstantFP(CFP, false, DAG, TLI); |
| if (getTypeAction(Lo.getValueType()) == Expand) |
| ExpandOp(Lo, Lo, Hi); |
| break; |
| } |
| case ISD::BUILD_PAIR: |
| // Return the operands. |
| Lo = Node->getOperand(0); |
| Hi = Node->getOperand(1); |
| break; |
| |
| case ISD::MERGE_VALUES: |
| if (Node->getNumValues() == 1) { |
| ExpandOp(Op.getOperand(0), Lo, Hi); |
| break; |
| } |
| // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y) |
| assert(Op.getResNo() == 0 && Node->getNumValues() == 2 && |
| Op.getValue(1).getValueType() == MVT::Other && |
| "unhandled MERGE_VALUES"); |
| ExpandOp(Op.getOperand(0), Lo, Hi); |
| // Remember that we legalized the chain. |
| AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1))); |
| break; |
| |
| case ISD::SIGN_EXTEND_INREG: |
| ExpandOp(Node->getOperand(0), Lo, Hi); |
| // sext_inreg the low part if needed. |
| Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1)); |
| |
| // The high part gets the sign extension from the lo-part. This handles |
| // things like sextinreg V:i64 from i8. |
| Hi = DAG.getNode(ISD::SRA, NVT, Lo, |
| DAG.getConstant(NVT.getSizeInBits()-1, |
| TLI.getShiftAmountTy())); |
| break; |
| |
| case ISD::BSWAP: { |
| ExpandOp(Node->getOperand(0), Lo, Hi); |
| SDValue TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi); |
| Hi = DAG.getNode(ISD::BSWAP, NVT, Lo); |
| Lo = TempLo; |
| break; |
| } |
| |
| case ISD::CTPOP: |
| ExpandOp(Node->getOperand(0), Lo, Hi); |
| Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) |
| DAG.getNode(ISD::CTPOP, NVT, Lo), |
| DAG.getNode(ISD::CTPOP, NVT, Hi)); |
| Hi = DAG.getConstant(0, NVT); |
| break; |
| |
| case ISD::CTLZ: { |
| // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) |
| ExpandOp(Node->getOperand(0), Lo, Hi); |
| SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT); |
| SDValue HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); |
| SDValue TopNotZero = DAG.getSetCC(TLI.getSetCCResultType(NVT), HLZ, BitsC, |
| ISD::SETNE); |
| SDValue LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo); |
| LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC); |
| |
| Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart); |
| Hi = DAG.getConstant(0, NVT); |
| break; |
| } |
| |
| case ISD::CTTZ: { |
| // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) |
| ExpandOp(Node->getOperand(0), Lo, Hi); |
| SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT); |
| SDValue LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo); |
| SDValue BotNotZero = DAG.getSetCC(TLI.getSetCCResultType(NVT), LTZ, BitsC, |
| ISD::SETNE); |
| SDValue HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi); |
| HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC); |
| |
| Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart); |
| Hi = DAG.getConstant(0, NVT); |
| break; |
| } |
| |
| case ISD::VAARG: { |
| SDValue Ch = Node->getOperand(0); // Legalize the chain. |
| SDValue Ptr = Node->getOperand(1); // Legalize the pointer. |
| Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2)); |
| Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2)); |
| |
| // Remember that we legalized the chain. |
| Hi = LegalizeOp(Hi); |
| AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); |
| if (TLI.isBigEndian()) |
| std::swap(Lo, Hi); |
| break; |
| } |
| |
| case ISD::LOAD: { |
| LoadSDNode *LD = cast<LoadSDNode>(Node); |
| SDValue Ch = LD->getChain(); // Legalize the chain. |
| SDValue Ptr = LD->getBasePtr(); // Legalize the pointer. |
| ISD::LoadExtType ExtType = LD->getExtensionType(); |
| const Value *SV = LD->getSrcValue(); |
| int SVOffset = LD->getSrcValueOffset(); |
| unsigned Alignment = LD->getAlignment(); |
| bool isVolatile = LD->isVolatile(); |
| |
| if (ExtType == ISD::NON_EXTLOAD) { |
| Lo = DAG.getLoad(NVT, Ch, Ptr, SV, SVOffset, |
| isVolatile, Alignment); |
| if (VT == MVT::f32 || VT == MVT::f64) { |
| // f32->i32 or f64->i64 one to one expansion. |
| // Remember that we legalized the chain. |
| AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1))); |
| // Recursively expand the new load. |
| if (getTypeAction(NVT) == Expand) |
| ExpandOp(Lo, Lo, Hi); |
| break; |
| } |
| |
| // Increment the pointer to the other half. |
| unsigned IncrementSize = Lo.getValueType().getSizeInBits()/8; |
| Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, |
| DAG.getIntPtrConstant(IncrementSize)); |
| SVOffset += IncrementSize; |
| Alignment = MinAlign(Alignment, IncrementSize); |
| Hi = DAG.getLoad(NVT, Ch, Ptr, SV, SVOffset, |
| isVolatile, Alignment); |
| |
| // Build a factor node to remember that this load is independent of the |
| // other one. |
| SDValue TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), |
| Hi.getValue(1)); |
| |
| // Remember that we legalized the chain. |
| AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); |
| if (TLI.isBigEndian()) |
| std::swap(Lo, Hi); |
| } else { |
| MVT EVT = LD->getMemoryVT(); |
| |
| if ((VT == MVT::f64 && EVT == MVT::f32) || |
| (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) { |
| // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND |
| SDValue Load = DAG.getLoad(EVT, Ch, Ptr, SV, |
| SVOffset, isVolatile, Alignment); |
| // Remember that we legalized the chain. |
| AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Load.getValue(1))); |
| ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi); |
| break; |
| } |
| |
| if (EVT == NVT) |
| Lo = DAG.getLoad(NVT, Ch, Ptr, SV, |
| SVOffset, isVolatile, Alignment); |
| else |
| Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, SV, |
| SVOffset, EVT, isVolatile, |
| Alignment); |
| |
| // Remember that we legalized the chain. |
| AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1))); |
| |
| if (ExtType == ISD::SEXTLOAD) { |
| // The high part is obtained by SRA'ing all but one of the bits of the |
| // lo part. |
| unsigned LoSize = Lo.getValueType().getSizeInBits(); |
| Hi = DAG.getNode(ISD::SRA, NVT, Lo, |
| DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); |
| } else if (ExtType == ISD::ZEXTLOAD) { |
| // The high part is just a zero. |
| Hi = DAG.getConstant(0, NVT); |
| } else /* if (ExtType == ISD::EXTLOAD) */ { |
| // The high part is undefined. |
| Hi = DAG.getNode(ISD::UNDEF, NVT); |
| } |
| } |
| break; |
| } |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: { // Simple logical operators -> two trivial pieces. |
| SDValue LL, LH, RL, RH; |
| ExpandOp(Node->getOperand(0), LL, LH); |
| ExpandOp(Node->getOperand(1), RL, RH); |
| Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL); |
| Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH); |
| break; |
| } |
| case ISD::SELECT: { |
| SDValue LL, LH, RL, RH; |
| ExpandOp(Node->getOperand(1), LL, LH); |
| ExpandOp(Node->getOperand(2), RL, RH); |
| if (getTypeAction(NVT) == Expand) |
| NVT = TLI.getTypeToExpandTo(NVT); |
| Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL); |
| if (VT != MVT::f32) |
| Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH); |
| break; |
| } |
| case ISD::SELECT_CC: { |
| SDValue TL, TH, FL, FH; |
| ExpandOp(Node->getOperand(2), TL, TH); |
| ExpandOp(Node->getOperand(3), FL, FH); |
| if (getTypeAction(NVT) == Expand) |
| NVT = TLI.getTypeToExpandTo(NVT); |
| Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), |
| Node->getOperand(1), TL, FL, Node->getOperand(4)); |
| if (VT != MVT::f32) |
| Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), |
| Node->getOperand(1), TH, FH, Node->getOperand(4)); |
| break; |
| } |
| case ISD::ANY_EXTEND: |
| // The low part is any extension of the input (which degenerates to a copy). |
| Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0)); |
| // The high part is undefined. |
| Hi = DAG.getNode(ISD::UNDEF, NVT); |
| break; |
| case ISD::SIGN_EXTEND: { |
| // The low part is just a sign extension of the input (which degenerates to |
| // a copy). |
| Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0)); |
| |
| // The high part is obtained by SRA'ing all but one of the bits of the lo |
| // part. |
| unsigned LoSize = Lo.getValueType().getSizeInBits(); |
| Hi = DAG.getNode(ISD::SRA, NVT, Lo, |
| DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); |
| break; |
| } |
| case ISD::ZERO_EXTEND: |
| // The low part is just a zero extension of the input (which degenerates to |
| // a copy). |
| Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); |
| |
| // The high part is just a zero. |
| Hi = DAG.getConstant(0, NVT); |
| break; |
| |
| case ISD::TRUNCATE: { |
| // The input value must be larger than this value. Expand *it*. |
| SDValue NewLo; |
| ExpandOp(Node->getOperand(0), NewLo, Hi); |
| |
| // The low part is now either the right size, or it is closer. If not the |
| // right size, make an illegal truncate so we recursively expand it. |
| if (NewLo.getValueType() != Node->getValueType(0)) |
| NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo); |
| ExpandOp(NewLo, Lo, Hi); |
| break; |
| } |
| |
| case ISD::BIT_CONVERT: { |
| SDValue Tmp; |
| if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ |
| // If the target wants to, allow it to lower this itself. |
| switch (getTypeAction(Node->getOperand(0).getValueType())) { |
| case Expand: assert(0 && "cannot expand FP!"); |
| case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; |
| case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; |
| } |
| Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG); |
| } |
| |
| // f32 / f64 must be expanded to i32 / i64. |
| if (VT == MVT::f32 || VT == MVT::f64) { |
| Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); |
| if (getTypeAction(NVT) == Expand) |
| ExpandOp(Lo, Lo, Hi); |
| break; |
| } |
| |
| // If source operand will be expanded to the same type as VT, i.e. |
| // i64 <- f64, i32 <- f32, expand the source operand instead. |
| MVT VT0 = Node->getOperand(0).getValueType(); |
| if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { |
| ExpandOp(Node->getOperand(0), Lo, Hi); |
| break; |
| } |
| |
| // Turn this into a load/store pair by default. |
| if (Tmp.getNode() == 0) |
| Tmp = EmitStackConvert(Node->getOperand(0), VT, VT); |
| |
| ExpandOp(Tmp, Lo, Hi); |
| break; |
| } |
| |
| case ISD::READCYCLECOUNTER: { |
| assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == |
| TargetLowering::Custom && |
| "Must custom expand ReadCycleCounter"); |
| SDValue Tmp = TLI.LowerOperation(Op, DAG); |
| assert(Tmp.getNode() && "Node must be custom expanded!"); |
| ExpandOp(Tmp.getValue(0), Lo, Hi); |
| AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain. |
| LegalizeOp(Tmp.getValue(1))); |
| break; |
| } |
| |
| case ISD::ATOMIC_CMP_SWAP: { |
| // This operation does not need a loop. |
| SDValue Tmp = TLI.LowerOperation(Op, DAG); |
| assert(Tmp.getNode() && "Node must be custom expanded!"); |
| ExpandOp(Tmp.getValue(0), Lo, Hi); |
| AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain. |
| LegalizeOp(Tmp.getValue(1))); |
| break; |
| } |
| |
| case ISD::ATOMIC_LOAD_ADD: |
| case ISD::ATOMIC_LOAD_SUB: |
| case ISD::ATOMIC_LOAD_AND: |
| case ISD::ATOMIC_LOAD_OR: |
| case ISD::ATOMIC_LOAD_XOR: |
| case ISD::ATOMIC_LOAD_NAND: |
| case ISD::ATOMIC_SWAP: { |
| // These operations require a loop to be generated. We can't do that yet, |
| // so substitute a target-dependent pseudo and expand that later. |
| SDValue In2Lo, In2Hi, In2; |
| ExpandOp(Op.getOperand(2), In2Lo, In2Hi); |
| In2 = DAG.getNode(ISD::BUILD_PAIR, VT, In2Lo, In2Hi); |
| AtomicSDNode* Anode = cast<AtomicSDNode>(Node); |
| SDValue Replace = |
| DAG.getAtomic(Op.getOpcode(), Anode->getMemoryVT(), |
| Op.getOperand(0), Op.getOperand(1), In2, |
| Anode->getSrcValue(), Anode->getAlignment()); |
| SDValue Result = TLI.LowerOperation(Replace, DAG); |
| ExpandOp(Result.getValue(0), Lo, Hi); |
| // Remember that we legalized the chain. |
| AddLegalizedOperand(SDValue(Node,1), LegalizeOp(Result.getValue(1))); |
| break; |
| } |
| |
| // These operators cannot be expanded directly, emit them as calls to |
| // library functions. |
| case ISD::FP_TO_SINT: { |
| if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { |
| SDValue Op; |
| switch (getTypeAction(Node->getOperand(0).getValueType())) { |
| case Expand: assert(0 && "cannot expand FP!"); |
| case Legal: Op = LegalizeOp(Node->getOperand(0)); break; |
| case Promote: Op = PromoteOp (Node->getOperand(0)); break; |
| } |
| |
| Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG); |
| |
| // Now that the custom expander is done, expand the result, which is still |
| // VT. |
| if (Op.getNode()) { |
| ExpandOp(Op, Lo, Hi); |
| break; |
| } |
| } |
| |
| RTLIB::Libcall LC = RTLIB::getFPTOSINT(Node->getOperand(0).getValueType(), |
| VT); |
| assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected uint-to-fp conversion!"); |
| Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi); |
| break; |
| } |
| |
| case ISD::FP_TO_UINT: { |
| if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { |
| SDValue Op; |
| switch (getTypeAction(Node->getOperand(0).getValueType())) { |
| case Expand: assert(0 && "cannot expand FP!"); |
| case Legal: Op = LegalizeOp(Node->getOperand(0)); break; |
| case Promote: Op = PromoteOp (Node->getOperand(0)); break; |
| } |
| |
| Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG); |
| |
| // Now that the custom expander is done, expand the result. |
| if (Op.getNode()) { |
| ExpandOp(Op, Lo, Hi); |
| break; |
| } |
| } |
| |
| RTLIB::Libcall LC = RTLIB::getFPTOUINT(Node->getOperand(0).getValueType(), |
| VT); |
| assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!"); |
| Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi); |
| break; |
| } |
| |
| case ISD::SHL: { |
| // If the target wants custom lowering, do so. |
| SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); |
| if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { |
| SDValue Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt); |
| Op = TLI.LowerOperation(Op, DAG); |
| if (Op.getNode()) { |
| // Now that the custom expander is done, expand the result, which is |
| // still VT. |
| ExpandOp(Op, Lo, Hi); |
| break; |
| } |
| } |
| |
| // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit |
| // this X << 1 as X+X. |
| if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { |
| if (ShAmt->getAPIntValue() == 1 && |
| TLI.isOperationLegalOrCustom(ISD::ADDC, NVT) && |
| TLI.isOperationLegalOrCustom(ISD::ADDE, NVT)) { |
| SDValue LoOps[2], HiOps[3]; |
| ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); |
| SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); |
| LoOps[1] = LoOps[0]; |
| Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); |
| |
| HiOps[1] = HiOps[0]; |
| HiOps[2] = Lo.getValue(1); |
| Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); |
| break; |
| } |
| } |
| |
| // If we can emit an efficient shift operation, do so now. |
| if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi)) |
| break; |
| |
| // If this target supports SHL_PARTS, use it. |
| TargetLowering::LegalizeAction Action = |
| TLI.getOperationAction(ISD::SHL_PARTS, NVT); |
| if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || |
| Action == TargetLowering::Custom) { |
| ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); |
| break; |
| } |
| |
| // Otherwise, emit a libcall. |
| Lo = ExpandLibCall(RTLIB::SHL_I64, Node, false/*left shift=unsigned*/, Hi); |
| break; |
| } |
| |
| case ISD::SRA: { |
| // If the target wants custom lowering, do so. |
| SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); |
| if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { |
| SDValue Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt); |
| Op = TLI.LowerOperation(Op, DAG); |
| if (Op.getNode()) { |
| // Now that the custom expander is done, expand the result, which is |
| // still VT. |
| ExpandOp(Op, Lo, Hi); |
| break; |
| } |
| } |
| |
| // If we can emit an efficient shift operation, do so now. |
| if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi)) |
| break; |
| |
| // If this target supports SRA_PARTS, use it. |
| TargetLowering::LegalizeAction Action = |
| TLI.getOperationAction(ISD::SRA_PARTS, NVT); |
| if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || |
| Action == TargetLowering::Custom) { |
| ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); |
| break; |
| } |
| |
| // Otherwise, emit a libcall. |
| Lo = ExpandLibCall(RTLIB::SRA_I64, Node, true/*ashr is signed*/, Hi); |
| break; |
| } |
| |
| case ISD::SRL: { |
| // If the target wants custom lowering, do so. |
| SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); |
| if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { |
| SDValue Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt); |
| Op = TLI.LowerOperation(Op, DAG); |
| if (Op.getNode()) { |
| // Now that the custom expander is done, expand the result, which is |
| // still VT. |
| ExpandOp(Op, Lo, Hi); |
| break; |
| } |
| } |
| |
| // If we can emit an efficient shift operation, do so now. |
| if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi)) |
| break; |
| |
| // If this target supports SRL_PARTS, use it. |
| TargetLowering::LegalizeAction Action = |
| TLI.getOperationAction(ISD::SRL_PARTS, NVT); |
| if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || |
| Action == TargetLowering::Custom) { |
| ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); |
| break; |
| } |
| |
| // Otherwise, emit a libcall. |
| Lo = ExpandLibCall(RTLIB::SRL_I64, Node, false/*lshr is unsigned*/, Hi); |
| break; |
| } |
| |
| case ISD::ADD: |
| case ISD::SUB: { |
| // If the target wants to custom expand this, let them. |
| if (TLI.getOperationAction(Node->getOpcode(), VT) == |
| TargetLowering::Custom) { |
| SDValue Result = TLI.LowerOperation(Op, DAG); |
| if (Result.getNode()) { |
| ExpandOp(Result, Lo, Hi); |
| break; |
| } |
| } |
| // Expand the subcomponents. |
| SDValue LHSL, LHSH, RHSL, RHSH; |
| ExpandOp(Node->getOperand(0), LHSL, LHSH); |
| ExpandOp(Node->getOperand(1), RHSL, RHSH); |
| SDValue LoOps[2], HiOps[3]; |
| LoOps[0] = LHSL; |
| LoOps[1] = RHSL; |
| HiOps[0] = LHSH; |
| HiOps[1] = RHSH; |
| |
| //cascaded check to see if any smaller size has a a carry flag. |
| unsigned OpV = Node->getOpcode() == ISD::ADD ? ISD::ADDC : ISD::SUBC; |
| bool hasCarry = false; |
| for (unsigned BitSize = NVT.getSizeInBits(); BitSize != 0; BitSize /= 2) { |
| MVT AVT = MVT::getIntegerVT(BitSize); |
| if (TLI.isOperationLegalOrCustom(OpV, AVT)) { |
| hasCarry = true; |
| break; |
| } |
| } |
| |
| if(hasCarry) { |
| SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); |
| if (Node->getOpcode() == ISD::ADD) { |
| Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); |
| HiOps[2] = Lo.getValue(1); |
| Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); |
| } else { |
| Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); |
| HiOps[2] = Lo.getValue(1); |
| Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); |
| } |
| break; |
| } else { |
| if (Node->getOpcode() == ISD::ADD) { |
| Lo = DAG.getNode(ISD::ADD, NVT, LoOps, 2); |
| Hi = DAG.getNode(ISD::ADD, NVT, HiOps, 2); |
| SDValue Cmp1 = DAG.getSetCC(TLI.getSetCCResultType(NVT), |
| Lo, LoOps[0], ISD::SETULT); |
| SDValue Carry1 = DAG.getNode(ISD::SELECT, NVT, Cmp1, |
| DAG.getConstant(1, NVT), |
| DAG.getConstant(0, NVT)); |
| SDValue Cmp2 = DAG.getSetCC(TLI.getSetCCResultType(NVT), |
| Lo, LoOps[1], ISD::SETULT); |
| SDValue Carry2 = DAG.getNode(ISD::SELECT, NVT, Cmp2, |
| DAG.getConstant(1, NVT), |
| Carry1); |
| Hi = DAG.getNode(ISD::ADD, NVT, Hi, Carry2); |
| } else { |
| Lo = DAG.getNode(ISD::SUB, NVT, LoOps, 2); |
| Hi = DAG.getNode(ISD::SUB, NVT, HiOps, 2); |
| SDValue Cmp = DAG.getSetCC(NVT, LoOps[0], LoOps[1], ISD::SETULT); |
| SDValue Borrow = DAG.getNode(ISD::SELECT, NVT, Cmp, |
| DAG.getConstant(1, NVT), |
| DAG.getConstant(0, NVT)); |
| Hi = DAG.getNode(ISD::SUB, NVT, Hi, Borrow); |
| } |
| break; |
| } |
| } |
| |
| case ISD::ADDC: |
| case ISD::SUBC: { |
| // Expand the subcomponents. |
| SDValue LHSL, LHSH, RHSL, RHSH; |
| ExpandOp(Node->getOperand(0), LHSL, LHSH); |
| ExpandOp(Node->getOperand(1), RHSL, RHSH); |
| SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); |
| SDValue LoOps[2] = { LHSL, RHSL }; |
| SDValue HiOps[3] = { LHSH, RHSH }; |
| |
| if (Node->getOpcode() == ISD::ADDC) { |
| Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); |
| HiOps[2] = Lo.getValue(1); |
| Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); |
| } else { |
| Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); |
| HiOps[2] = Lo.getValue(1); |
| Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); |
| } |
| // Remember that we legalized the flag. |
| AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); |
| break; |
| } |
| case ISD::ADDE: |
| case ISD::SUBE: { |
| // Expand the subcomponents. |
| SDValue LHSL, LHSH, RHSL, RHSH; |
| ExpandOp(Node->getOperand(0), LHSL, LHSH); |
| ExpandOp(Node->getOperand(1), RHSL, RHSH); |
| SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); |
| SDValue LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; |
| SDValue HiOps[3] = { LHSH, RHSH }; |
| |
| Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3); |
| HiOps[2] = Lo.getValue(1); |
| Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3); |
| |
| // Remember that we legalized the flag. |
| AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); |
| break; |
| } |
| case ISD::MUL: { |
| // If the target wants to custom expand this, let them. |
| if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { |
| SDValue New = TLI.LowerOperation(Op, DAG); |
| if (New.getNode()) { |
| ExpandOp(New, Lo, Hi); |
| break; |
| } |
| } |
| |
| bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, NVT); |
| bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, NVT); |
| bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, NVT); |
| bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, NVT); |
| if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { |
| SDValue LL, LH, RL, RH; |
| ExpandOp(Node->getOperand(0), LL, LH); |
| ExpandOp(Node->getOperand(1), RL, RH); |
| unsigned OuterBitSize = Op.getValueSizeInBits(); |
| unsigned InnerBitSize = RH.getValueSizeInBits(); |
| unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); |
| unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); |
| APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); |
| if (DAG.MaskedValueIsZero(Node->getOperand(0), HighMask) && |
| DAG.MaskedValueIsZero(Node->getOperand(1), HighMask)) { |
| // The inputs are both zero-extended. |
| if (HasUMUL_LOHI) { |
| // We can emit a umul_lohi. |
| Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); |
| Hi = SDValue(Lo.getNode(), 1); |
| break; |
| } |
| if (HasMULHU) { |
| // We can emit a mulhu+mul. |
| Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); |
| Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); |
| break; |
| } |
| } |
| if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { |
| // The input values are both sign-extended. |
| if (HasSMUL_LOHI) { |
| // We can emit a smul_lohi. |
| Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); |
| Hi = SDValue(Lo.getNode(), 1); |
| break; |
| } |
| if (HasMULHS) { |
| // We can emit a mulhs+mul. |
| Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); |
| Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); |
| break; |
| } |
| } |
| if (HasUMUL_LOHI) { |
| // Lo,Hi = umul LHS, RHS. |
| SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, |
| DAG.getVTList(NVT, NVT), LL, RL); |
| Lo = UMulLOHI; |
| Hi = UMulLOHI.getValue(1); |
| RH = DAG.getNode(ISD::MUL, NVT, LL, RH); |
| LH = DAG.getNode(ISD::MUL, NVT, LH, RL); |
| Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); |
| Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); |
| break; |
| } |
| if (HasMULHU) { |
| Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); |
| Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); |
| RH = DAG.getNode(ISD::MUL, NVT, LL, RH); |
| LH = DAG.getNode(ISD::MUL, NVT, LH, RL); |
| Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); |
| Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); |
| break; |
| } |
| } |
| |
| // If nothing else, we can make a libcall. |
| Lo = ExpandLibCall(RTLIB::MUL_I64, Node, false/*sign irrelevant*/, Hi); |
| break; |
| } |
| case ISD::SDIV: |
| Lo = ExpandLibCall(RTLIB::SDIV_I64, Node, true, Hi); |
| break; |
| case ISD::UDIV: |
| Lo = ExpandLibCall(RTLIB::UDIV_I64, Node, true, Hi); |
| break; |
| case ISD::SREM: |
| Lo = ExpandLibCall(RTLIB::SREM_I64, Node, true, Hi); |
| break; |
| case ISD::UREM: |
| Lo = ExpandLibCall(RTLIB::UREM_I64, Node, true, Hi); |
| break; |
| |
| case ISD::FADD: |
| Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::ADD_F32, |
| RTLIB::ADD_F64, |
| RTLIB::ADD_F80, |
| RTLIB::ADD_PPCF128), |
| Node, false, Hi); |
| break; |
| case ISD::FSUB: |
| Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::SUB_F32, |
| RTLIB::SUB_F64, |
| RTLIB::SUB_F80, |
| RTLIB::SUB_PPCF128), |
| Node, false, Hi); |
| break; |
| case ISD::FMUL: |
| Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::MUL_F32, |
| RTLIB::MUL_F64, |
| RTLIB::MUL_F80, |
| RTLIB::MUL_PPCF128), |
| Node, false, Hi); |
| break; |
| case ISD::FDIV: |
| Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::DIV_F32, |
| RTLIB::DIV_F64, |
| RTLIB::DIV_F80, |
| RTLIB::DIV_PPCF128), |
| Node, false, Hi); |
| break; |
| case ISD::FP_EXTEND: { |
| if (VT == MVT::ppcf128) { |
| assert(Node->getOperand(0).getValueType()==MVT::f32 || |
| Node->getOperand(0).getValueType()==MVT::f64); |
| const uint64_t zero = 0; |
| if (Node->getOperand(0).getValueType()==MVT::f32) |
| Hi = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Node->getOperand(0)); |
| else |
| Hi = Node->getOperand(0); |
| Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); |
| break; |
| } |
| RTLIB::Libcall LC = RTLIB::getFPEXT(Node->getOperand(0).getValueType(), VT); |
| assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!"); |
| Lo = ExpandLibCall(LC, Node, true, Hi); |
| break; |
| } |
| case ISD::FP_ROUND: { |
| RTLIB::Libcall LC = RTLIB::getFPROUND(Node->getOperand(0).getValueType(), |
| VT); |
| assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND!"); |
| Lo = ExpandLibCall(LC, Node, true, Hi); |
| break; |
| } |
| case ISD::FSQRT: |
| case ISD::FSIN: |
| case ISD::FCOS: |
| case ISD::FLOG: |
| case ISD::FLOG2: |
| case ISD::FLOG10: |
| case ISD::FEXP: |
| case ISD::FEXP2: |
| case ISD::FTRUNC: |
| case ISD::FFLOOR: |
| case ISD::FCEIL: |
| case ISD::FRINT: |
| case ISD::FNEARBYINT: |
| case ISD::FPOW: |
| case ISD::FPOWI: { |
| RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
| switch(Node->getOpcode()) { |
| case ISD::FSQRT: |
| LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, |
| RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); |
| break; |
| case ISD::FSIN: |
| LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, |
| RTLIB::SIN_F80, RTLIB::SIN_PPCF128); |
| break; |
| case ISD::FCOS: |
| LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, |
| RTLIB::COS_F80, RTLIB::COS_PPCF128); |
| break; |
| case ISD::FLOG: |
| LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64, |
| RTLIB::LOG_F80, RTLIB::LOG_PPCF128); |
| break; |
| case ISD::FLOG2: |
| LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64, |
| RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128); |
| break; |
| case ISD::FLOG10: |
| LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64, |
| RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128); |
| break; |
| case ISD::FEXP: |
| LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64, |
| RTLIB::EXP_F80, RTLIB::EXP_PPCF128); |
| break; |
| case ISD::FEXP2: |
| LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64, |
| RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128); |
| break; |
| case ISD::FTRUNC: |
| LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, |
| RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128); |
| break; |
| case ISD::FFLOOR: |
| LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, |
| RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128); |
| break; |
| case ISD::FCEIL: |
| LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64, |
| RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128); |
| break; |
| case ISD::FRINT: |
| LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64, |
| RTLIB::RINT_F80, RTLIB::RINT_PPCF128); |
| break; |
| case ISD::FNEARBYINT: |
| LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, |
| RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128); |
| break; |
| case ISD::FPOW: |
| LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, |
| RTLIB::POW_PPCF128); |
| break; |
| case ISD::FPOWI: |
| LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, RTLIB::POWI_F80, |
| RTLIB::POWI_PPCF128); |
| break; |
| default: assert(0 && "Unreachable!"); |
| } |
| Lo = ExpandLibCall(LC, Node, false, Hi); |
| break; |
| } |
| case ISD::FABS: { |
| if (VT == MVT::ppcf128) { |
| SDValue Tmp; |
| ExpandOp(Node->getOperand(0), Lo, Tmp); |
| Hi = DAG.getNode(ISD::FABS, NVT, Tmp); |
| // lo = hi==fabs(hi) ? lo : -lo; |
| Lo = DAG.getNode(ISD::SELECT_CC, NVT, Hi, Tmp, |
| Lo, DAG.getNode(ISD::FNEG, NVT, Lo), |
| DAG.getCondCode(ISD::SETEQ)); |
| break; |
| } |
| SDValue Mask = (VT == MVT::f64) |
| ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) |
| : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); |
| Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); |
| Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); |
| Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask); |
| if (getTypeAction(NVT) == Expand) |
| ExpandOp(Lo, Lo, Hi); |
| break; |
| } |
| case ISD::FNEG: { |
| if (VT == MVT::ppcf128) { |
| ExpandOp(Node->getOperand(0), Lo, Hi); |
| Lo = DAG.getNode(ISD::FNEG, MVT::f64, Lo); |
| Hi = DAG.getNode(ISD::FNEG, MVT::f64, Hi); |
| break; |
| } |
| SDValue Mask = (VT == MVT::f64) |
| ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) |
| : DAG.getConstantFP(BitsToFloat(1U << 31), VT); |
| Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); |
| Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); |
| Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask); |
| if (getTypeAction(NVT) == Expand) |
| ExpandOp(Lo, Lo, Hi); |
| break; |
| } |
| case ISD::FCOPYSIGN: { |
| Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); |
| if (getTypeAction(NVT) == Expand) |
| ExpandOp(Lo, Lo, Hi); |
| break; |
| } |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: { |
| bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; |
| MVT SrcVT = Node->getOperand(0).getValueType(); |
| |
| // Promote the operand if needed. Do this before checking for |
| // ppcf128 so conversions of i16 and i8 work. |
| if (getTypeAction(SrcVT) == Promote) { |
| SDValue Tmp = PromoteOp(Node->getOperand(0)); |
| Tmp = isSigned |
| ? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp, |
| DAG.getValueType(SrcVT)) |
| : DAG.getZeroExtendInReg(Tmp, SrcVT); |
| Node = DAG.UpdateNodeOperands(Op, Tmp).getNode(); |
| SrcVT = Node->getOperand(0).getValueType(); |
| } |
| |
| if (VT == MVT::ppcf128 && SrcVT == MVT::i32) { |
| static const uint64_t zero = 0; |
| if (isSigned) { |
| Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, |
| Node->getOperand(0))); |
| Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); |
| } else { |
| static const uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; |
| Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, |
| Node->getOperand(0))); |
| Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); |
| Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); |
| // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32 |
| ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), |
| DAG.getConstant(0, MVT::i32), |
| DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, |
| DAG.getConstantFP( |
| APFloat(APInt(128, 2, TwoE32)), |
| MVT::ppcf128)), |
| Hi, |
| DAG.getCondCode(ISD::SETLT)), |
| Lo, Hi); |
| } |
| break; |
| } |
| if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) { |
| // si64->ppcf128 done by libcall, below |
| static const uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; |
| ExpandOp(DAG.getNode(ISD::SINT_TO_FP, MVT::ppcf128, Node->getOperand(0)), |
| Lo, Hi); |
| Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); |
| // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64 |
| ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), |
| DAG.getConstant(0, MVT::i64), |
| DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, |
| DAG.getConstantFP( |
| APFloat(APInt(128, 2, TwoE64)), |
| MVT::ppcf128)), |
| Hi, |
| DAG.getCondCode(ISD::SETLT)), |
| Lo, Hi); |
| break; |
| } |
| |
| Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, |
| Node->getOperand(0), Node->getDebugLoc()); |
| if (getTypeAction(Lo.getValueType()) == Expand) |
| // float to i32 etc. can be 'expanded' to a single node. |
| ExpandOp(Lo, Lo, Hi); |
| break; |
| } |
| } |
| |
| // Make sure the resultant values have been legalized themselves, unless this |
| // is a type that requires multi-step expansion. |
| if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { |
| Lo = LegalizeOp(Lo); |
| if (Hi.getNode()) |
| // Don't legalize the high part if it is expanded to a single node. |
| Hi = LegalizeOp(Hi); |
| } |
| |
| // Remember in a map if the values will be reused later. |
| bool isNew = |
| ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; |
| assert(isNew && "Value already expanded?!?"); |
| isNew = isNew; |
| } |
| |
| /// SplitVectorOp - Given an operand of vector type, break it down into |
| /// two smaller values, still of vector type. |
| void SelectionDAGLegalize::SplitVectorOp(SDValue Op, SDValue &Lo, |
| SDValue &Hi) { |
| assert(Op.getValueType().isVector() && "Cannot split non-vector type!"); |
| SDNode *Node = Op.getNode(); |
| unsigned NumElements = Op.getValueType().getVectorNumElements(); |
| assert(NumElements > 1 && "Cannot split a single element vector!"); |
| |
| MVT NewEltVT = Op.getValueType().getVectorElementType(); |
| |
| unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1); |
| unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; |
| |
| MVT NewVT_Lo = MVT::getVectorVT(NewEltVT, NewNumElts_Lo); |
| MVT NewVT_Hi = MVT::getVectorVT(NewEltVT, NewNumElts_Hi); |
| |
| // See if we already split it. |
| std::map<SDValue, std::pair<SDValue, SDValue> >::iterator I |
| = SplitNodes.find(Op); |
| if (I != SplitNodes.end()) { |
| Lo = I->second.first; |
| Hi = I->second.second; |
| return; |
| } |
| |
| switch (Node->getOpcode()) { |
| default: |
| #ifndef NDEBUG |
| Node->dump(&DAG); |
| #endif |
| assert(0 && "Unhandled operation in SplitVectorOp!"); |
| case ISD::UNDEF: |
| Lo = DAG.getNode(ISD::UNDEF, NewVT_Lo); |
| Hi = DAG.getNode(ISD::UNDEF, NewVT_Hi); |
| break; |
| case ISD::BUILD_PAIR: |
| Lo = Node->getOperand(0); |
| Hi = Node->getOperand(1); |
| break; |
| case ISD::INSERT_VECTOR_ELT: { |
| if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Node->getOperand(2))) { |
| SplitVectorOp(Node->getOperand(0), Lo, Hi); |
| unsigned Index = Idx->getZExtValue(); |
| SDValue ScalarOp = Node->getOperand(1); |
| if (Index < NewNumElts_Lo) |
| Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Lo, Lo, ScalarOp, |
| DAG.getIntPtrConstant(Index)); |
| else |
| Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Hi, Hi, ScalarOp, |
| DAG.getIntPtrConstant(Index - NewNumElts_Lo)); |
| break; |
| } |
| SDValue Tmp = PerformInsertVectorEltInMemory(Node->getOperand(0), |
| Node->getOperand(1), |
| Node->getOperand(2)); |
| SplitVectorOp(Tmp, Lo, Hi); |
| break; |
| } |
| case ISD::VECTOR_SHUFFLE: { |
| // Build the low part. |
| SDValue Mask = Node->getOperand(2); |
| SmallVector<SDValue, 8> Ops; |
| MVT PtrVT = TLI.getPointerTy(); |
| |
| // Insert all of the elements from the input that are needed. We use |
| // buildvector of extractelement here because the input vectors will have |
| // to be legalized, so this makes the code simpler. |
| for (unsigned i = 0; i != NewNumElts_Lo; ++i) { |
| SDValue IdxNode = Mask.getOperand(i); |
| if (IdxNode.getOpcode() == ISD::UNDEF) { |
| Ops.push_back(DAG.getNode(ISD::UNDEF, NewEltVT)); |
| continue; |
| } |
| unsigned Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue(); |
| SDValue InVec = Node->getOperand(0); |
| if (Idx >= NumElements) { |
| InVec = Node->getOperand(1); |
| Idx -= NumElements; |
| } |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, |
| DAG.getConstant(Idx, PtrVT))); |
| } |
| Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); |
| Ops.clear(); |
| |
| for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) { |
| SDValue IdxNode = Mask.getOperand(i); |
| if (IdxNode.getOpcode() == ISD::UNDEF) { |
| Ops.push_back(DAG.getNode(ISD::UNDEF, NewEltVT)); |
| continue; |
| } |
| unsigned Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue(); |
| SDValue InVec = Node->getOperand(0); |
| if (Idx >= NumElements) { |
| InVec = Node->getOperand(1); |
| Idx -= NumElements; |
| } |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, |
| DAG.getConstant(Idx, PtrVT))); |
| } |
| Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &Ops[0], Ops.size()); |
| break; |
| } |
| case ISD::BUILD_VECTOR: { |
| SmallVector<SDValue, 8> LoOps(Node->op_begin(), |
| Node->op_begin()+NewNumElts_Lo); |
| Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &LoOps[0], LoOps.size()); |
| |
| SmallVector<SDValue, 8> HiOps(Node->op_begin()+NewNumElts_Lo, |
| Node->op_end()); |
| Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &HiOps[0], HiOps.size()); |
| break; |
| } |
| case ISD::CONCAT_VECTORS: { |
| // FIXME: Handle non-power-of-two vectors? |
| unsigned NewNumSubvectors = Node->getNumOperands() / 2; |
| if (NewNumSubvectors == 1) { |
| Lo = Node->getOperand(0); |
| Hi = Node->getOperand(1); |
| } else { |
| SmallVector<SDValue, 8> LoOps(Node->op_begin(), |
| Node->op_begin()+NewNumSubvectors); |
| Lo = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Lo, &LoOps[0], LoOps.size()); |
| |
| SmallVector<SDValue, 8> HiOps(Node->op_begin()+NewNumSubvectors, |
| Node->op_end()); |
| Hi = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Hi, &HiOps[0], HiOps.size()); |
| } |
| break; |
| } |
| case ISD::EXTRACT_SUBVECTOR: { |
| SDValue Vec = Op.getOperand(0); |
| SDValue Idx = Op.getOperand(1); |
| MVT IdxVT = Idx.getValueType(); |
| |
| Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, NewVT_Lo, Vec, Idx); |
| ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx); |
| if (CIdx) { |
| Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, NewVT_Hi, Vec, |
| DAG.getConstant(CIdx->getZExtValue() + NewNumElts_Lo, |
| IdxVT)); |
| } else { |
| Idx = DAG.getNode(ISD::ADD, IdxVT, Idx, |
| DAG.getConstant(NewNumElts_Lo, IdxVT)); |
| Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, NewVT_Hi, Vec, Idx); |
| } |
| break; |
| } |
| case ISD::SELECT: { |
| SDValue Cond = Node->getOperand(0); |
| |
| SDValue LL, LH, RL, RH; |
| SplitVectorOp(Node->getOperand(1), LL, LH); |
| SplitVectorOp(Node->getOperand(2), RL, RH); |
| |
| if (Cond.getValueType().isVector()) { |
| // Handle a vector merge. |
| SDValue CL, CH; |
| SplitVectorOp(Cond, CL, CH); |
| Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, CL, LL, RL); |
| Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, CH, LH, RH); |
| } else { |
| // Handle a simple select with vector operands. |
| Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, Cond, LL, RL); |
| Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, Cond, LH, RH); |
| } |
| break; |
| } |
| case ISD::SELECT_CC: { |
| SDValue CondLHS = Node->getOperand(0); |
| SDValue CondRHS = Node->getOperand(1); |
| SDValue CondCode = Node->getOperand(4); |
| |
| SDValue LL, LH, RL, RH; |
| SplitVectorOp(Node->getOperand(2), LL, LH); |
| SplitVectorOp(Node->getOperand(3), RL, RH); |
| |
| // Handle a simple select with vector operands. |
| Lo = DAG.getNode(ISD::SELECT_CC, NewVT_Lo, CondLHS, CondRHS, |
| LL, RL, CondCode); |
| Hi = DAG.getNode(ISD::SELECT_CC, NewVT_Hi, CondLHS, CondRHS, |
| LH, RH, CondCode); |
| break; |
| } |
| case ISD::VSETCC: { |
| SDValue LL, LH, RL, RH; |
| SplitVectorOp(Node->getOperand(0), LL, LH); |
| SplitVectorOp(Node->getOperand(1), RL, RH); |
| Lo = DAG.getNode(ISD::VSETCC, NewVT_Lo, LL, RL, Node->getOperand(2)); |
| Hi = DAG.getNode(ISD::VSETCC, NewVT_Hi, LH, RH, Node->getOperand(2)); |
| break; |
| } |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::FDIV: |
| case ISD::FPOW: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::UREM: |
| case ISD::SREM: |
| case ISD::FREM: |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: { |
| SDValue LL, LH, RL, RH; |
| SplitVectorOp(Node->getOperand(0), LL, LH); |
| SplitVectorOp(Node->getOperand(1), RL, RH); |
| |
| Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, LL, RL); |
| Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, LH, RH); |
| break; |
| } |
| case ISD::FP_ROUND: |
| case ISD::FPOWI: { |
| SDValue L, H; |
| SplitVectorOp(Node->getOperand(0), L, H); |
| |
| Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L, Node->getOperand(1)); |
| Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H, Node->getOperand(1)); |
| break; |
| } |
| case ISD::CTTZ: |
| case ISD::CTLZ: |
| case ISD::CTPOP: |
| case ISD::FNEG: |
| case ISD::FABS: |
| case ISD::FSQRT: |
| case ISD::FSIN: |
| case ISD::FCOS: |
| case ISD::FLOG: |
| case ISD::FLOG2: |
| case ISD::FLOG10: |
| case ISD::FEXP: |
| case ISD::FEXP2: |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| case ISD::TRUNCATE: |
| case ISD::ANY_EXTEND: |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::FP_EXTEND: { |
| SDValue L, H; |
| SplitVectorOp(Node->getOperand(0), L, H); |
| |
| Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L); |
| Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H); |
| break; |
| } |
| case ISD::CONVERT_RNDSAT: { |
| ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); |
| SDValue L, H; |
| SplitVectorOp(Node->getOperand(0), L, H); |
| SDValue DTyOpL = DAG.getValueType(NewVT_Lo); |
| SDValue DTyOpH = DAG.getValueType(NewVT_Hi); |
| SDValue STyOpL = DAG.getValueType(L.getValueType()); |
| SDValue STyOpH = DAG.getValueType(H.getValueType()); |
| |
| SDValue RndOp = Node->getOperand(3); |
| SDValue SatOp = Node->getOperand(4); |
| |
| Lo = DAG.getConvertRndSat(NewVT_Lo, L, DTyOpL, STyOpL, |
| RndOp, SatOp, CvtCode); |
| Hi = DAG.getConvertRndSat(NewVT_Hi, H, DTyOpH, STyOpH, |
| RndOp, SatOp, CvtCode); |
| break; |
| } |
| case ISD::LOAD: { |
| LoadSDNode *LD = cast<LoadSDNode>(Node); |
| SDValue Ch = LD->getChain(); |
| SDValue Ptr = LD->getBasePtr(); |
| ISD::LoadExtType ExtType = LD->getExtensionType(); |
| const Value *SV = LD->getSrcValue(); |
| int SVOffset = LD->getSrcValueOffset(); |
| MVT MemoryVT = LD->getMemoryVT(); |
| unsigned Alignment = LD->getAlignment(); |
| bool isVolatile = LD->isVolatile(); |
| |
| assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!"); |
| SDValue Offset = DAG.getNode(ISD::UNDEF, Ptr.getValueType()); |
| |
| MVT MemNewEltVT = MemoryVT.getVectorElementType(); |
| MVT MemNewVT_Lo = MVT::getVectorVT(MemNewEltVT, NewNumElts_Lo); |
| MVT MemNewVT_Hi = MVT::getVectorVT(MemNewEltVT, NewNumElts_Hi); |
| |
| Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, |
| NewVT_Lo, Ch, Ptr, Offset, |
| SV, SVOffset, MemNewVT_Lo, isVolatile, Alignment); |
| unsigned IncrementSize = NewNumElts_Lo * MemNewEltVT.getSizeInBits()/8; |
| Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, |
| DAG.getIntPtrConstant(IncrementSize)); |
| SVOffset += IncrementSize; |
| Alignment = MinAlign(Alignment, IncrementSize); |
| Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, |
| NewVT_Hi, Ch, Ptr, Offset, |
| SV, SVOffset, MemNewVT_Hi, isVolatile, Alignment); |
| |
| // Build a factor node to remember that this load is independent of the |
| // other one. |
| SDValue TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), |
| Hi.getValue(1)); |
| |
| // Remember that we legalized the chain. |
| AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); |
| break; |
| } |
| case ISD::BIT_CONVERT: { |
| // We know the result is a vector. The input may be either a vector or a |
| // scalar value. |
| SDValue InOp = Node->getOperand(0); |
| if (!InOp.getValueType().isVector() || |
| InOp.getValueType().getVectorNumElements() == 1) { |
| // The input is a scalar or single-element vector. |
| // Lower to a store/load so that it can be split. |
| // FIXME: this could be improved probably. |
| unsigned LdAlign = TLI.getTargetData()->getPrefTypeAlignment( |
| Op.getValueType().getTypeForMVT()); |
| SDValue Ptr = DAG.CreateStackTemporary(InOp.getValueType(), LdAlign); |
| int FI = cast<FrameIndexSDNode>(Ptr.getNode())->getIndex(); |
| |
| SDValue St = DAG.getStore(DAG.getEntryNode(), |
| InOp, Ptr, |
| PseudoSourceValue::getFixedStack(FI), 0); |
| InOp = DAG.getLoad(Op.getValueType(), St, Ptr, |
| PseudoSourceValue::getFixedStack(FI), 0); |
| } |
| // Split the vector and convert each of the pieces now. |
| SplitVectorOp(InOp, Lo, Hi); |
| Lo = DAG.getNode(ISD::BIT_CONVERT, NewVT_Lo, Lo); |
| Hi = DAG.getNode(ISD::BIT_CONVERT, NewVT_Hi, Hi); |
| break; |
| } |
| } |
| |
| // Remember in a map if the values will be reused later. |
| bool isNew = |
| SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; |
| assert(isNew && "Value already split?!?"); |
| isNew = isNew; |
| } |
| |
| |
| /// ScalarizeVectorOp - Given an operand of single-element vector type |
| /// (e.g. v1f32), convert it into the equivalent operation that returns a |
| /// scalar (e.g. f32) value. |
| SDValue SelectionDAGLegalize::ScalarizeVectorOp(SDValue Op) { |
| assert(Op.getValueType().isVector() && "Bad ScalarizeVectorOp invocation!"); |
| SDNode *Node = Op.getNode(); |
| MVT NewVT = Op.getValueType().getVectorElementType(); |
| assert(Op.getValueType().getVectorNumElements() == 1); |
| |
| // See if we already scalarized it. |
| std::map<SDValue, SDValue>::iterator I = ScalarizedNodes.find(Op); |
| if (I != ScalarizedNodes.end()) return I->second; |
| |
| SDValue Result; |
| switch (Node->getOpcode()) { |
| default: |
| #ifndef NDEBUG |
| Node->dump(&DAG); cerr << "\n"; |
| #endif |
| assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); |
| case ISD::ADD: |
| case ISD::FADD: |
| case ISD::SUB: |
| case ISD::FSUB: |
| case ISD::MUL: |
| case ISD::FMUL: |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::FDIV: |
| case ISD::SREM: |
| case ISD::UREM: |
| case ISD::FREM: |
| case ISD::FPOW: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| Result = DAG.getNode(Node->getOpcode(), |
| NewVT, |
| ScalarizeVectorOp(Node->getOperand(0)), |
| ScalarizeVectorOp(Node->getOperand(1))); |
| break; |
| case ISD::FNEG: |
| case ISD::FABS: |
| case ISD::FSQRT: |
| case ISD::FSIN: |
| case ISD::FCOS: |
| case ISD::FLOG: |
| case ISD::FLOG2: |
| case ISD::FLOG10: |
| case ISD::FEXP: |
| case ISD::FEXP2: |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| case ISD::TRUNCATE: |
| case ISD::FP_EXTEND: |
| Result = DAG.getNode(Node->getOpcode(), |
| NewVT, |
| ScalarizeVectorOp(Node->getOperand(0))); |
| break; |
| case ISD::CONVERT_RNDSAT: { |
| SDValue Op0 = ScalarizeVectorOp(Node->getOperand(0)); |
| Result = DAG.getConvertRndSat(NewVT, Op0, |
| DAG.getValueType(NewVT), |
| DAG.getValueType(Op0.getValueType()), |
| Node->getOperand(3), |
| Node->getOperand(4), |
| cast<CvtRndSatSDNode>(Node)->getCvtCode()); |
| break; |
| } |
| case ISD::FPOWI: |
| case ISD::FP_ROUND: |
| Result = DAG.getNode(Node->getOpcode(), |
| NewVT, |
| ScalarizeVectorOp(Node->getOperand(0)), |
| Node->getOperand(1)); |
| break; |
| case ISD::LOAD: { |
| LoadSDNode *LD = cast<LoadSDNode>(Node); |
| SDValue Ch = LegalizeOp(LD->getChain()); // Legalize the chain. |
| SDValue Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. |
| ISD::LoadExtType ExtType = LD->getExtensionType(); |
| const Value *SV = LD->getSrcValue(); |
| int SVOffset = LD->getSrcValueOffset(); |
| MVT MemoryVT = LD->getMemoryVT(); |
| unsigned Alignment = LD->getAlignment(); |
| bool isVolatile = LD->isVolatile(); |
| |
| assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!"); |
| SDValue Offset = DAG.getNode(ISD::UNDEF, Ptr.getValueType()); |
| |
| Result = DAG.getLoad(ISD::UNINDEXED, ExtType, |
| NewVT, Ch, Ptr, Offset, SV, SVOffset, |
| MemoryVT.getVectorElementType(), |
| isVolatile, Alignment); |
| |
| // Remember that we legalized the chain. |
| AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); |
| break; |
| } |
| case ISD::BUILD_VECTOR: |
| Result = Node->getOperand(0); |
| break; |
| case ISD::INSERT_VECTOR_ELT: |
| // Returning the inserted scalar element. |
| Result = Node->getOperand(1); |
| break; |
| case ISD::CONCAT_VECTORS: |
| assert(Node->getOperand(0).getValueType() == NewVT && |
| "Concat of non-legal vectors not yet supported!"); |
| Result = Node->getOperand(0); |
| break; |
| case ISD::VECTOR_SHUFFLE: { |
| // Figure out if the scalar is the LHS or RHS and return it. |
| SDValue EltNum = Node->getOperand(2).getOperand(0); |
| if (cast<ConstantSDNode>(EltNum)->getZExtValue()) |
| Result = ScalarizeVectorOp(Node->getOperand(1)); |
| else |
| Result = ScalarizeVectorOp(Node->getOperand(0)); |
| break; |
| } |
| case ISD::EXTRACT_SUBVECTOR: |
| Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewVT, Node->getOperand(0), |
| Node->getOperand(1)); |
| break; |
| case ISD::BIT_CONVERT: { |
| SDValue Op0 = Op.getOperand(0); |
| if (Op0.getValueType().getVectorNumElements() == 1) |
| Op0 = ScalarizeVectorOp(Op0); |
| Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op0); |
| break; |
| } |
| case ISD::SELECT: |
| Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0), |
| ScalarizeVectorOp(Op.getOperand(1)), |
| ScalarizeVectorOp(Op.getOperand(2))); |
| break; |
| case ISD::SELECT_CC: |
| Result = DAG.getNode(ISD::SELECT_CC, NewVT, Node->getOperand(0), |
| Node->getOperand(1), |
| ScalarizeVectorOp(Op.getOperand(2)), |
| ScalarizeVectorOp(Op.getOperand(3)), |
| Node->getOperand(4)); |
| break; |
| case ISD::VSETCC: { |
| SDValue Op0 = ScalarizeVectorOp(Op.getOperand(0)); |
| SDValue Op1 = ScalarizeVectorOp(Op.getOperand(1)); |
| Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(Op0.getValueType()), |
| Op0, Op1, Op.getOperand(2)); |
| Result = DAG.getNode(ISD::SELECT, NewVT, Result, |
| DAG.getConstant(-1ULL, NewVT), |
| DAG.getConstant(0ULL, NewVT)); |
| break; |
| } |
| } |
| |
| if (TLI.isTypeLegal(NewVT)) |
| Result = LegalizeOp(Result); |
| bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; |
| assert(isNew && "Value already scalarized?"); |
| isNew = isNew; |
| return Result; |
| } |
| |
| |
| SDValue SelectionDAGLegalize::WidenVectorOp(SDValue Op, MVT WidenVT) { |
| std::map<SDValue, SDValue>::iterator I = WidenNodes.find(Op); |
| if (I != WidenNodes.end()) return I->second; |
| |
| MVT VT = Op.getValueType(); |
| assert(VT.isVector() && "Cannot widen non-vector type!"); |
| |
| SDValue Result; |
| SDNode *Node = Op.getNode(); |
| MVT EVT = VT.getVectorElementType(); |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned NewNumElts = WidenVT.getVectorNumElements(); |
| assert(NewNumElts > NumElts && "Cannot widen to smaller type!"); |
| assert(NewNumElts < 17); |
| |
| // When widen is called, it is assumed that it is more efficient to use a |
| // wide type. The default action is to widen to operation to a wider legal |
| // vector type and then do the operation if it is legal by calling LegalizeOp |
| // again. If there is no vector equivalent, we will unroll the operation, do |
| // it, and rebuild the vector. If most of the operations are vectorizible to |
| // the legal type, the resulting code will be more efficient. If this is not |
| // the case, the resulting code will preform badly as we end up generating |
| // code to pack/unpack the results. It is the function that calls widen |
| // that is responsible for seeing this doesn't happen. |
| switch (Node->getOpcode()) { |
| default: |
| #ifndef NDEBUG |
| Node->dump(&DAG); |
| #endif |
| assert(0 && "Unexpected operation in WidenVectorOp!"); |
| break; |
| case ISD::CopyFromReg: |
| assert(0 && "CopyFromReg doesn't need widening!"); |
| case ISD::Constant: |
| case ISD::ConstantFP: |
| // To build a vector of these elements, clients should call BuildVector |
| // and with each element instead of creating a node with a vector type |
| assert(0 && "Unexpected operation in WidenVectorOp!"); |
| case ISD::VAARG: |
| // Variable Arguments with vector types doesn't make any sense to me |
| assert(0 && "Unexpected operation in WidenVectorOp!"); |
| break; |
| case ISD::UNDEF: |
| Result = DAG.getNode(ISD::UNDEF, WidenVT); |
| break; |
| case ISD::BUILD_VECTOR: { |
| // Build a vector with undefined for the new nodes |
| SDValueVector NewOps(Node->op_begin(), Node->op_end()); |
| for (unsigned i = NumElts; i < NewNumElts; ++i) { |
| NewOps.push_back(DAG.getNode(ISD::UNDEF,EVT)); |
| } |
| Result = DAG.getNode(ISD::BUILD_VECTOR, WidenVT, &NewOps[0], NewOps.size()); |
| break; |
| } |
| case ISD::INSERT_VECTOR_ELT: { |
| SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); |
| Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, WidenVT, Tmp1, |
| Node->getOperand(1), Node->getOperand(2)); |
| break; |
| } |
| case ISD::VECTOR_SHUFFLE: { |
| SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); |
| SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT); |
| // VECTOR_SHUFFLE 3rd operand must be a constant build vector that is |
| // used as permutation array. We build the vector here instead of widening |
| // because we don't want to legalize and have it turned to something else. |
| SDValue PermOp = Node->getOperand(2); |
| SDValueVector NewOps; |
| MVT PVT = PermOp.getValueType().getVectorElementType(); |
| for (unsigned i = 0; i < NumElts; ++i) { |
| if (PermOp.getOperand(i).getOpcode() == ISD::UNDEF) { |
| NewOps.push_back(PermOp.getOperand(i)); |
| } else { |
| unsigned Idx = |
| cast<ConstantSDNode>(PermOp.getOperand(i))->getZExtValue(); |
| if (Idx < NumElts) { |
| NewOps.push_back(PermOp.getOperand(i)); |
| } |
| else { |
| NewOps.push_back(DAG.getConstant(Idx + NewNumElts - NumElts, |
| PermOp.getOperand(i).getValueType())); |
| } |
| } |
| } |
| for (unsigned i = NumElts; i < NewNumElts; ++i) { |
| NewOps.push_back(DAG.getNode(ISD::UNDEF,PVT)); |
| } |
| |
| SDValue Tmp3 = DAG.getNode(ISD::BUILD_VECTOR, |
| MVT::getVectorVT(PVT, NewOps.size()), |
| &NewOps[0], NewOps.size()); |
| |
| Result = DAG.getNode(ISD::VECTOR_SHUFFLE, WidenVT, Tmp1, Tmp2, Tmp3); |
| break; |
| } |
| case ISD::LOAD: { |
| // If the load widen returns true, we can use a single load for the |
| // vector. Otherwise, it is returning a token factor for multiple |
| // loads. |
| SDValue TFOp; |
| if (LoadWidenVectorOp(Result, TFOp, Op, WidenVT)) |
| AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(1))); |
| else |
| AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(0))); |
| break; |
| } |
| |
| case ISD::BIT_CONVERT: { |
| SDValue Tmp1 = Node->getOperand(0); |
| // Converts between two different types so we need to determine |
| // the correct widen type for the input operand. |
| MVT InVT = Tmp1.getValueType(); |
| unsigned WidenSize = WidenVT.getSizeInBits(); |
| if (InVT.isVector()) { |
| MVT InEltVT = InVT.getVectorElementType(); |
| unsigned InEltSize = InEltVT.getSizeInBits(); |
| assert(WidenSize % InEltSize == 0 && |
| "can not widen bit convert that are not multiple of element type"); |
| MVT NewInWidenVT = MVT::getVectorVT(InEltVT, WidenSize / InEltSize); |
| Tmp1 = WidenVectorOp(Tmp1, NewInWidenVT); |
| assert(Tmp1.getValueType().getSizeInBits() == WidenVT.getSizeInBits()); |
| Result = DAG.getNode(ISD::BIT_CONVERT, WidenVT, Tmp1); |
| } else { |
| // If the result size is a multiple of the input size, widen the input |
| // and then convert. |
| unsigned InSize = InVT.getSizeInBits(); |
| assert(WidenSize % InSize == 0 && |
| "can not widen bit convert that are not multiple of element type"); |
| unsigned NewNumElts = WidenSize / InSize; |
| SmallVector<SDValue, 16> Ops(NewNumElts); |
| SDValue UndefVal = DAG.getNode(ISD::UNDEF, InVT); |
| Ops[0] = Tmp1; |
| for (unsigned i = 1; i < NewNumElts; ++i) |
| Ops[i] = UndefVal; |
| |
| MVT NewInVT = MVT::getVectorVT(InVT, NewNumElts); |
| Result = DAG.getNode(ISD::BUILD_VECTOR, NewInVT, &Ops[0], NewNumElts); |
| Result = DAG.getNode(ISD::BIT_CONVERT, WidenVT, Result); |
| } |
| break; |
| } |
| |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| case ISD::FP_ROUND: { |
| SDValue Tmp1 = Node->getOperand(0); |
| // Converts between two different types so we need to determine |
| // the correct widen type for the input operand. |
| MVT TVT = Tmp1.getValueType(); |
| assert(TVT.isVector() && "can not widen non vector type"); |
| MVT TEVT = TVT.getVectorElementType(); |
| MVT TWidenVT = MVT::getVectorVT(TEVT, NewNumElts); |
| Tmp1 = WidenVectorOp(Tmp1, TWidenVT); |
| assert(Tmp1.getValueType().getVectorNumElements() == NewNumElts); |
| Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1); |
| break; |
| } |
| |
| case ISD::FP_EXTEND: |
| assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); |
| case ISD::TRUNCATE: |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| case ISD::SIGN_EXTEND_INREG: |
| case ISD::FABS: |
| case ISD::FNEG: |
| case ISD::FSQRT: |
| case ISD::FSIN: |
| case ISD::FCOS: |
| case ISD::CTPOP: |
| case ISD::CTTZ: |
| case ISD::CTLZ: { |
| // Unary op widening |
| SDValue Tmp1; |
| Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); |
| assert(Tmp1.getValueType() == WidenVT); |
| Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1); |
| break; |
| } |
| case ISD::CONVERT_RNDSAT: { |
| SDValue RndOp = Node->getOperand(3); |
| SDValue SatOp = Node->getOperand(4); |
| SDValue SrcOp = Node->getOperand(0); |
| |
| // Converts between two different types so we need to determine |
| // the correct widen type for the input operand. |
| MVT SVT = SrcOp.getValueType(); |
| assert(SVT.isVector() && "can not widen non vector type"); |
| MVT SEVT = SVT.getVectorElementType(); |
| MVT SWidenVT = MVT::getVectorVT(SEVT, NewNumElts); |
| |
| SrcOp = WidenVectorOp(SrcOp, SWidenVT); |
| assert(SrcOp.getValueType() == WidenVT); |
| SDValue DTyOp = DAG.getValueType(WidenVT); |
| SDValue STyOp = DAG.getValueType(SrcOp.getValueType()); |
| ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); |
| |
| Result = DAG.getConvertRndSat(WidenVT, SrcOp, DTyOp, STyOp, |
| RndOp, SatOp, CvtCode); |
| break; |
| } |
| case ISD::FPOW: |
| case ISD::FPOWI: |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::MULHS: |
| case ISD::MULHU: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::SDIV: |
| case ISD::SREM: |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::FCOPYSIGN: |
| case ISD::UDIV: |
| case ISD::UREM: |
| case ISD::BSWAP: { |
| // Binary op widening |
| SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); |
| SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT); |
| assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT); |
| Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, Tmp2); |
| break; |
| } |
| |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: { |
| SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); |
| assert(Tmp1.getValueType() == WidenVT); |
| SDValue ShOp = Node->getOperand(1); |
| MVT ShVT = ShOp.getValueType(); |
| MVT NewShVT = MVT::getVectorVT(ShVT.getVectorElementType(), |
| WidenVT.getVectorNumElements()); |
| ShOp = WidenVectorOp(ShOp, NewShVT); |
| assert(ShOp.getValueType() == NewShVT); |
| Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, ShOp); |
| break; |
| } |
| |
| case ISD::EXTRACT_VECTOR_ELT: { |
| SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); |
| assert(Tmp1.getValueType() == WidenVT); |
| Result = DAG.getNode(Node->getOpcode(), EVT, Tmp1, Node->getOperand(1)); |
| break; |
| } |
| case ISD::CONCAT_VECTORS: { |
| // We concurrently support only widen on a multiple of the incoming vector. |
| // We could widen on a multiple of the incoming operand if necessary. |
| unsigned NumConcat = NewNumElts / NumElts; |
| assert(NewNumElts % NumElts == 0 && "Can widen only a multiple of vector"); |
| SDValue UndefVal = DAG.getNode(ISD::UNDEF, VT); |
| SmallVector<SDValue, 8> MOps; |
| MOps.push_back(Op); |
| for (unsigned i = 1; i != NumConcat; ++i) { |
| MOps.push_back(UndefVal); |
| } |
| Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, WidenVT, |
| &MOps[0], MOps.size())); |
| break; |
| } |
| case ISD::EXTRACT_SUBVECTOR: { |
| SDValue Tmp1 = Node->getOperand(0); |
| SDValue Idx = Node->getOperand(1); |
| ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx); |
| if (CIdx && CIdx->getZExtValue() == 0) { |
| // Since we are access the start of the vector, the incoming |
| // vector type might be the proper. |
| MVT Tmp1VT = Tmp1.getValueType(); |
| if (Tmp1VT == WidenVT) |
| return Tmp1; |
| else { |
| unsigned Tmp1VTNumElts = Tmp1VT.getVectorNumElements(); |
| if (Tmp1VTNumElts < NewNumElts) |
| Result = WidenVectorOp(Tmp1, WidenVT); |
| else |
| Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, WidenVT, Tmp1, Idx); |
| } |
| } else if (NewNumElts % NumElts == 0) { |
| // Widen the extracted subvector. |
| unsigned NumConcat = NewNumElts / NumElts; |
| SDValue UndefVal = DAG.getNode(ISD::UNDEF, VT); |
| SmallVector<SDValue, 8> MOps; |
| MOps.push_back(Op); |
| for (unsigned i = 1; i != NumConcat; ++i) { |
| MOps.push_back(UndefVal); |
| } |
| Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, WidenVT, |
| &MOps[0], MOps.size())); |
| } else { |
| assert(0 && "can not widen extract subvector"); |
| // This could be implemented using insert and build vector but I would |
| // like to see when this happens. |
| } |
| break; |
| } |
| |
| case ISD::SELECT: { |
| // Determine new condition widen type and widen |
| SDValue Cond1 = Node->getOperand(0); |
| MVT CondVT = Cond1.getValueType(); |
| assert(CondVT.isVector() && "can not widen non vector type"); |
| MVT CondEVT = CondVT.getVectorElementType(); |
| MVT CondWidenVT = MVT::getVectorVT(CondEVT, NewNumElts); |
| Cond1 = WidenVectorOp(Cond1, CondWidenVT); |
| assert(Cond1.getValueType() == CondWidenVT && "Condition not widen"); |
| |
| SDValue Tmp1 = WidenVectorOp(Node->getOperand(1), WidenVT); |
| SDValue Tmp2 = WidenVectorOp(Node->getOperand(2), WidenVT); |
| assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT); |
| Result = DAG.getNode(Node->getOpcode(), WidenVT, Cond1, Tmp1, Tmp2); |
| break; |
| } |
| |
| case ISD::SELECT_CC: { |
| // Determine new condition widen type and widen |
| SDValue Cond1 = Node->getOperand(0); |
| SDValue Cond2 = Node->getOperand(1); |
| MVT CondVT = Cond1.getValueType(); |
| assert(CondVT.isVector() && "can not widen non vector type"); |
| assert(CondVT == Cond2.getValueType() && "mismatch lhs/rhs"); |
| MVT CondEVT = CondVT.getVectorElementType(); |
| MVT CondWidenVT = MVT::getVectorVT(CondEVT, NewNumElts); |
| Cond1 = WidenVectorOp(Cond1, CondWidenVT); |
| Cond2 = WidenVectorOp(Cond2, CondWidenVT); |
| assert(Cond1.getValueType() == CondWidenVT && |
| Cond2.getValueType() == CondWidenVT && "condition not widen"); |
| |
| SDValue Tmp1 = WidenVectorOp(Node->getOperand(2), WidenVT); |
| SDValue Tmp2 = WidenVectorOp(Node->getOperand(3), WidenVT); |
| assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT && |
| "operands not widen"); |
| Result = DAG.getNode(Node->getOpcode(), WidenVT, Cond1, Cond2, Tmp1, |
| Tmp2, Node->getOperand(4)); |
| break; |
| } |
| case ISD::VSETCC: { |
| // Determine widen for the operand |
| SDValue Tmp1 = Node->getOperand(0); |
| MVT TmpVT = Tmp1.getValueType(); |
| assert(TmpVT.isVector() && "can not widen non vector type"); |
| MVT TmpEVT = TmpVT.getVectorElementType(); |
| MVT TmpWidenVT = MVT::getVectorVT(TmpEVT, NewNumElts); |
| Tmp1 = WidenVectorOp(Tmp1, TmpWidenVT); |
| SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), TmpWidenVT); |
| Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, Tmp2, |
| Node->getOperand(2)); |
| break; |
| } |
| case ISD::ATOMIC_CMP_SWAP: |
| case ISD::ATOMIC_LOAD_ADD: |
| case ISD::ATOMIC_LOAD_SUB: |
| case ISD::ATOMIC_LOAD_AND: |
| case ISD::ATOMIC_LOAD_OR: |
| case ISD::ATOMIC_LOAD_XOR: |
| case ISD::ATOMIC_LOAD_NAND: |
| case ISD::ATOMIC_LOAD_MIN: |
| case ISD::ATOMIC_LOAD_MAX: |
| case ISD::ATOMIC_LOAD_UMIN: |
| case ISD::ATOMIC_LOAD_UMAX: |
| case ISD::ATOMIC_SWAP: { |
| // For now, we assume that using vectors for these operations don't make |
| // much sense so we just split it. We return an empty result |
| SDValue X, Y; |
| SplitVectorOp(Op, X, Y); |
| return Result; |
| break; |
| } |
| |
| } // end switch (Node->getOpcode()) |
| |
| assert(Result.getNode() && "Didn't set a result!"); |
| if (Result != Op) |
| Result = LegalizeOp(Result); |
| |
| AddWidenedOperand(Op, Result); |
| return Result; |
| } |
| |
| // Utility function to find a legal vector type and its associated element |
| // type from a preferred width and whose vector type must be the same size |
| // as the VVT. |
| // TLI: Target lowering used to determine legal types |
| // Width: Preferred width of element type |
| // VVT: Vector value type whose size we must match. |
| // Returns VecEVT and EVT - the vector type and its associated element type |
| static void FindWidenVecType(const TargetLowering &TLI, unsigned Width, MVT VVT, |
| MVT& EVT, MVT& VecEVT) { |
| // We start with the preferred width, make it a power of 2 and see if |
| // we can find a vector type of that width. If not, we reduce it by |
| // another power of 2. If we have widen the type, a vector of bytes should |
| // always be legal. |
| assert(TLI.isTypeLegal(VVT)); |
| unsigned EWidth = Width + 1; |
| do { |
| assert(EWidth > 0); |
| EWidth = (1 << Log2_32(EWidth-1)); |
| EVT = MVT::getIntegerVT(EWidth); |
| unsigned NumEVT = VVT.getSizeInBits()/EWidth; |
| VecEVT = MVT::getVectorVT(EVT, NumEVT); |
| } while (!TLI.isTypeLegal(VecEVT) || |
| VVT.getSizeInBits() != VecEVT.getSizeInBits()); |
| } |
| |
| SDValue SelectionDAGLegalize::genWidenVectorLoads(SDValueVector& LdChain, |
| SDValue Chain, |
| SDValue BasePtr, |
| const Value *SV, |
| int SVOffset, |
| unsigned Alignment, |
| bool isVolatile, |
| unsigned LdWidth, |
| MVT ResType) { |
| // We assume that we have good rules to handle loading power of two loads so |
| // we break down the operations to power of 2 loads. The strategy is to |
| // load the largest power of 2 that we can easily transform to a legal vector |
| // and then insert into that vector, and the cast the result into the legal |
| // vector that we want. This avoids unnecessary stack converts. |
| // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and |
| // the load is nonvolatile, we an use a wider load for the value. |
| // Find a vector length we can load a large chunk |
| MVT EVT, VecEVT; |
| unsigned EVTWidth; |
| FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT); |
| EVTWidth = EVT.getSizeInBits(); |
| |
| SDValue LdOp = DAG.getLoad(EVT, Chain, BasePtr, SV, SVOffset, |
| isVolatile, Alignment); |
| SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecEVT, LdOp); |
| LdChain.push_back(LdOp.getValue(1)); |
| |
| // Check if we can load the element with one instruction |
| if (LdWidth == EVTWidth) { |
| return DAG.getNode(ISD::BIT_CONVERT, ResType, VecOp); |
| } |
| |
| // The vector element order is endianness dependent. |
| unsigned Idx = 1; |
| LdWidth -= EVTWidth; |
| unsigned Offset = 0; |
| |
| while (LdWidth > 0) { |
| unsigned Increment = EVTWidth / 8; |
| Offset += Increment; |
| BasePtr = DAG.getNode(ISD::ADD, BasePtr.getValueType(), BasePtr, |
| DAG.getIntPtrConstant(Increment)); |
| |
| if (LdWidth < EVTWidth) { |
| // Our current type we are using is too large, use a smaller size by |
| // using a smaller power of 2 |
| unsigned oEVTWidth = EVTWidth; |
| FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT); |
| EVTWidth = EVT.getSizeInBits(); |
| // Readjust position and vector position based on new load type |
| Idx = Idx * (oEVTWidth/EVTWidth); |
| VecOp = DAG.getNode(ISD::BIT_CONVERT, VecEVT, VecOp); |
| } |
| |
| SDValue LdOp = DAG.getLoad(EVT, Chain, BasePtr, SV, |
| SVOffset+Offset, isVolatile, |
| MinAlign(Alignment, Offset)); |
| LdChain.push_back(LdOp.getValue(1)); |
| VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, VecEVT, VecOp, LdOp, |
| DAG.getIntPtrConstant(Idx++)); |
| |
| LdWidth -= EVTWidth; |
| } |
| |
| return DAG.getNode(ISD::BIT_CONVERT, ResType, VecOp); |
| } |
| |
| bool SelectionDAGLegalize::LoadWidenVectorOp(SDValue& Result, |
| SDValue& TFOp, |
| SDValue Op, |
| MVT NVT) { |
| // TODO: Add support for ConcatVec and the ability to load many vector |
| // types (e.g., v4i8). This will not work when a vector register |
| // to memory mapping is strange (e.g., vector elements are not |
| // stored in some sequential order). |
| |
| // It must be true that the widen vector type is bigger than where |
| // we need to load from. |
| LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); |
| MVT LdVT = LD->getMemoryVT(); |
| assert(LdVT.isVector() && NVT.isVector()); |
| assert(LdVT.getVectorElementType() == NVT.getVectorElementType()); |
| |
| // Load information |
| SDValue Chain = LD->getChain(); |
| SDValue BasePtr = LD->getBasePtr(); |
| int SVOffset = LD->getSrcValueOffset(); |
| unsigned Alignment = LD->getAlignment(); |
| bool isVolatile = LD->isVolatile(); |
| const Value *SV = LD->getSrcValue(); |
| unsigned int LdWidth = LdVT.getSizeInBits(); |
| |
| // Load value as a large register |
| SDValueVector LdChain; |
| Result = genWidenVectorLoads(LdChain, Chain, BasePtr, SV, SVOffset, |
| Alignment, isVolatile, LdWidth, NVT); |
| |
| if (LdChain.size() == 1) { |
| TFOp = LdChain[0]; |
| return true; |
| } |
| else { |
| TFOp=DAG.getNode(ISD::TokenFactor, MVT::Other, &LdChain[0], LdChain.size()); |
| return false; |
| } |
| } |
| |
| |
| void SelectionDAGLegalize::genWidenVectorStores(SDValueVector& StChain, |
| SDValue Chain, |
| SDValue BasePtr, |
| const Value *SV, |
| int SVOffset, |
| unsigned Alignment, |
| bool isVolatile, |
| SDValue ValOp, |
| unsigned StWidth) { |
| // Breaks the stores into a series of power of 2 width stores. For any |
| // width, we convert the vector to the vector of element size that we |
| // want to store. This avoids requiring a stack convert. |
| |
| // Find a width of the element type we can store with |
| MVT VVT = ValOp.getValueType(); |
| MVT EVT, VecEVT; |
| unsigned EVTWidth; |
| FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT); |
| EVTWidth = EVT.getSizeInBits(); |
| |
| SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, VecEVT, ValOp); |
| SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EVT, VecOp, |
| DAG.getIntPtrConstant(0)); |
| SDValue StOp = DAG.getStore(Chain, EOp, BasePtr, SV, SVOffset, |
| isVolatile, Alignment); |
| StChain.push_back(StOp); |
| |
| // Check if we are done |
| if (StWidth == EVTWidth) { |
| return; |
| } |
| |
| unsigned Idx = 1; |
| StWidth -= EVTWidth; |
| unsigned Offset = 0; |
| |
| while (StWidth > 0) { |
| unsigned Increment = EVTWidth / 8; |
| Offset += Increment; |
| BasePtr = DAG.getNode(ISD::ADD, BasePtr.getValueType(), BasePtr, |
| DAG.getIntPtrConstant(Increment)); |
| |
| if (StWidth < EVTWidth) { |
| // Our current type we are using is too large, use a smaller size by |
| // using a smaller power of 2 |
| unsigned oEVTWidth = EVTWidth; |
| FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT); |
| EVTWidth = EVT.getSizeInBits(); |
| // Readjust position and vector position based on new load type |
| Idx = Idx * (oEVTWidth/EVTWidth); |
| VecOp = DAG.getNode(ISD::BIT_CONVERT, VecEVT, VecOp); |
| } |
| |
| EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EVT, VecOp, |
| DAG.getIntPtrConstant(Idx++)); |
| StChain.push_back(DAG.getStore(Chain, EOp, BasePtr, SV, |
| SVOffset + Offset, isVolatile, |
| MinAlign(Alignment, Offset))); |
| StWidth -= EVTWidth; |
| } |
| } |
| |
| |
| SDValue SelectionDAGLegalize::StoreWidenVectorOp(StoreSDNode *ST, |
| SDValue Chain, |
| SDValue BasePtr) { |
| // TODO: It might be cleaner if we can use SplitVector and have more legal |
| // vector types that can be stored into memory (e.g., v4xi8 can |
| // be stored as a word). This will not work when a vector register |
| // to memory mapping is strange (e.g., vector elements are not |
| // stored in some sequential order). |
| |
| MVT StVT = ST->getMemoryVT(); |
| SDValue ValOp = ST->getValue(); |
| |
| // Check if we have widen this node with another value |
| std::map<SDValue, SDValue>::iterator I = WidenNodes.find(ValOp); |
| if (I != WidenNodes.end()) |
| ValOp = I->second; |
| |
| MVT VVT = ValOp.getValueType(); |
| |
| // It must be true that we the widen vector type is bigger than where |
| // we need to store. |
| assert(StVT.isVector() && VVT.isVector()); |
| assert(StVT.bitsLT(VVT)); |
| assert(StVT.getVectorElementType() == VVT.getVectorElementType()); |
| |
| // Store value |
| SDValueVector StChain; |
| genWidenVectorStores(StChain, Chain, BasePtr, ST->getSrcValue(), |
| ST->getSrcValueOffset(), ST->getAlignment(), |
| ST->isVolatile(), ValOp, StVT.getSizeInBits()); |
| if (StChain.size() == 1) |
| return StChain[0]; |
| else |
| return DAG.getNode(ISD::TokenFactor, MVT::Other,&StChain[0],StChain.size()); |
| } |
| |
| |
| // SelectionDAG::Legalize - This is the entry point for the file. |
| // |
| void SelectionDAG::Legalize(bool TypesNeedLegalizing) { |
| /// run - This is the main entry point to this class. |
| /// |
| SelectionDAGLegalize(*this, TypesNeedLegalizing).LegalizeDAG(); |
| } |
| |